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Obesity, now officially recognized as a disease requiring intervention, has emerged as a significant health concern 
due to its strong association with elevated susceptibility to diverse diseases and various types of cancer, including 
breast cancer. The link between obesity and cancer is intricate, with obesity exerting a significant impact on can-
cer recurrence and elevated mortality rates. Among the various subtypes of breast cancer, triple-negative breast 
cancer (TNBC) is the most aggressive, accounting for 15% to 20% of all cases. TNBC is characterized by low expres-
sion of estrogen receptors and progesterone receptors as well as the human epidermal growth factor 2 receptor 
protein. This subtype poses distinct challenges in terms of treatment response and exhibits strong invasiveness. 
Furthermore, TNBC has garnered attention because of its association with obesity, in which excess body fat and 
reduced physical activity have been identified as contributing factors to the increased incidence of this aggressive 
form of breast cancer. In this comprehensive review, the impact of obesity on TNBC was explored. Specifically, 
we focused on the three key mechanisms by which obesity affects TNBC development and progression: modifi-
cation of the immune profile, facilitation of fibrosis, and initiation of senescence. By comprehensively examining 
these mechanisms, we illuminated the complex interplay between TNBC and obesity, facilitating the development 
of novel approaches for prevention, early detection, and effective management of this challenging disease.
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INTRODUCTION

Obesity, which is becoming increasingly prevalent, has gained of-
ficial recognition as a ‘disease’ requiring intervention. According to 
the World Health Organization, obesity is defined as a body mass 
index equal to or greater than 30 kg/m2.1 This condition is closely 
linked to susceptibility to metabolic diseases, cardiovascular diseas-
es, musculoskeletal diseases, depression, Alzheimer’s disease, and 
various types of cancer, including breast cancer.2-8 The link between 
obesity and cancer is complex, with obesity being associated with 
increased risk of cancer.9 Furthermore, obesity is associated with 
increased risk of cancer recurrence and higher mortality rates.10 
Therefore, management of obesity is important for improving can-

cer outcomes, emphasizing the need for early intervention in pa-
tients with early-stage cancer.

Triple-negative breast cancer (TNBC) has low expression of es-
trogen receptor and progesterone receptor as well as the human 
epidermal growth factor 2 receptor protein, and it accounts for 10% 
to 15% of breast cancer cases.11,12 It is the most aggressive type of 
breast cancer and is characterized by a low response to treatment 
and strong invasive properties; few studies have been performed in 
this type breast cancer.13 While there are many complexities yet to 
be uncovered, current research has revealed a multitude of factors 
influencing the development of TNBC. Age, race, genetic varia-
tions, family history, oral contraceptive use, and weight, including 
obesity or overweight, have emerged as notable contributors.14-18 
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An abundance of research has delved into the intricate correla-
tions between obesity and TNBC. It has been firmly established 
that a TNBC diagnosis is notably more prevalent among individuals 
classified as obese, as opposed to those who are not obese. Recent 
investigations have studied distinct clinical disparities within TNBC 
that are intimately linked to obesity.19,20 Notably, obese TNBC pa-
tients frequently present with more substantial tumor dimensions 
and elevated T-stage categorizations and exhibit a propensity for 
higher tumor grades.21 Nevertheless, the exact influence of meta-
bolic changes in adipose tissue on the progression of TNBC remains 
a mystery, underscoring the need for additional research. 

Therefore, we aimed to investigate the influence of obesity on 
TNBC based on existing research. We focused on how obesity im-
pacts TNBC development through three mechanisms: modifica-
tion of the immune profile, facilitation of fibrosis, and initiation of 
senescence (Fig. 1). 

IMPACT OF CANCER-ASSOCIATED 
ADIPOCYTES AND TNBC PROGRESSION

Recent studies have revealed that obese animals exhibit a state of 
hypoxia in adipose tissue.22,23 This hypoxia leads to interactions be-

tween adipose cells and stromal vascular cells, driving tumor initia-
tion and progression.24 Within adipose tissue, hypoxia triggers in-
creased insulin resistance; decreased adiponectin; and elevated leptin, 
adipocyte apoptosis, and endoplasmic reticulum (ER) stress.25-28 
Ultimately, these changes result in favorable microenvironment al-
terations for tumor development, such as enhanced vascularization 
and extracellular matrix (ECM) remodeling. 

In summary, the impact of obesity on tumorigenesis can be sum-
marized in three main facets. First, there is an increase in inflamma-
tory cytokines like tumor necrosis factor-alpha (TNF-α) and inter-
leukin 6 (IL-6). This cytokine upregulation leads to chronic inflam-
mation, primarily associated with breast cancer and colorectal can-
cer.29,30 Second, the elevated level of leptin activates oncogenic tran-
scription factors, linked to breast cancer and prostate cancer.31,32 
Last, the reduction in adiponectin interferes with proliferation and 
mutagenesis, potentially leading to breast cancer and lung cancer.33 
As a result of these characteristics, adipose tissue has emerged as a 
crucial component in the tumor microenvironment (TME). 

Through these insights, it has become evident that obesity sig-
nificantly influences various cancers, with a pronounced impact on 
breast cancer. In TNBC with obesity, these insights are aligned with 
the previously mentioned effects of obesity on tumor development. 

Figure 1. The immune profile, fibrosis, and senescence in adipocytes and triple-negative breast cancer (TNBC). The similarities between the tumor microenvironment in 
TNBC and obesity and their effects on the development of cancer. Natural killer (NK), natural killer T (NKT) cells, and lymphocytes indicate modification of the immune net-
work, fibroblast and collagen participate in the facilitation of fibrosis, and senescent cells and senescence-associated secretory phenotype are related to initiation of se-
nescence.
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These cancer-associated adipocytes release free fatty acids into breast 
cancer cells,34 triggering the secretion of pro-inflammatory cytokines 
and growth factors, including interferon-gamma, insulin-like growth 
factor (IGF)-1, IL-6, IL-8, leptin, and TNF-α (Fig. 2).35-37 These 
insights are consistent with research indicating that obese TNBC 
patients have elevated levels of inflammatory cytokines TNF-α and 
IL-6 and lower level of adiponectin compared to that in non-obese 
patients.20 Remarkably, these inflammatory cytokines accelerate tis-
sue inflammation and activate signaling pathways, contributing to 
the aggressive nature of TNBC. 

In TNBC, adipose tissue stem cells play a significant role in facili-
tating tumor growth, epithelial-mesenchymal transition (EMT), 
and invasion of breast cancer cells, which ultimately lead to changes 
in the composition of the ECM. Specifically, obesity contributes to 
increased secretion of leptin into TNBC cells. This mechanism con-
verts adipose stem cells and triggers EMT in cancer cells,38 modify-
ing the TNBC microenvironment and amplifying metastatic po-
tential through the leptin-mediated pathway. Research has shown 
that when leptin is combined with cyclic adenosine monophosphate-
elevating agents, it has the capability of inducing apoptosis in TNBC.39 

Conversely, adiponectin exerts a negative influence on breast tumor 
formation.20 Adiponectin expression is notably lower in breast can-
cer tissue from obese individuals than in individuals that are not 
obese. The impact of adiponectin varies based on estrogen receptor 
status, with an elevated leptin-to-adiponectin ratio showing a more 
pronounced association with TNBC than human epidermal growth 
factor 2 receptor -positive breast cancer.40 Furthermore, adiponec-
tin hinders cell proliferation, invasion, and migration, while also trig-
gering apoptosis and autophagic cell death in estrogen receptor and 
progesterone receptor-negative breast cancer.41

In conclusion, adipose tissue impacts TNBC in multiple ways. 
Cytokines derived from adipose tissue promote the migration and 
proliferation of TNBC cells, disrupting normal adipokine and hor-
mone levels. This disruption fosters the promotion of mitogenic 
and mutagenic pathways, advancing tumor progression in obese 
TNBC patients. 

MODIFICATION OF THE IMMUNE PROFILE 
OF TNBC WITH OBESITY

Numerous studies have emphasized the impact of obesity on the 
immune landscape, often referred to as “meta-inflammation.”42,43 
With the development of obesity, there is an increase in immune 
infiltration and angiogenesis, leading to increased inflammation.42 
These findings have been emphasized in multiple studies, high-
lighting the significance of this phenomenon in the context of obe-
sity-related pathophysiology. Therefore, there should be a focus on 
the influence of obesity on the heterogeneity of the immune sys-
tem in TNBC. 

The expression of the immune checkpoint ligand programmed 
death ligand-1 (PD-L1) in obesity is associated with immune sup-
pression, and the expression of the programmed death-1 receptor 
(PD-1) and PD-L1 in TNBC shows an intermediate level of vari-
ability.44,45 In TNBC tumors, PD-L1 expression inhibits the interac-
tion between PD-L1 and the PD-1 receptor, restoring T-cell activa-
tion and supporting antitumor immunity.46 Interestingly, several 
studies have indicated that TNBC patients with obesity, character-
ized by an exhausted immune response, may have impaired check-
point function.47,48 

Moreover, insulin signaling plays a critical role in the development 

Figure 2. The impact of obesity on triple-negative breast cancer (TNBC) tumor de-
velopment. Adipocytes secrete free fatty acids (FFA) toward TNBC cells, and both 
TNBC cells and stromal cells are influenced by FFA. TNBC cells respond to these 
signals by releasing cytokines and growth factors, acting in tandem with stromal 
cells to promote TNBC tumor progression. 
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of obesity-related cancers, including TNBC. The IGF system is 
closely associated with tumorigenesis and the development and 
progression of tumor cells.49 Leptin directly affects the activation of 
the IGF-1 receptor, creating mutual activation between leptin and 
the IGF-1 receptor.50 This phenomenon leads to migration and 
proliferation of TNBC cells, as higher level of IGF-1 receptors is 
observed in TNBC. In addition, TNBC exhibits rapid growth that 
is dependent on glucose utilization and aerobic glycolysis.51 This 
rapid glycolytic growth and increased glucose uptake create an en-
vironment rich in anabolic precursors, promoting accelerated growth 
and contributing to mitochondrial dysfunction which, in turn, en-
hances resistance to cancer cell apoptosis.52 

Furthermore, obesity has a significant impact on both the activity 
and numbers of natural killer (NK) and natural killer T (NKT) cells.53 
Obesity induces alterations in the phenotype and functionality of 
NK cells. These changes, along with obesity-induced shifts in the 
function and number of T-cells, collectively contribute to increased 
cancer susceptibility in obese individuals.54 In addition, there is an 
increase in immature, non-cytotoxic NK cells and a decrease in 
mature, cytotoxic NK cells in obese patients with TNBC.55,56 These 
findings suggest that a reduction in both the number and function 
of NK cells can be anticipated in TNBC patients who are obese.

In summary, TNBC is characterized by enhanced fatty acid syn-
thase and glycolysis,51 whereas obesity is associated with immune 
paralysis of NK cells. Specifically, obesity exerts an inhibitory effect 
on NK cell function, which normally contributes to the control of 
tumor cell growth and metastasis. However, in the presence of 
breast cancer cells, NK cell function is impaired, resulting in re-
duced antitumor activity.57 Collectively, the interplay between obe-
sity and TNBC triggers a complex immune response that promotes 
cancer cell proliferation.

FACILITATION OF FIBROSIS OF OBESE 
TNBC

ECM proteins serve a dual role in regulating the mechanical 
properties of adipose tissue and influencing adipogenesis.58 When 
obesity leads to an increase in adipocyte volume and tissue mass, it 
disrupts the normal functioning of adipose tissue. This disruption 
triggers inflammation and eventually results in adipose tissue fibro-

sis.59 In addition, homeostasis and organization of the epithelial tis-
sue are affected by the ECM in adipocytes.60 This process high-
lights the critical role of ECM proteins in adipose tissue homeosta-
sis and the pathogenesis of adipose tissue fibrosis associated with 
obesity. Stiff and increased ECM contributes to the local and sys-
temic pathologies associated with obesity, promoting collagen for-
mation around adipocytes, which leads to fibrosis.61 In addition, 
high ECM stiffness leads to EMT in cancer cells, ultimately result-
ing in local migration, invasion, metastasis, and the loss of epithelial 
polarity.62-65 These conditions are particularly notable in mammary 
tissue, where collagen deposition and alignment increase around 
mammary ducts and pre-neoplastic lesions.66 Specific changes are 
characterized by increased expression of collagen VI and reduced 
elastin in subcutaneous fat, signifying alterations in ECM proper-
ties.67 These changes affect tissue ability to retain secreted mole-
cules, with transforming growth factor beta 1 (TGFβ1) expression 
being a notable example. TGFβ1 is known to induce EMT in tu-
mor cells and to foster the growth of cancer-associated fibroblasts 
(CAFs) within the TME.68 In obese adipose tissue, TGFβ1 expres-
sion is upregulated.69 Initially, it is produced in an inactive or latent 
form, requiring extracellular activation before it can bind to recep-
tors. Consequently, latent TGFβ1 present in the ECM binds to la-
tent TGFβ1 proteins and matrix components, including decorin, 
which sequesters inactive TGFβ1 until activation. Within the 
mammary ECM of obese patients, decorin becomes enriched and 
forms a complex with latent TGFβ1, resulting in increased TGFβ1 
storage.70 This influences both tumor cell proliferation and CAF 
development. Specifically, ECM components participate in TNBC 
progression by influencing the activation of the signaling pathways 
that govern the properties of TNBC cells.67 An interesting observa-
tion is the increased presence of collagen VI in both TNBC and 
obese ECM. This increase is mediated through ECM, growth fac-
tors, and mitogen-activated protein kinase (MAPK) signaling path-
way interactions. Specifically, collagen VI has been found to impact 
TNBC cell adhesion, two-dimensional migration, and three-di-
mensional invasion.71 In simpler terms, obesity can profoundly alter 
the composition of ECM in TNBC tissue, potentially enhancing its 
local invasiveness and metastatic potential.

Hypoxia, characterized by insufficient tissue oxygenation due to 
reduced blood supply, has been extensively studied as a major con-
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tributor to fibrosis in obese adipose tissue.72 In adipose tissue, there 
is a notable increase in the expression of hypoxia-induced factor-1 
alpha (HIF-1α).73 Furthermore, the growth of tumors triggers in-
tra-tumoral hypoxia, leading to concurrent activation of the HIF-
1α pathway within the TME.74 Elevated HIF-1α in breast tumors, 
including TNBC, can cause metabolic changes in tumor cells and 
promote metastasis.75,76 These findings suggest that upregulation of 
HIF-1α stimulates tumor formation and contributes to aggressive 
tumor growth. 

SENESCENCE IN THE 
MICROENVIRONMENT OF TNBC 

PATIENTS WITH OBESITY

The impact of aging in the microenvironment on obese TNBC 
patients has not yet been clearly elucidated. However, the influence 
of obesity and breast cancer, especially TNBC, on cellular aging has 
been well-established. Therefore, we were focused on the effects of 
obesity and TNBC on cellular aging. 

The increase in inflammatory markers in obese patients might be 
due to certain cell populations undergoing senescence.77 Several 
studies have inferred that adipose tissue serves as a primary reser-
voir of senescent cells.78,79 Cellular senescence can be induced by 
multiple factors, such as DNA damage, telomere attrition, oxidative 
damage, mitotic stress, mitochondrial dysfunction, ER stress, and 
oncogene activation.80-86 DNA damage, which is frequently induced 
by telomere shortening and early onset cellular senescence, is the 
key factor in triggering senescence among these factors. Similarly, 
activation of oncogenes, such as DNA replication stress, can lead to 
DNA damage in TNBC. Consequently, there is a significant in-
crease in the expression of DNA damage markers, dysregulated 
checkpoints, and suppressed DNA repair pathways in TNBC.87 

Senescent cells also release a set of molecules known as senes-
cence-associated secretory phenotype (SASP). This group of mol-
ecules is comprised of inflammatory factors, proteases, and growth 
factors, all of which foster an inflammatory environment and con-
tribute to tumor development and progression.88,89 SASP factors 
are classified into three groups: soluble signaling factors (chemo-
kines, growth factors, and interleukins), secreted proteases, and se-
creted insoluble protein and ECM components.90 The most im-

portant element here is the ECM. According to the results of these 
studies, obesity in TNBC promotes the expression of cancer stem 
cell and MET genes through leptin.91 Concomitantly, senescent 
cells exhibit an increased adenosine monophosphate:adenosine tri-
phosphate ratio.92 adenosine monophosphate-activated protein ki-
nase (AMPK), a key regulator of growth and cellular processes 
such as autophagy and cell polarity, is activated by the reduced in-
tracellular adenosine triphosphate level.93 

Furthermore, senescent cells impact ER stress and the unfolded 
protein response, leading to activation of these pathways, increasing 
the demand for SASP production.94 This activation triggers a height-
ened demand for SASP production and results in alterations in cell 
morphology through increased activity of the mammalian target of 
rapamycin (mTOR) in senescent cells.95 The composition of the 
SASP is influenced by various signaling pathways, including the 
mTOR pathway. Secretion by senescent cells plays a significant role 
in SASP.96 In obesity, the expression levels of ER stress and SASP 
increase, and these increases are associated with senescence. Further-
more, there is a noticeable connection between the functional as-
pects of invasion, migration, and ER stress in TNBC.97,98 Evidence is 
emerging to suggest that various cellular stresses associated with 
obesity and tumors play a role in cellular senescence, resulting in 
accumulation of senescent cells in adipose tissue and various types 
of cancer. 

CONCLUSION

Overall, we sought to clarify how obesity affects the growth and 
advancement of this aggressive type of cancer. We explored three 
main mechanisms: changes in the immune system, promotion of 
fibrosis, and onset of senescence. Each of these mechanisms signifi-
cantly impacts the challenging clinical landscape of TNBC in indi-
viduals dealing with obesity.

Considering the complexity of these interactions, a multidisci-
plinary approach is essential when devising personalized treatment 
strategies. These strategies should address not only tumor-related 
factors, but also the metabolic effects of obesity. Such a comprehen-
sive approach holds promise for improving outcomes and progno-
ses in TNBC patients who are dealing with obesity. 

Subsequent research should concentrate on specific intervention 
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points within the intricate interplay of obesity and TNBC. Target-
ing these points could disrupt the cancer-promoting effects of obe-
sity, potentially leading to more refined treatment strategies and ul-
timately better outcomes for those with obesity and TNBC. 
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