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INTRODUCTION

Owing to increasing social interest in height and quality of life, 
many children visit hospitals to evaluate their linear growth 
status.1 It is necessary to differentiate between pathological 
short stature and short stature within a normal range. Appro-
priate examination and evaluation of children are important 
for accurate assessment of their growth status and identifica-
tion of various growth problems.

Bone age, which represents skeletal maturation of the body, 
is one of the most important aspects of growth status evalua-
tion. Bone age is usually estimated from a left-hand radiograph, 
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including the wrist. Bone age is mainly interpreted using the 
Greulich-Pyle (GP) method2 and Tanner-Whitehouse (TW) 
method.3 The GP method is used to intuitively estimate bone 
age by comparing it with a standard atlas of the reference pop-
ulation, and the TW method is used to calculate the scores and 
sums of the number and shape of bones in the hand and wrist. 
The GP method is more widely used in clinical practice be-
cause it takes relatively less reading time than the TW method. 
However, the GP method may yield different results depend-
ing on the experience of the interpreter, and inter- and intra-
person variation could exist in the interpretation. Therefore, 
clinicians need a faster, more accurate, and consistent method 
with which to assess bone age.

With recent advances in artificial intelligence (AI) technol-
ogy, deep learning algorithms are thought to be applicable in 
bone age estimation.4 A convolutional neural network (CNN), 
which is a type of deep learning architecture, has received at-
tention for its strength in image processing. Bone age estimation 
programs based on deep learning have been developed and 
used worldwide;5,6 however, there are relatively few programs 
for the Korean population, owing to racial and ethnic differ-
ences in skeletal maturation. In addition, although there are 
some commercialized bone age estimation programs that are 
of use in predicting final adult height, the prediction results are 
not always constant or accurate.7,8 Additionally, there may be 
some discrepancies in bone age interpretation results between 
radiologists and pediatricians who treat actual patients.9 Accu-
rate and rapid estimation of bone age and precise prediction of 
final adult height using deep learning would be significantly 
beneficial in clinical settings to promote children and public 
health and reduce social costs.

The aim of this study was to develop a bone age estimation 

program using a deep learning algorithm based on bone age 
data of Korean children interpreted by pediatricians and to es-
tablish a model to predict the final adult height of children.

MATERIALS AND METHODS

Image selection and interpretation
Bone age view radiographs (left-hand anteroposterior view in-
cluding the wrist) were obtained from children who visited the 
pediatric endocrinology clinic at Severance Children’s Hospi-
tal from March 2011 to March 2020. In total, 71466 radiographs 
were obtained from 21614 children. We excluded radiographs 
of patients with underlying conditions that could affect growth 
status, such as growth hormone deficiency, precocious puberty, 
diabetes, intracranial tumors, and adrenal diseases. Patients 
treated with medications that could affect linear growth, in-
cluding recombinant human growth hormones, gonadotro-
pin-releasing hormone agonists, steroids, and thyroid hor-
mones, were also excluded. Also, children under 3 years of age 
were excluded from the study as the GP method is not accu-
rate for a younger age. Subsequently, two board-certified pe-
diatric endocrinologists (each with 34 and 12 years of clinical 
experience) interpreted the remaining 4526 radiographs from 
a total of 1961 children based on the GP method,2 and we only 
included the results of readings that matched between the two 
reviewers. If the difference between the results of the two re-
viewers was less than 3 months, the reading results were con-
sidered to be matched. Finally, 1678 radiographs (877 from 
males and 801 from females) from 866 children were used to 
obtain the reference bone age with which to train and validate 
the deep learning model (Fig. 1). 1678 radiographs were ran-

Assessed for eligibility 
(71466 bone age radiographs 

from 21614 children)

Excluded
  -   Children with underlying diseases or under medications that could affect growth status 

(66940 bone age radiographs from 19653 children)

Excluded
  -   Inconsistent interpretation results among two reviewers 

(2848 bone age radiographs from 1095 children)

Included in training 
(1678 bone age radiographs 

from 866 children)

Interpretation by two 
pediatric endocrinologists 

(4526 bone age radiographs 
from 1961 children)

Fig. 1. Flow chart of the selection of bone age radiographs.
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domly divided into training and validation sets at a ratio of 7:3, 
using hierarchical sampling. Finally, 1237 radiographs (667 
from males and 570 from females) were used to train the deep 
learning model, and 441 radiographs (210 from males and 231 
from females) were used as the validation set. Table 1 shows the 
distributions of sex and chronological age according to the ra-
diographs used in the training set.

This study was approved by the Institutional Review Board 
of Severance Hospital, Yonsei University College of Medicine, 
Seoul, Korea (No. 4-2020-0192). The requirement for informed 
consent was waived because of the retrospective nature of the 
study.

Image pre-processing
Image pre-processing can improve the efficiency of machine 
learning. First, a masked area was created around the hand. 

Except for the hand, all other parts, such as letters or white 
borders, were removed so that only the information on the 
hand area could be extracted. Using the original image and 
masked area, blurry backgrounds, characters, and areas other 
than the hands were removed through bitwise mask opera-
tions. Next, the image was rotated to make the angle of the ra-
diograph consistent with that of others. The center point of 
the wrist and the starting point of the wrist were set to x and y, 
respectively. After the linear regression line was found, the im-
age was rotated so that the linear regression line was perpen-
dicular. To better distinguish bones from faint X-ray images, 
the brightness value was adjusted by varying the weight of the 
rotated image according to the degree of brightness. Then, a 
top-hat morphological operation was performed to emphasize 
the area where the brightness value greatly changed, thus ex-
tracting the bone area from the image. To minimize noise, blur 
processing was performed, and contrast enhancement was 
conducted with different weights set according to the image 
average value. Finally, contour detection was performed to de-
tect the borders of the hand. We used YOLOv5 as an algorithm 
for joint detection, and the joints of the wrist, thumb, middle 
finger, and little finger were annotated using a bounding box.10

AI program modeling
For modeling the AI program, the CNN of the deep learning al-
gorithm was used as the basis, and it was modified using the 
attention module. For hyper-parameter tuning, the activation 
function of the backbone of YOLOx and YOLOm model of YO-
LOv5 was tested on convolutional layer and bottleneck struc-
tures. We selected the model with the best detection perfor-
mance through activation functions and optimizer tuning. The 
learning technique of our program was based on TjNet,11 which 
is based on VGG16 and the convolutional block attention mod-
ule (CBAM).12,13 However, instead of CBAM, we applied a bot-
tleneck attention module (BAM) in which the channel atten-
tion and spatial attention modules were arranged in parallel.14 
Fig. 2 shows a schema of the process of recognizing and inter-
preting bone age radiographs using our deep learning model. 

Table 1. Distribution of Sex and Chronological Age According to Radio-
graphs Used in the Training Set of Deep Learning Model

Age, years Male Female Total
3–4   31   21     52
4–5   55   32     87
5–6   48   64   112
6–7   52   51   103
7–8   50   43     93
8–9   50   49     99

  9–10   50   52   102
10–11   50   52   102
11–12   50   47     97
12–13   49   49     98
13–14   49   46     95
14–15   54   33     87
15–16   40   19     59
16–17   30   12     42
17–18     9     0       9
Total 667 570 1237

Data are presented as n.

Fig. 2. Process of interpreting bone age radiographs in the deep learning model.
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When the wrist and the first, third, and fifth fingers obtained 
through image pre-processing are input, they first go through 
the convolutional layer and global average pooling and then 
enter the BAM layer. After going through three more blocks, the 
four outputs are concatenated into one, and then the result is 
derived through a fully connected layer and gender classifica-
tion layer.

Prediction of final adult height
Standard growth charts of Korean children and adolescents 
were used to construct a regression model to predict final adult 
height.15 The height z-score for bone age was calculated using 
the modified least mean square (LMS) method, where L stands 
for the power of box-cox transformation, M is the median, and 
S is the coefficient of variation.16 The height at the age of 18 
years was estimated by calculating the height z-score for bone 
age and the L, M, and S values of each male and female at the 
age of 18 years, which were regarded as indicative of the final 
adult height. The following equation expresses the formula for 
predicting the final adult height:

g(z)=M18×[1+(L18×S18×Z)](1/L18)

g(z): Predicted final adult height
M18: M value at the age of 18 years
L18: L value at the age of 18 years
S18: S value at the age of 18 years
Z: height z-score for bone age

Simulation for bone age estimation and prediction of 
final adult height
The AI program and two raters participated in the simulation 
using the test set. Rater 1 is a board-certified pediatric endo-
crinologist with 11 years of clinical experience, and rater 2 is a 
fourth-year resident in pediatrics. Bone ages were assessed 
with the assistance of a GP atlas. The test set consisted of 150 
bone age radiographs taken from a total of 150 children, 75 
each for males and females. The 150 radiographs used for 
simulation were prepared not to overlap with the 1678 radio-
graphs used for machine learning and validation. In addition, 
100 of these (50 each for males and females) were from chil-
dren who had reached their final adult height. Therefore, 150 
radiographs were used for bone age estimation, and a final 
adult height of 100 children was predicted by the AI program 
and the two raters.

Statistical analysis
Statistical analyses were performed using R version 4.2.1 (The 
R Foundation for Statistical Computing, Vienna, Austria). Pear-
son correlation analysis and scatter plots were used to assess 
correlation between bone age determined using the AI pro-
gram and the reference bone age. To compare the accuracy and 
precision of the AI program and the two raters, the mean abso-

lute error (MAE) and root mean square error (RMSE) were an-
alyzed, and the values were compared using Student’s t-test. 
Bonferroni adjustment was applied for adjustment of multiple 
testing. Additionally, intraclass correlation coefficient (ICC) 
and concordance correlation coefficient (CCC) values were as-
sessed to determine the agreement between the simulation re-
sults and reference values.17,18 Bland–Altman plots were used to 
evaluate the correlation in bone age estimation and prediction 
of the final adult height between the simulation results and the 
references. Statistical significance was set at p<0.05.

RESULTS

Accuracy of the estimated bone age by AI program
Internal validation was performed using 441 bone age radio-
graphs (210 from males and 231 from females) to assess the ac-
curacy of the AI program. An MAE of 0.39 years (4.7 months) 
was observed between the AI program and reference bone age.

The scatterplot in Fig. 3 shows the correlation between bone 
age determined by the AI program and the reference bone age 
in the test set simulation. We noted a statistically significant 
correlation between bone age interpreted by the AI program 
and reference values (r=0.99, p<0.001). Table 2 presents the 
simulation results of the bone age estimation using a test set of 
150 bone age radiographs. The AI program showed an MAE of 
0.59 years and RMSE of 0.55 years, compared to the reference 
bone age. Rater 1 showed an MAE of 0.60 years and RMSE of 
0.52 years, which were similar to those of the AI program. Rater 
2 showed slightly inferior results, compared with those of the 
AI program and rater 1, but the differences were not statistical-
ly significant. When the data were divided on the basis of sex, 
compared to raters 1 and 2, the AI program showed superior 
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outcomes in females. However, interpretation results from rat-
er 1 were the best in estimating male bone age. The ICC and 
CCC values showed substantial agreement between the simu-
lation results and reference values. 

Bland–Altman plots of the bone age estimation results and 
the reference bone age depicted in Fig. 4 illustrate a high level 
of correlation, with a tendency to slightly underestimate bone 
age, compared to the reference values in all three participants. 
In addition, the accuracy of the AI program decreased slightly 
as age increased. Sex-stratified Bland–Altman plots for bone 
age estimation are presented in Supplementary Figs. 1 and 2 
(only online).

Accuracy of the AI program in the prediction of final 
adult height
The prediction results of final adult height by the AI program 
and the two raters were compared using the final adult height 
data from 100 children (Table 3). The accuracy of the AI pro-

gram showed an MAE 4.62 cm and an RMSE of 37.49 cm. Rat-
er 1 showed significantly better accuracy in predicting the fi-
nal adult height in both sexes (MAE of 3.17 cm, RMSE of 18.62 
cm), whereas the accuracy of rater 2 was similar to that of the 
AI program (MAE of 4.43 cm, RMSE of 33.96 cm). The overall 
ICC and CCC values showed relatively high agreement among 
all three participants, although the strength of the correlation 
decreased when the data were stratified by sex. 

Bland–Altman plots of the prediction results and reference 
values of final adult height also depicted the highest correla-
tion for rater 1, and similar results for the AI program and rater 
2 (Fig. 5). In addition, a tendency to overestimate the final adult 
height, compared to the reference values, was observed for the 
AI program and both raters. Sex-stratified Bland–Altman plots 
for the prediction of final adult height are presented in Sup-
plementary Figs. 3 and 4 (only online).

Table 2. Accuracy and Agreement of Bone Age Estimation between Simulation Results and Reference Values

AI program Rater 1 Rater 2
Overall

MAE, yr 0.59 0.60 0.64
RMSE, yr 0.55 0.52 0.62
ICC (95% CI) 0.980 (0.914, 0.992) 0.983 (0.945, 0.992) 0.978 (0.904, 0.991)
CCC (95% CI) 0.980 (0.973, 0.985) 0.983 (0.977, 0.987) 0.978 (0.971, 0.984)

Males
MAE, yr 0.59 0.53 0.61
RMSE, yr 0.58 0.42 0.56
ICC (95% CI) 0.979 (0.909, 0.991) 0.987 (0.978, 0.992) 0.980 (0.897, 0.992)
CCC (95% CI) 0.978 (0.968, 0.986) 0.987 (0.981, 0.991) 0.980 (0.969, 0.986)

Females
MAE, yr 0.59 0.67 0.67
RMSE, yr 0.51 0.62 0.67
ICC (95% CI) 0.982 (0.914, 0.993) 0.979 (0.616, 0.994) 0.977 (0.906, 0.991)
CCC (95% CI) 0.981 (0.972, 0.987) 0.979 (0.969, 0.986) 0.977 (0.964, 0.985)

AI, artificial intelligence; MAE, mean absolute error; RMSE, root mean square error; ICC, intraclass correlation coefficient; CI, confidence interval; CCC, concor-
dance correlation coefficient.
Among raters 1 and 2, there was no statistically significant difference, compared to the AI   program.
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DISCUSSION

In this study, we developed a bone age estimation program 
using a CNN via a deep learning algorithm based on bone age 
data of Korean children and adolescents. Additionally, a re-
gression model was established to predict final adult height. 
To focus on accuracy, our study only included bone age radio-
graphs, where the interpretation results were consistent be-
tween two experienced pediatric endocrinologists. Although 
the total number of bone age radiographs used in our study 
was relatively small, the efficiency of machine learning was 
increased by excluding potentially controversial radiographs. 
The AI program showed accurate and reliable results in bone 
age estimation and prediction of final adult height, compara-
ble with results from two pediatricians.

Based on test set simulation results, the accuracy of the AI 
program in bone age estimation was relatively high and con-
sistent, and there were no noticeable differences in estimates, 

compared with those of raters 1 and 2. However, the degree of 
error gradually increased with increasing chronological age; 
therefore, further machine learning is necessary for bone age 
radiographs of older individuals. An MAE of 0.59 years and 
RMSE of 0.55 years from the simulation by the AI program in 
this study are similar to those shown by previous AI-based 
bone age programs. BoneXpert, which was based on data from 
European children, showed an accuracy within 0.72 years 
(standard deviation) for Asians,19 and VUNO Med-BoneAge 
based on the Korean population had an RMSE of 0.60 years.8 In 
addition, MediAI-BA solution, an AI bone age estimation pro-
gram based on the TW3 method, showed an MAE of 0.59 years,20 
and HH-boneage.io solution showed an MAE of 0.46 years and 
RMSE of 0.62 years,21 confirming that the performance of the AI 
program in our study, in general, was similar to those of previ-
ous releases.

Predicting final adult height is a difficult process in actual 
clinical practice, and a doctor’s experience plays a major role. 

Table 3. Accuracy and Agreement of Prediction of Final Adult Height between Simulation Results and Reference Values

AI program Rater 1 Rater 2
Overall

MAE, cm   4.62     3.17*   4.43
RMSE, cm 37.49   18.62* 33.96
ICC (95% CI) 0.790 (0.704, 0.854) 0.844 (0.770, 0.894) 0.792 (0.689, 0.861)
CCC (95% CI) 0.789 (0.715, 0.845) 0.843 (0.776, 0.891) 0.790 (0.712, 0.849)

Males
MAE, cm   4.77   3.28   5.23
RMSE, cm 37.70 21.52 43.10
ICC (95% CI) 0.287 (0.000, 0.528) 0.309 (0.045, 0.536) 0.111 (-0.093, 0.331)
CCC (95% CI) 0.282 (0.084, 0.459) 0.305 (0.044, 0.527) 0.109 (-0.083, 0.293)

Females
MAE, cm   4.46   3.05   3.63
RMSE, cm 37.28 15.72 24.82
ICC (95% CI) 0.281 (0.023, 0.509) 0.513 (0.278, 0.691) 0.468 (0.218, 0.660)
CCC (95% CI) 0.277 (0.028, 0.493) 0.508 (0.299, 0.671) 0.463 (0.218, 0.653)

AI, artificial intelligence; MAE, mean absolute error; RMSE, root mean square error; ICC, intraclass correlation coefficient; CI, confidence interval; CCC, concor-
dance correlation coefficient.
*p<0.05, compared to the AI program.
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Rater 1, who had more patient experience, showed significantly 
better results than the AI program and rater 2 (a fourth-year resi-
dent) with relatively little clinical experience. The results pre-
dicted by the AI program and rater 2, even though not as pre-
cise as those by rater 1, were similar and accurate. In our study, 
each machine-learned bone age radiograph was tagged with 
the child’s height, weight, body mass index, and chronological 
age at the time of examination, and only data from healthy chil-
dren were included, excluding cases of diseases or specific 
treatments that might affect growth. Currently, the prediction 
of final adult height in this study represents projection using 
growth charts and the LMS method; however, we plan to in-
clude serially measured longitudinal data to increase accuracy 
in the future.

In the test set simulation conducted in this study, there were 
sex differences in both bone age estimation and final height 
prediction. Even in the same bone age radiograph, the esti-
mated bone age would be different because the degree and 
speed of skeletal maturation vary depending on sex, and it is 
very important to accurately identify this difference when man-
aging patients. Importantly, the two raters in this study showed 
difference in interpreting results according to sex; however, the 
AI program demonstrated very consistent performance re-
gardless of sex. The predicted adult heights were also different 
according to sex. Generally, when predicting the final adult 
height through plotting and projection methods using growth 
curves, height for boys tends to be overestimated and height 
for girls tends to be underestimated.22 In particular, the bone 
age of boys progresses rapidly as they enter puberty, making it 
more difficult to predict their final height. Our simulation re-
sults showed a higher accuracy of the predicted height for girls 
for both raters. On the contrary, the AI program did not show a 
large difference in accuracy between boys and girls in predict-
ing final adult height and showed steady results.

This study has some limitations. To increase accuracy, we 
only included healthy children who did not receive any specif-
ic treatment related to linear growth. In addition, as we includ-
ed only bone age radiographs that were rated similarly by the 
two endocrinologists, the total number of radiographs used in 
machine learning was relatively small. In addition, because the 
GP method is not accurate for children of younger age and a 
small number of radiographs, children under 3 years of age 
were excluded from the study. Moreover, as final adult height is 
rarely predicted at a young age owing to its low accuracy, we 
did not perform final height prediction in simulation for chil-
dren under 6 years of age. In addition, the reading time for bone 
age estimation was not measured in the test set simulation. As 
the reading time was not measured, raters with little experience 
would have benefited from spending more time to increase the 
accuracy of interpretation and height prediction. Additionally, 
one of the main limitations of this study is that external valida-
tion was not performed. Finally, this study used data from a sin-
gle tertiary institution. In future, we plan to increase the accura-

cy of the program by additional machine learning of bone age 
radiographs, comparing it with multicenter data and readings 
from other clinicians.

In conclusion, we developed a bone age estimation program 
based on the CNN of a deep learning system solely using im-
aging data and interpretation results of Korean pediatric popu-
lation. The AI program showed high accuracy in estimating 
bone age and predicting final adult height in Korean children 
and adolescents.
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