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Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvi-
ronment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular 
processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by 
enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabo-
lizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and 
the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important 
to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connec-
tions between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and 
the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the 
latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid 
metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and 
the correlation between altered lipid metabolism and carcinogenesis.
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Introduction

The tumor microenvironment (TME) is a highly heteroge-
neous environment consisting of many distinct cell types 
and molecules released by tumor cells, cancer-associated 
fibroblasts (CAFs), and infiltrating immune cells. The rep-
resentative cells that surround and support cancer cells in 

the TME include CAFs, tumor-endothelial cells (TECs), 
cancer-associated adipocytes (CAAs), tumor-associated 
neutrophils (TANs), and tumor-associated macrophages 
(TAMs) (Chen et al. 2015). In addition, non-cancer cells 
such as endothelial cells, adipocytes, immune/inflamma-
tory cells, and myeloid-derived suppressor cells (MDSCs) 
can interact directly and/or indirectly with cancer cells in 
the TME. This collaborative interplay provides favorable 
conditions for tumor development, growth, and progression 
(Gonzalez et al. 2018; Petrova et al. 2018; Cao 2019; Cheng 
et al. 2019; Greten and Grivennikov 2019; Bui et al. 2021). 
Indeed, numerous studies have demonstrated that the com-
munication between cancer cells and surrounding cells in 
the TME promotes cancer metastasis and confers chemore-
sistance through the establishment of metabolic reprogram-
ming, which involves the alteration of tumor metabolism 
(DeBerardinis and Chandel 2016; Chen et al. 2022; Li et al. 
2022; Liu et al. 2022a, b). Metabolic reprogramming and 
alteration of oncogenic signaling pathways related to meta-
bolic processes have emerged as hallmarks of cancer (Zhu 
et al. 2022). Thus, it would be essential to understand the 
metabolic reprogramming related to oncogenic progression 
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to develop strategies for cancer treatment. In this review, 
we focus on the critical factors in the TME driving lipid 
metabolic reprogramming to encourage the progression of 
cancer. In addition, we explore the latest insights and current 
therapeutic approaches based on small molecular inhibitors 
and phytochemicals targeting lipid metabolism for cancer 
treatment because of few reviews summarizing cancer lipid 
metabolism by phytochemicals.

Altered lipid metabolism in cancer cells 
of the TME

Tumor cells need to rewire their metabolic pathways to 
regulate nutrient intake and metabolism to maintain energy 
production. Lipids are not only essential energy sources but 
also membrane components necessary for tumor growth 
and metabolism. In addition, lipids mediate cell signaling 
pathways and control redox homeostasis. Numerous proteins 
and genes responsible for lipid metabolism are regulatory 
mediators of tumor survival and progression, as well as 
mutual communication between cancer cells and the TME 
(Ventura et al. 2015; Gupta et al. 2017). Lipid metabolism 
is defined as a complex set of molecular processes, includ-
ing lipid uptake, synthesis, transport, and degradation 
(Harayama and Riezman 2018). The dysregulation of lipid 
metabolism is affected by enzymes and signaling molecules 
that are directly or indirectly involved in the lipid metabolic 
process. Such imbalance can alter membrane composition, 
gene expression, and downstream signaling pathway activity, 
which control cell proliferation, motility, inflammation, and 
survival (Zechner et al. 2012; Harayama and Riezman 2018). 
Thus, regulation of lipid-metabolizing enzymes has been 
shown to modulate cancer development and to avoid resist-
ance to anticancer drugs in tumors and the TME (Ventura 
et al. 2015; Gupta et al. 2017). Exogenous lipids produced 
by the TME can also affect tumor malignancy and inflam-
mation (Gupta et al. 2017). The following sections describe 
diverse signaling pathways responsible for lipid metabolic 
reprogramming-mediated cancer progression, focusing on 
the related regulatory proteins and genes.

Lipid uptake by CD36 and its alteration in cancer

Tumor cells require a variety of transporters to mediate the 
trafficking of lipids for oxidation or to activate oncogenic 
signaling pathways. Cancer cells tend to uptake fatty acids 
from the extracellular environment to meet their needs for 
growth (Zhang et al. 2022a, b). Cluster of differentiation 36 
(CD36) as a scavenger receptor is a macrophage receptor for 
oxidized low-density lipoprotein (Endemann et al. 1993). 
CD36, also known as fatty acid translocase protein, func-
tions in the binding or trans-membrane uptake of long-chain 

fatty acids (Abumrad et al. 1993). CD36 is a membrane gly-
coprotein that consists of two short intracellular domains, 
two transmembrane segments, and a large extracellular 
domain with a hydrophobic sequence where lipid ligands 
bind (Glatz et  al. 2010; Pepino et  al. 2014; Glatz and 
Luiken 2018). High expression of CD36 has been observed 
in diverse cancer types, including liver cancer (Zhao et al. 
2018), breast cancer (Yang et al. 2020), colorectal cancer 
(Drury et al. 2020), and gastric cancer (Jiang et al. 2019). 
Gyamfi et al. recently reported that CD36 is a key player in 
the interaction between adipocytes and breast cancer cells, 
suggesting its potential as a therapeutic target in the TME. 
Human breast cancer cells co-cultured with adipocytes show 
upregulation of CD36 expression, with fatty acid import into 
the cytosol or mitochondria (Gyamfi et al. 2021). Increased 
CD36 expression activates the STAT3 signaling pathway 
mediating adipocyte-induced epithelial–mesenchymal tran-
sition (EMT) and stemness. In addition, increased CD36 
expression occurs with increased fatty acid-binding protein 
4 (FABP4) expression, and their direct interaction regulates 
the import, transport, and metabolism of fatty acid (Gyamfi 
et al. 2021). Inhibition of CD36 and FABP4 significantly 
reduces the proliferation, migration, invasiveness, and tum-
orsphere-forming capacity of breast cancer cells, which is 
associated with reduced tumorigenicity in a xenograft mouse 
model (Gyamfi et al. 2021).

The stability and function of CD36 are regulated by post-
translational modifications, including palmitoylation, glyco-
sylation, phosphorylation, and ubiquitination (Glatz et al. 
2010; Pepino et al. 2014; Glatz and Luiken 2018). Intracel-
lular lipid accumulation by dysregulated lipid metabolism 
is associated with non-alcoholic steatohepatitis (NASH), 
a subset of non-alcoholic fatty liver disease (NAFLD) 
(Chavez-Tapia et al. 2012). Expression of soluble CD36 is 
significantly increased in patients with advanced steatosis 
of NAFLD (Garcia-Monzon et al. 2014). Palmitoylation is 
a covalent attachment of palmitate to cysteine residues of 
the protein, and increased palmitoylation of CD36 in NASH 
facilitates fatty acid uptake and lipid accumulation (Zhao 
et al. 2018). Inhibition of CD36 palmitoylation interferes 
with the binding and uptake of fatty acids. It alleviates 
liver tissue inflammation by inactivating the JNK signal-
ing pathway while interfering with CD36/Fyn/Lyn complex 
formation (Zhao et al. 2018). In addition, O-linked β-N-
acetylglucosamine (O-GlcNAc) glycosylation called an 
O-GlcNAcylation is modulated by O-GlcNAc transferase 
(OGT) and O-GlcNAcase (OGA), which are responsible for 
O-GlcNAc addition and removal (Zachara and Hart 2002). 
O-GlcNAcylation modulates protein functions by regulat-
ing subcellular localization, protein stability, transcriptional 
activity, and protein–protein interaction (Zachara and Hart 
2002; Chatham et al. 2021). Dysregulation in O-GlcNAc 
cycling has been implicated in the progression of various 
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chronic human diseases related to inflammation and tumor 
growth (Chatham et al. 2021; Ouyang et al. 2022). Interest-
ingly, elevated fatty acid uptake activity promotes the meta-
static potential of gastric cancer cells in a CD36-dependent 
manner via upregulation of O-GlcNAcylation (Jiang et al. 
2019). Increased O-GlcNAcylation level accelerates the 
transcription of CD36 by activating the NF-κB pathway, 
and CD36 can be directly modified at Ser468 and Thr470 
residues by O-GlcNAc (Jiang et al. 2019). Consequently, the 
induction of CD36 expression facilitates fatty acid uptake 
in gastric cancer cells, forming a vicious cycle between 
O-GlcNAcylation and CD36 transcription. This relation-
ship may be correlated with poor survival in gastric cancer 
(Jiang et al. 2019).

Recently, the role of CD36 has been receiving attention 
not only in cancer cells but also in immune cells within 
TME. Intratumoral regulatory T (Treg) cells exhibit expres-
sion of metabolic genes associated with lipid metabolism 
compared to circulating Treg cells. Intratumoral Treg cells, 
in particular, show a substantial increase in the expression of 
CD36 (Wang et al. 2020a, b, c). CD36-mediated metabolic 
adaptation supports the survival and suppressive functions 
of intratumoral Treg cells, which is mediated by mitochon-
drial fitness and NAD production (Wang et al. 2020a, b, c). 
In contrast, it has been demonstrated that CD8+ tumor-infil-
trating lymphocytes were shown to have reduced anti-tumor 
function, which is attributed to an increase in lipid peroxi-
dation resulting from the uptake of fatty acids and oxidized 
lipids mediated by CD36 (Ma et al. 2021; Xu et al. 2021). In 
addition, tumor-associated macrophages (TAMs) residing in 
TME accumulate lipids through enhanced lipid uptake via 
CD36. This accumulation leads to the differentiation and 
functional alteration of pro-tumoral M2 type TAMs charac-
terized by high levels of fatty acid oxidation (Su et al. 2020a, 
b; Yang et al. 2022). Therefore, further research and under-
standing are needed on the regulatory mechanism involv-
ing post-translational modifications of CD36 in controlling 
cell–cell communication within the TME since CD36 is a 
potential biomarker and therapeutic target for cancer.

Alteration of lipogenesis in cancer

Tumor cells obtain fatty acids from de novo lipogenesis and 
require activation of fatty acid synthesis to meet biosyn-
thetic and bioenergetics requirements during carcinogen-
esis and tumorigenesis (Mounier et al. 2014). Lipogenesis 
encompasses the process of fatty acid triglyceride synthesis 
from acetyl-CoA synthesized by glucose or other substrates. 
Acetyl-CoA is carboxylated by acetyl-CoA carboxylase 1 
(ACC1), converting to malonyl-CoA. ACC1 is located in 
the cytoplasm and acts as a rate-limiting enzyme in de novo 
fatty acid synthesis, producing malonyl-CoA as a substrate 
for forming palmitate catalyzed by fatty acid synthase 

(FASN) (Wakil and Abu-Elheiga 2009). ACC2 localizes 
in the mitochondria and regulates the activity of carnitine 
palmitoyltransferase 1 (CPT1), involved in the β-oxidation 
of fatty acids (Wakil and Abu-Elheiga 2009). Malonyl-CoA 
acts as an inhibitor of the CPT1, offering a pathway choice 
between fatty acid synthesis and β-oxidation. In addition, 
stearoyl-CoA desaturase 1 (SCD1) is a Δ9 desaturase, which 
catalyzes the insertion of a cis double bond at the Δ9 posi-
tion of 12–19 carbon saturated fatty acids, converting them 
to monounsaturated fatty acids. SCD1 affects lipid composi-
tion, membrane fluidity, and functionality, which are essen-
tial for maintaining cellular integrity (Rodriguez-Cuenca 
et al. 2016). Sterol regulatory-element binding proteins 
(SREBPs) are membrane-bound transcription factors that 
induce the expression of genes related to lipogenesis and 
cholesterol biosynthesis (Schiliro and Firestein 2021). The 
expression of enzymes and genes involved in lipogenesis is 
associated with oncogenic signaling in tumors, facilitating 
immune system evasion, tumor growth, and chemoresistance 
(Flaveny et al. 2015).

Acetyl‑CoA carboxylase 1 (ACC1)

ACC1 is abundantly expressed in various cancer cells, 
and its overexpression is associated with poor prognosis 
in cancer patients. ACC1 knockdown using siRNA inhib-
its the proliferation of highly lipogenic prostate cancer 
LNCaP, glioblastoma U87 EGFRvIII cell lines, colon can-
cer HCT-116, and liver cancer HepG2 cells (Brusselmans 
et al. 2005; Zhan et al. 2008; Jones et al. 2017; Ye et al. 
2019a, b) but does not affect the proliferation of normal 
cells (Brusselmans et al. 2005). In addition, the expression 
level of ACC1 positively correlates with prolyl isomerase 
Pin1 expression in human prostate cancer specimens (Ueda 
et al. 2019). Pin1 recognizes the phosphorylated Ser/Thr-Pro 
motif and facilitates the cis–trans isomerization of proline 
(Stukenberg and Kirschner 2001). Direct binding of ACC1 
to the WW domain of Pin1 improves the stability and activ-
ity of ACC1 protein by blocking lysosome-mediated degra-
dation (Ueda et al. 2019). High expression of ACC1 protein 
in prostate cancer cells is caused by Pin1-mediated post-
transcriptional level, contributing to increased FA contents 
that support cell proliferation (Ueda et al. 2019). Moreover, 
ACCs reconstruct lipogenesis-dependent cancer metabolism 
in head and neck squamous cell carcinoma (HNSCC), so 
HNSCC cells can survive inhibition of the Warburg effects 
by cetuximab treatment (Luo et al. 2017). HNSCC cells with 
acquired cetuximab resistance exhibit increased expression 
and activation of ACC1. Combination treatment with ACC 
allosteric inhibitor TOFA and cetuximab produces a more 
potent anti-tumor effect of cetuximab-resistant HNSCC 
xenograft (Luo et al. 2017).
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Tumor-specific CD4+ T cells can support therapeu-
tic effects by maintaining effector CD8+ T cells, which 
are important to reduce the exhaustion of CD8+ T cells 
mediated by PD-1 and TRAIL-mediated apoptosis dur-
ing initial tumor elimination (Church et al. 2014). It has 
been reported that differentiation of Th17 cells depends 
on ACC1-mediated de novo fatty acid synthesis (Berod 
et al. 2014; Endo et al. 2015). The function of Th17 cells 
in TME remains unclear, but it can favor tumor growth by 
promoting angiogenesis or suppressing tumor immunity. 
Inhibition of fatty acid biosynthesis by T cell-specific 
deletion of ACC1 in mice attenuates Th17 cell-mediated 
inflammatory diseases (Berod et al. 2014). Furthermore, 
genetic deletion of ACC1 enhances the formation of 
memory CD4+ T cells, which exhibits the phenotype 
characterized by low fatty acid biosynthesis and high 
respiratory capacity (Endo et al. 2019).

Although ACC1 is recognized as an oncoprotein in 
various cancer cells including prostate cancer, glioblas-
toma, colon cancer, and liver cancer (Brusselmans et al. 
2005; Zhan et al. 2008; Jones et al. 2017; Ueda et al. 
2019; Ye et al. 2019a, b), there is evidence that ACC1 
can act as a tumor suppressor by modulating the energy 
homeostasis or attenuating protein acetylation in tumor 
xenograft models (Jeon et al. 2012; Rios Garcia et al. 
2017). Under metabolic energy stress conditions, AMPK 
can accelerate the survival of lung cancer by governing 
the NADPH level and maintaining the ATP level. Knock-
down of ACC1 reduces the NADP+/NADPH ratio and 
ROS level, which promotes tumor formation in the lung 
cancer xenograft model using human A549 cells (Jeon 
et al. 2012). In addition, ACC1 inactivation by leptin or 
TGFβ treatment drives the invasion and metastasis of 
breast cancer cells, which is mediated by the elevation 
of acetyl-CoA production. Subsequently, protein acety-
lation, particularly transcription factor Smad2, leads to 
the upregulation of EMT markers such as vimentin and 
N-cadherin (Rios Garcia et al. 2017). In acute myeloid 
leukemia (AML), the Trib1-COP1 complex, an E3 ubiqui-
tin ligase, is a substrate for ACC and induces proteasome-
mediated degradation. Its degradation may initiate meta-
bolic reprogramming to support the energy source for the 
progression of leukemia cells (Ito et al. 2021). Moreover, 
the stabilization of ACC1 suppresses the growth of human 
AML cells by inducing loss of self-renewal activity in 
leukemia-initiating cells, which is mediated by increased 
ROS levels and NADPH consumption (Ito et al. 2021). 
Based on previous reports, further detailed studies are 
needed to understand the physiology of ACC1, which can 
act as either a tumor suppressor or an oncogene depend-
ing on the complexity of the TME in terms of energy 
balance.

Fatty acid synthase (FASN)

High expression of FASN, a critical regulator of lipid 
metabolism, is associated with cancer progression in vari-
ous types of cancer in the breast, prostate, ovary, and liver 
(Flavin et al. 2010; Fhu and Ali 2020). FASN acts as an 
oncogenic factor due to its role in regulating fatty acid syn-
thesis or inducing aberrant lipogenesis in cancer cells (Che 
et al. 2020). FASN has been identified as a poor prognostic 
factor in patients with colon cancer, cervical cancer, chol-
angiocarcinoma, and clear cell renal cell carcinoma (Yuan 
et al. 2020; Tomacha et al. 2021; Drury et al. 2022; Du et al. 
2022). FASN catalyzes the biosynthesis of the fatty acid 
palmitate, which accelerates RhoU palmitoylation, a critical 
step in regulating the turnover of focal adhesions (Baenke 
et al. 2013). Silencing FASN in prostate cancer leads to a 
reduction of RhoU palmitoylation and decreases the protein 
stability of Cdc42, which is connected to the suppression 
of migration and invasion (De Piano et al. 2020, 2021). In 
cholangiocarcinoma, the knockdown of FASN suppresses 
cell growth, migration, and invasion, which is associated 
with decreased cellular levels of palmitic amide, a fatty acid 
amide derived from palmitic acid (Tomacha et al. 2021). In 
addition, FASN promotes lymph node metastasis via cho-
lesterol reprogramming and lymphangiogenesis in cervical 
cancer. FASN activates the c-Src-PI3K-Akt-FAK signaling 
pathway via cholesterol reprogramming, defined as lipid 
rafts and actin skeleton remodeling, leading to enhanced cell 
migration and invasion (Du et al. 2022). FASN also induces 
lymphangiogenesis by secreting PDGF-AA and IGFBP-3 
(Du et al. 2022). Moreover, mutant K-Ras has been shown 
to stimulate lipogenesis by controlling lipogenic enzymes, 
including ACC1 and FASN (Kerk et al. 2021). Knockdown 
of K-Ras suppresses the levels of ACC1 and FASN expres-
sion, contributing to the suppression of spheroid formation 
through ROS production in K-Ras-activated pancreatic can-
cer cells (Terado et al. 2022).

Recently, Schroeder et  al. reported that the network 
between fatty acid biogenesis catalyzed by FASN and the 
interactions within the Bcl-2 family controls the mitochon-
drial priming response to apoptosis (Schroeder et al. 2021). 
Inhibition of FASN promotes an increase in the NADPH/
NADP+ ratio in breast cancer cells; the redox imbalance 
leads to the activation of stress-related proapoptotic kinases 
such as JNK and p38 MAPK as well as energy-sensing 
AMP-activated protein kinase (AMPK) (Schroeder et al. 
2021). Interestingly, pharmacological inhibition of FASN 
activity results in an upregulation of mRNA and protein lev-
els of the BH3-only Bcl-2 members such as Bim, NOXA, 
and PUMA (Schroeder et al. 2021). These findings suggest 
that FASN inhibitory cancer cells acquire increased mito-
chondrial apoptotic priming that can induce apoptotic hyper-
sensitivity to Bcl-2-specific BH3-mimetics.
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Post-translational modifications such as ubiquitination 
and sumoylation of FASN protein protect FASN from pro-
teasomal degradation (Fhu and Ali 2020). Ubiquitin-spe-
cific proteases (USPs) are responsible for cellular functions 
through interactions with various target proteins, and their 
expressions are correlated with worse prognosis in several 
human cancers (Cruz et al. 2021). FASN can interact with 
USPs and prevent ubiquitin-mediated degradation among 
several target proteins. Androgen-stimulated USP2a upregu-
lation in prostate cancer has been shown to stabilize FASN 
expression by blocking its polyubiquitination (Graner et al. 
2004). Another study demonstrated that interaction between 
USP38 and FASN enhances the stability of FASN protein 
and increases triglyceride production in gastric cancer cells, 
which contributes to cell proliferation, migration, and tumo-
rigenesis (Zheng et al. 2022).

Elevated FASN expression in ovarian cancer cells results 
in the accumulation of lipids and subsequent inhibition of 
tumor-infiltrating dendritic cells, which are required to sus-
tain the capacity of anti-tumor T cells (Jiang et al. 2018). 
Hence, by targeting FASN, anti-tumor immunity can be 
enhanced by reducing lipid accumulation-induced dysfunc-
tion in dendritic cells (Jiang et al. 2018). In addition, intra-
tumoral Treg cells display elevated SREBP activity, which 
results in FASN-dependent fatty acid synthesis (Lim et al. 
2021). Deletion of FASN in Treg cells inhibits the growth 
of MC38 and B16 tumors (Lim et al. 2021). Interestingly, 
the heightened expression of PD-1 in Treg cells infiltrating 
tumors depends on SREBP activation, indicating a poten-
tial avenue for cancer immunotherapy targeting the lipid 
metabolism of Treg cells (Lim et al. 2021). Recent reports 
indicate that activated fatty acid metabolism by FASN is 
associated with reduced immune infiltration in male breast 
cancer, leading to the promotion of metastasis (Sun et al. 
2023). These studies support FASN as a critical factor in 
abnormal lipid metabolism of cancer progression, and fur-
ther detailed studies are needed to understand the function 
of FASN in reprogramming lipid metabolism.

ATP‑citrate lyase (ACLY)

ACLY is a nuclear-cytosolic homotetrameric enzyme that 
catalyzes the production of cytosolic acetyl-CoA, generating 
a substrate for de novo biosynthesis of fatty acids and cho-
lesterol (Chypre et al. 2012). Acetyl-CoA provides an acetyl 
donor for the acetylation of cytosolic and nuclear proteins, 
including transcription factors and histones, which control 
gene expression related to cancer metabolism (Wellen et al. 
2009). ACLY is highly expressed or activated in several 
cancers, supporting tumor cell growth through lipogenesis 
(Bauer et al. 2005; Zaidi et al. 2012). ACLY depletion in 
various cancer cell lines exerts an anti-proliferative effect 
through the generation of mitochondrial ROS and AMPK 

activation accompanied by triglyceride accumulation and 
down-regulation of carnitine palmitoyltransferase 1A (Mig-
ita et al. 2013, 2014). In addition, glucose injection induces 
acetylation of lysine residues of ACLY in lung cancer A549 
cells and mouse liver, blocking ubiquitination and increas-
ing ACLY protein expression (Lin et al. 2013). Lung cancer 
tissues consistently exhibit enhanced ACLY acetylation that 
contributes to lipogenesis and promotes tumor cell prolifera-
tion (Lin et al. 2013).

As mentioned earlier, ACLY is a nucleocytosolic enzyme 
that produces acetyl-CoA from citrate and plays a critical 
role in determining the level of histone acetylation. ACLY 
phosphorylation activated by Akt promotes histone acety-
lation in both cancer and immune cells present in TME, 
inducing their proliferation (Lee et al. 2014; Covarrubias 
et al. 2016; Osinalde et al. 2016). Histone acetylation in 
human glioma and prostate tumors responds to acetyl-
CoA production levels in the nucleus, which is acceler-
ated upon increased phosphorylation of ACLY by Akt (Lee 
et al. 2014). In addition, M2 macrophage activation can be 
induced by IL-4-triggered acetyl-CoA production and his-
tone acetylation as a consequence of Akt-mediated ACLY 
activation (Covarrubias et al. 2016). Recently, it has been 
increasingly emphasized that intracellular acetyl-CoA level 
in TME plays a vital role in regulating the fate of T cells 
(Vodnala et al. 2019). Phosphorylation of ACLY is induced 
upon IL-2-triggered Akt activation and generates acetyl-
CoA that serves as a substrate for histone acetyltransferases. 
It stimulates the acetylation of histones in promoters of cell 
cycle-related genes, causing T-cell proliferation (Osinalde 
et al. 2016). IL-12-stimulated CD8+ T cells exhibit increased 
intracellular acetyl-CoA levels due to high expression of 
ACLY, resulting in the maintenance of IFNγ production and 
lipid biosynthesis for energy demand in nutrient-deprived 
TME (Chowdhury et al. 2022).

Acyl‑CoA synthetase short‑chain family member 2 (ACSS2)

ACSS2, one of the acyl-CoA synthetase short-chain fam-
ily members, is a nucleocytosolic enzyme that catalyzes 
the conversion of acetate to acetyl-CoA, which is highly 
expressed in various tumors (Liu et al. 2022a, b). It has been 
proven through in vitro and in vivo experiments that ACSS2 
plays an important role in tumor cell survival under hypoxia 
in lung cancer, breast cancer, melanoma, and colon cancer 
(Yoshii et al. 2009). ACSS2 is a critical enzyme that supplies 
a key source of acetyl-CoA for tumors using acetate as a 
carbon source to maintain lipid synthesis and histone acety-
lation (Comerford et al. 2014; Bulusu et al. 2017). SREBP 
transcriptionally upregulates ACSS, and this upregulation is 
highly expressed in tumor cells, as a response to the acidic 
TME (Kondo et al. 2017). In addition, under metabolic stress 
such as hypoxia or low serum, ACSS2 is required for the 
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utilization and uptake of acetate and also supports the bio-
synthesis of membrane phospholipids for tumor cell growth 
(Kamphorst et al. 2014; Schug et al. 2015; Gao et al. 2016). 
Silencing ACSS2 caused significant inhibition of spheroid 
formation and markedly reduced xenograft tumor growth 
derived from breast and prostate cancer cells (Schug et al. 
2015). In addition, ACSS2 induced histone acetylation at the 
FASN promoter region, which upregulated FASN expression 
to enhance lipid synthesis to promote the survival of hepa-
tocellular carcinoma (Gao et al. 2016). ACSS2 is also over-
expressed in malignant plasma cells derived from patients 
with myeloma. In particular, the expression of ACSS2 is sig-
nificantly higher in obese myeloma patients (Li et al. 2021). 
Treatment of adipocyte-secreted angiotensin II enhanced 
the expression of ACSS2 in myeloma cells, which promotes 
tumorigenesis by maintaining the stability of interferon reg-
ulatory factor 4 (IRF4), an oncogenic protein (Li et al. 2021). 
ACSS2-mediated IRF4 acetylation results in the elevation 
of IRF4 protein level due to dysregulation of p62-mediated 
lysosomal degradation in myeloma (Li et al. 2021). Moreo-
ver, the acetylation of HIF-2α in the presence of ACSS2 
significantly increased the expression level of HIF-2α target 
genes, potentially linking tumor cell growth and metastasis 
(Chen et al. 2017; Nagati et al. 2019).

Like ACLY, enforced expression of ACSS2 in T cells 
increased acetate-derived carbon incorporation in citrate and 
fatty acid, whereas reducing ACSS expression in T cells 
impairs IFN-γ production by tumor-infiltrating lymphocytes 
and tumor clearance (Qiu et al. 2019). Acetate promotes 
histone acetylation and restores chromatin accessibility in 
glucose-limited T cells, following enhanced IFN-γ produc-
tion in an ACSS-dependent manner (Qiu et al. 2019).

Stearoyl‑CoA desaturase 1 (SCD1)

Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty 
acids (SFA) into monounsaturated fatty acids (MUFA), 
which are used for the synthesis of phospholipids, triglyc-
erides, and cholesterol esters, important components of 
membrane phospholipids. The MUFA/SFA ratio influences 
the plasma membrane fluidity and signal transduction (Kim 
and Ntambi 1999). Knockdown of SCD1 in human lung 
adenocarcinoma A549 cells reduced the MUFA/SFA ratio 
in cell membrane lipids, leading to the inactivation of Akt 
signaling, impairing lipogenesis (Scaglia and Igal 2008). 
Mice inoculated with SCD1-depleted A549 cells showed 
a reduction in tumor development compared with control 
cell-injected tumors (Scaglia and Igal 2008). In addition, 
inhibition of SCD1 activity suppressed migration and inva-
sion by regulating EMT in colorectal cancer HCT116 cells 
harboring high expression levels of SCD1, which might be 
related to reduced level of MUFA and the MUFA/SFA ratio 
in SCD1 knockdown cancer cells (Ran et al. 2018). SCD1 

is highly expressed in a variety of human cancer tissues 
including breast, prostate, lung, colon, kidney, and ovarian 
cancer (Roongta et al. 2011; von Roemeling et al. 2013; Ran 
et al. 2018), and reports have shown SCD1 overexpression 
to function as an oncogene in various cancers and to predict 
poor clinical outcome (Huang et al. 2016; Wang et al. 2016; 
Wang et al. 2020a, b, c).

Acidosis of TMEs contributes to tumor progression, inva-
sion, and resistance to chemotherapy (Kato et al. 2013). 
Interestingly, melanoma (Mel501) cells exhibited a higher 
level of unsaturated species than saturated fatty acids under 
acidic conditions, which appears to be associated with the 
upregulation of SCD expression (Urbanelli et al. 2020). 
Acidification activates the PI3K/Akt signaling pathway 
to increase the expression of SCD1, which then binds to 
PPARα and promotes hepatic tumorigenesis through lipid 
metabolic reprogramming (Ding et al. 2022). In addition, 
the treatment of cobalt chloride, a hypoxia imitative agent, 
induced the expression of SCD-1 mRNA in human clear 
cell renal carcinoma Caki-2 cells, accompanied by increased 
mRNA levels of HIF1A and HIF2A (Melana et al. 2021). 
Moreover, the conversion of SFA (stearic acid; 18:0) into 
MUFA (oleic acid; 18:1n-9) is promoted under hypoxic 
conditions, which favors tumor cell proliferation (Melana 
et al. 2021). Furthermore, there is clinical significance of 
SCD1 and FABP4 expression in primary human tumors and 
metastatic tissues that relapse after first-line chemo- or hor-
mone therapy in breast cancer patients. Notably, FABP4 was 
detected in blood vessels and adipocytes adjacent to meta-
static relapse tissue of human breast cancer patients (Luis 
et al. 2021). In the syngeneic Lewis lung carcinoma (LLC) 
mouse tumor model and mouse xenograft model using 
MDA-MB-231 breast cancer cells, FABP4 expression was 
upregulated by hypoxia and re-oxygenation in adipocytes 
and tumor endothelial cells but not in cancer cells (Luis et al. 
2021). Conversely, SCD1 expression was high in tumor sec-
tions, which leads to fatty acid desaturation, supporting can-
cer cell membrane fluidity and migration (Luis et al. 2021). 
FABP4-induced lipid droplet formation in cancer cells has 
been shown to provide a resource for survival under hypoxia 
and oxidative stress-induced ferroptosis, which might pro-
mote tumor recurrence (Luis et al. 2021).

In contrast to the previous reports, Ducheix et al. reported 
that intestinal-specific Scd1 (iScd1) knockout mice are prone 
to trigger inflammation and cancer in the gut compared with 
controls, in response to decreased hepatic MUFA propor-
tion (Ducheix et al. 2018, 2022). In a diethylnitrosamine-
induced model of HCC, disturbance of the hepatic fatty acid 
profile induced by iScd1 deletion favors tumor progression 
of extensive hepatic tumors and more frequent metastasis 
in the lungs compared with wild-type mice (Ducheix et al. 
2022). Depending on the type of cancer, the physiology of 
SCD1 can differ. Further investigations into the functions 
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of SCD1 in the lipid metabolism of individual cancer would 
contribute to the development of anticancer drugs.

Lipolysis and cancer progression

ATGL and HSL

Lipolysis is the metabolic process of hydrolyzing triglyc-
eride (TG) into glycerol and free fatty acids. Several fac-
tors are related to lipolysis and cancer. Adipose triglyceride 
lipase (ATGL) and hormone-sensitive lipase (HSL) are key 
enzymes involved in the breakdown of intracellular TG, 
providing free fatty acids that can provide energy for can-
cer cell growth and migration (Zechner et al. 2012). ATGL 
is found in breast cancer cells, and its higher expression 
level is associated with more aggressive tumors (Wang et al. 
2017). Its expression is amplified upon interaction with adi-
pocytes to trigger the release of free fatty acids that are chan-
neled into fatty acid β-oxidation. This metabolic process is 
prevalent in cancer cells but not in normal breast epithelial 
cells (Wang et al. 2017). In addition, increased expression 
of ATGL accelerates the growth of CRC cells, while its 
suppression enhances apoptosis in these cells. ATGL pro-
motes the lipolytic process in CRC cells. Overexpression 
of ATGL in SW480 cells leads to increased levels of FFA 
and decreased levels of TAG compared to control cells. 
Conversely, HCT116 cells with ATGL knockdown exhibit 
decreased levels of FFA. ATGL-mediated lipolysis pro-
vides FFA for cholesterol metabolism and CoA biosynthesis 
(Yin et al. 2021). ATGL level is elevated in human colonic 
tumors, and their expression is further amplified by obesity. 
The increase in ATGL, influenced by the obesity-related 
compound oleic acid, enhances cancer cell migration. This 
migratory effect can be mitigated by inhibiting ATGL, which 
contributes to broad transcriptional changes in human colon 
cancer cells related to growth and metabolism (Iftikhar et al. 
2021). However, the genetic ablation of neutrophil ATGL 
in the orthotopic 4T1 tumor model results in an increase in 
lung metastases of breast cancer cells (Li et al. 2020). The 
authors suggest that it would be intriguing to elucidate the 
roles played by bioactive lipid mediators originating from 
lung neutrophils within the lung metastatic niche, as well as 
to investigate the potential transfer of lipids from neutrophils 
to tumor cells in TME (Li et al. 2020).

The level of HSL mRNA in adipose tissue of cancer 
patients showed a notable increase compared to control 
patients. Additionally, cancer patients displayed a twofold 
elevation in both serum triacylglycerol and serum free fatty 
acid levels (Thompson et al. 1993). However, a study by 
Xu and colleagues recently revealed that HSL deficiency 
correlates with inflammation in both adipose tissue and the 
pancreas, accelerating pancreatic ductal adenocarcinoma 
(PDAC) in the KrasG12D mouse model (Xu et al. 2018). 

Administration of HSL inhibitors has been proposed for the 
management of cachexia (Das et al. 2011). Additionally, the 
precise effect of chronic HSL suppression on the progression 
of PDAC needs to be investigated.

FABP4

FABP4, known as adipocyte fatty acid binding protein, 
exhibits high expression in adipocytes. During the adipocyte 
differentiation process, FABP4 interacts with HSL to regu-
late lipolysis (Furuhashi 2019). Exogenous FABP4 interacts 
with adipocytes, promoting differentiation and facilitating 
p38/HSL-mediated lipolysis (Dou et al. 2020). Addition-
ally, FABP4 plays a significant role in tumor transformation, 
proliferation, metastasis, and drug resistance by enhancing 
lipid transport (Guaita-Esteruelas et al. 2018). Co-culture of 
cancer cells with adipocytes triggers lipolysis in adipocytes, 
leading to subsequent β-oxidation through lipid transfer to 
cancer cells, which has been demonstrated in breast and 
ovarian cancers (Nieman et al. 2011; Attane et al. 2020). 
FABP4 can bind reversibly to long-chain fatty acids and is 
highly expressed in adipocytes (Furuhashi and Hotamisligil 
2008). FABP4 expression is strongly exhibited at the inter-
face between adipocyte and ovarian cancer cells, enhancing 
lipid availability in cancer cells and promoting rapid tumor 
growth and metastasis (Nieman et al. 2011). In a co-culture 
model involving ovarian cancer cells and adipocytes, treat-
ment with an FABP4 inhibitor attenuated lipid accumula-
tion in the cancer cells, reducing migration and invasion of 
cancer cells facilitated by adipocytes (Nieman et al. 2011). A 
link between FABP4 and lipolysis in the survival and growth 
of cancer cells through adipocytes has also been reported in 
breast cancer tissues (Kim et al. 2020).

MIC‑1

Macrophage inhibitory cytokine-1 (MIC-1), a stress 
response cytokine, belongs to the transforming growth fac-
tor beta (TGF-β) superfamily as a divergent member (Boot-
cov et al. 1997). MIC-1 is recognized as a protumorigenic 
marker associated with progressive prostate cancers. Stud-
ies have consistently demonstrated its presence in prostate 
cancer tissues, influencing cell proliferation and invasion 
(Bauskin et al. 2006; Bruzzese et al. 2014; Jones et al. 2015). 
Notably, the role of a high-fat diet in prostate cancer pro-
gression has been studied (Huang et al. 2012, 2014; Wu 
et al. 2016). A high-fat diet markedly enhanced adipocyte 
infiltration and adipose lipolysis in a mouse intraperitoneal 
xenograft model of prostate cancer, which facilitates tumor 
progression through the expression and secretion of MIC-1 
(Huang et al. 2021). Furthermore, the co-culture of pros-
tate cancer PC-3 with surrounding adipocytes stimulates 
the secretion of MIC-1, while prostate stromal fibroblasts 
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release IL-8, both influenced by the fatty acids secreted 
through activated lipolysis (Huang et al. 2021). Collectively, 
these findings underscore the intricate interplay between 
lipid metabolism, the TME, and the expression and effects 
of MIC-1 in prostate cancer progression.

ADM

Exosomal adrenomedullin (ADM), a multifactorial hypoxia-
inducible peptide derived from pancreatic cancer cells, was 
shown to induce lipolysis in adipose tissues (Sagar et al. 
2016). This effect extends to exosomal ADM derived from 
CAFs, which promotes lipolysis in both mouse 3T3-L1 
and human adipocytes (Kong et al. 2018). Adding to this 
complex network, recent findings by Pare et al., reveal that 
MCF-7 mammospheres produce ADM, which modifies the 
phenotype of cancer-associated adipocytes via the ADM 
receptor in a paracrine manner. Stimulation of adipocytes 
by ADM promotes lipolysis through the phosphorylation of 
hormone-sensitive lipase (HSL) and uncoupling protein 1 
(UCP1) expression in breast adipocytes, which may provide 
energy to cancer cells or remodel the TME (Pare et al. 2020). 
Therefore, the emerging understanding of the involvement of 
exosomal ADM in adipose tissue interactions and lipolysis 
within the TME offers a perspective on the intricate cross-
talk among cancer cells, and adipocytes, and their mutual 
influence. In Fig. 1, we illustrate the potential signaling that 
may modulate tumor progression through the stimulation of 
lipolysis in the tumor microenvironment.

ABC transporter for cholesterol transport 
and chemoresistance

Biosynthesis of cholesterol begins with acetyl-CoA derived 
from mitochondria and transported to the cytosol through a 
series of chemical reactions known as the mevalonate path-
way. Condensation of acetyl-CoA with acetoacetyl-CoA 
forms 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which 
is then converted by HMG-CoA reductase (HMG-CoAR) to 
mevalonate (Sharpe and Brown 2013) and then further con-
verted to cholesterol (Sharpe and Brown 2013). Cholesterol 
is an essential constituent of the cellular membrane, which 
plays an important role in maintaining the stability of the 
cellular membrane, supporting cell proliferation, and serv-
ing as a precursor for the biosynthesis of steroid hormones 
(Ghayee and Auchus 2007; Hu et al. 2010; Arita et al. 2015). 
In addition, several studies have suggested that cholesterol 
accumulation promotes cancer development and resistance 
to anticancer drugs (Yue et al. 2014; Yan et al. 2020). Cho-
lesterol enriched within the TME leads to increased endo-
plasmic reticulum stress in CD8+ T cells, resulting in the 
upregulation of immune checkpoint expression, particularly 
PD-1, at the transcriptional level. This cholesterol-induced 

response contributes to the functional exhaustion of CD8+ 
T cells (Ma et al. 2019). Statin, the inhibitor for cholesterol 
synthesis, has the capability to transcriptionally suppress 
PD-L1 expression. As a result, they can mitigate the aggres-
siveness of NSCLC through ferroptosis (Mao et al. 2022). 
Moreover, in the meta-analysis of NSCLC immunotherapy 
cohorts, stains enhance the drug-response effect of anti-
PD-1 therapy and prolong the survival of NSCLC patients 
(Mao et al. 2022).

ABCA1

ATP-binding cassette (ABC) transporters, one of the most 
prominent families of integral plasma membrane proteins, 
are involved in cholesterol transport across the cell mem-
brane. Notably, the relationship between ABC transporter 
A1 (ABCA1) and cholesterol is becoming prominent in 
cancer (Pasello et al. 2020). In response to elevated cel-
lular cholesterol levels, ABCA1 expression is upregulated 
by blocking the ubiquitination and subsequent proteasomal 
degradation, leading to an increase in free cholesterol efflux 

Cancer Progression, Migration, Invasion
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HSL FA
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FABP4 FABP4

ADM

MIC-1
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IL-8
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Fig. 1   Possible regulatory mechanism of lipolysis in tumor microen-
vironment. Lipolysis is the metabolic process in which triglyceride 
(TG) is broken down into glycerol and free fatty acids (FA). Over-
expression of ATGL and HSL in adipocyte and cancer cells leads to 
the release of FAs which are used in fatty acid β-oxidation. Adipocyte 
fatty acid binding protein (FABP4) can bind to long-chain fatty acids 
reversibly and triggers lipolysis in adipocytes, enabling lipid transfer 
to cancer cells and promoting β-oxidation. In addition, the interaction 
of cancer cells with surrounding adipocytes stimulates the secretion 
of macrophage inhibitory cytokine-1 (MIC-1) and the release of IL-8 
by stromal normal fibroblasts, influenced by the fatty acids secreted 
through activated lipolysis. Exosomal adrenomedullin (ADM) is a 
multifactorial, hypoxia-inducible peptide facilitates lipolysis through 
interaction with adipocytes within the tumor microenvironment. The 
proteins associated with lipolysis highlight the complex interactions 
between lipid metabolism and the tumor microenvironment, playing a 
crucial role in the cancer progression, migration, and invasion
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(Hsieh et al. 2014). The expression of ABCA transporters 
is mainly regulated by the sterol regulatory element-binding 
protein 2 (SREBP2) and liver X receptor (LXR) (Goldstein 
et al. 2006; Gabbi et al. 2014). It has been reported that 
cholesterols are converted to oxysterols and prevent the 
translocation of SREBP2 to the nucleus, leading to ABCA1 
expression. LXR acts as a sensor of cholesterol homeostasis 
and interacts with retinoid X receptor (RXR), which forms 
a heterodimeric complex under high-cholesterol conditions 
(Costet et al. 2000; Venkateswaran et al. 2000). The impli-
cations of ABC transporter expression in cancer are contro-
versial. In prostate cancer cells, the reduced expression of 
ABCA1 with promoter hypermethylation maintains elevated 
intracellular cholesterol levels, contributing to aggressive 
prostate cancer progression (Lee et al. 2013). However, 
Gao et al. reported that ABCA1 suppression impairs malig-
nant phenotypes of epithelial ovarian cancer (EOC) cells 
and reduces the formation of EOC spheroids, which may 
be associated with the induction of intracellular cholesterol 
(Gao et al. 2022). In triple-negative breast cancer, elevated 
cholesterol levels from ABCA1 knockdown in membranes 
of breast cancer cells diminished membrane fluidity, hinder-
ing cell migration (Zhao et al. 2016). This process might be 
associated with apoptosis triggering in cholesterol-rich envi-
ronments (Gajate and Mollinedo 2001). Cholesterol efflux 
mediated by ABCA1 overexpression promoted EMT and 
increased invasive capacity by maintaining caveolin-1 stabil-
ity in colorectal cancer, the expression level of which could 
be used as a prognostic biomarker in colon cancer patients 
(Aguirre-Portoles et al. 2018).

ABCB1

ABC transporter B1 (ABCB1), also known as multidrug 
resistance protein 1 (MDR1) or P-glycoprotein, facilitates 

cholesterol distribution in the plasma membrane using flop-
pase (Le May et al. 2013). ABCB1 substrates preferentially 
accumulate in cholesterol-rich regions of the membrane, 
and their pumping activity is enhanced in the presence 
of cholesterol (Subramanian et al. 2016). In chemoresist-
ant colon cancer HT29 (HT29-dx) cells, the reduction of 
cholesterol synthesis is regulated by attenuated activity and 
expression of HMG-CoAR through induction of the E3 
ligase Trc8, reducing cell viability (Gelsomino et al. 2013). 
This change is accompanied by decreased ABCB1 surface 
level in HT29-dx cells, which may exert a pro-immunogenic 
effect in response to chemotherapy through the restoration of 

Fig. 2   Modulation of lipid 
metabolism by small molecular 
inhibitors to treat cancer. Small 
molecules specifically inhibit 
their target enzymes involved in 
lipid metabolism through direct 
binding and/or suppression of 
activity (Fatostatin, SREBP 
inhibitor; Cerulenin, FASN 
inhibitor; ND-654, ACC inhibi-
tor; SB-204990, ACLY inhibi-
tor). As a consequence, altered 
lipid modulation remodels TME 
less favorable for cancer promo-
tion and progression
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Fig. 3   Potential multi-target effects of dietary phytochemicals on 
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phytochemicals simultaneously modulate multiple targets involved in 
lipid metabolism, rather than triggering specific single enzyme. This 
multi-target approach can influence various aspects of TME, while 
preventing development of resistance to a single pathway
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extracellular HMGB1 (high mobility group box 1) expres-
sion, an index of necrosis and immunogenic death (Gel-
somino et al. 2013). These data suggest that ABCB1 not 
only participates in cholesterol transport within the plasma 
membrane but also contributes to the development of chem-
oresistance in response to anticancer drugs.

ABCG1

ABCG1, also known as ABC transporter G1, participates 
in the process of reverse cholesterol transport by expelling 

excess cholesterol from cells into high-density lipoprotein 
particles (Kennedy et al. 2005). A deficiency of ABCG1 
in mice significantly inhibits the subcutaneous growth of 
B16-melanoma and MB49-bladder carcinoma cells (Sag 
et al. 2015). In addition, the absence of ABCG1 in mac-
rophages has been demonstrated to enhance their inflam-
matory characteristics and diminish the growth of sub-
cutaneous tumors in mice following a Western-like diet 
(Sag et  al. 2015). In Abcg1−/− mice, tumor growth is 
linked to a change in the macrophage phenotype within 
the tumor, transitioning from a tumor-promoting M2 to a 

Table 1   Effects of small molecule inhibitors of lipid metabolism on TME

Categories Small 
molecule 
inhibitors

Molecular targets Chemical structure Effects on TME References

Non-sterol diarylthi-
azole derivative

Fatostatin • Directly bind to 
SCAP

• Inhibit SREBP activa-
tion

• Reduce tumor growth 
and metastasis in 
prostate cancer mouse 
model

• Anti-cancer effects in 
human endometrial 
carcinoma and pros-
tate cancer xenograft 
models

• Inhibit tumor growth 
in glioma, prostate, 
and breast cancer cell 
lines

Chen et al. (2018)
Yao et al. (2020) and Li 

et al. (2014)
Gholkar et al. (2016)

Antifungal antibiotic Cerulenin • Directly bind to 
FASN

• Suppress proliferation 
of human prostate can-
cer cells

• Reduce tumorsphere 
formation

• Reduce invasive-
ness and stemness in 
patient-derived glioma 
stem cells

• Inhibit migration and 
invasion of cervical 
cancer cells

• Reduce lymph node 
metastasis in the meta-
static mouse model of 
cervical cancer

Nishi et al. (2016)
Brandi et al. (2017)
Yasumoto et al. (2016)
Du et al. (2022)
Du et al. (2022)

Liver-specific ACC 
inhibitor

ND-654 • Bind to ACC​
• Inhibit ACC phospho-

rylation by AMPK

• Suppress prolifera-
tion of human hepatic 
carcinoma cells

Lally et al. (2019)

γ-Lactone prodrug SB-204990 • Inhibit ACLY • Disrupt the mito-
chondrial membrane 
potential and inhibit 
cell growth in various 
human cancer cell 
lines

• Inhibit growth of 
tumor xenografts

Hatzivassiliou et al. 
(2005)

Hatzivassiliou et al. 
(2005)
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M1 tumor-fighting profile (Sag et al. 2015). In lung can-
cer HKULC4 cells, the overexpression of ABCG1 not only 
stimulates cell proliferation but also increases the expression 
of anti-apoptotic proteins, namely BCL2 and MCL1 (Tian 
et al. 2017a, b). Enhanced cholesterol efflux promotes IL-
4-mediated reprogramming, which includes the suppression 
of gene expression induced by IFNγ (Goossens et al. 2019). 
Genetic deletion of ABCG1 reverses the tumor-promoting 
functions of TAMs and leads to a reduction in tumor burden 
(Goossens et al. 2019). Various ABC transporters, including 
ABCG1, are considered as therapeutic targets for improving 
cancer treatment.

Targeting lipid metabolism for cancer 
treatment

In the preceding section, we explored the fundamental fac-
tors that underlie the reprogramming of lipid metabolism, 
which propels the progression of cancer. Furthermore, we 
assessed the interplay between cancer progression and 
altered lipid metabolism, encompassing crucial processes 
such as lipid uptake, lipolysis, and lipogenesis within the 
TME. With a focus on these factors responsible for lipid 
metabolic reprogramming, driving cancer progression, there 
is considerable potential in devising novel approaches for 
cancer treatment. Notably, clinical trials are currently evalu-
ating the efficacy of fluvastatin, simvastatin, and denifan-
stat, which target lipid metabolisms such as HMG-CoAR 
or FASN in several carcinomas, including NSCLC, breast 
cancer, ovarian cancer, and prostate cancer (Han et al. 2011; 
Longo et al. 2020; Falchook et al. 2021). In addition, it is 
well documented that a variety of phytochemicals suppress 
cancer development and progression through modulating 
lipid metabolism. While small molecules trigger a specific 
target to regulate lipid metabolism (Fig. 2), phytochemicals 
often have the advantage of simultaneously affecting multi-
ple targets (Fig. 3). In this context, we introduce a range of 
small molecular inhibitors and a variety of phytochemicals 
that target lipid metabolism, expanding beyond those previ-
ously mentioned.

Small molecular inhibitors

Fatostatin

Fatostatin is a small molecule non-sterol diarylthiazole 
derivative that is a specific inhibitor of the SREBP cleavage-
activating protein (SCAP) required for SREBP activation 
(Fig. 2, Table 1). It can bind to SCAP directly, inhibiting 
the activation of SREBP (Kamisuki et al. 2009). Targeting 
the SREBP-mediated lipogenic program by fatostatin led 
to a blockade of tumor growth as well as distant metastasis 

by decreasing the frequency of mitotic cancer cells in the 
Pml/Pten double-null mouse model of prostate cancer (Chen 
et al. 2018). Fatostatin decreases the expression of SREBP 
target genes such as FASN, SCD-1, HMGCR​, HMGCS1, 
MVK, MVD, and LDLR in prostate cancer cells, followed 
by a reduction in intracellular fatty acid and total cholesterol 
levels (Li et al. 2014). Similar findings have been reported in 
human endometrial carcinoma cells, and an antitumor effect 
was also observed in a subcutaneous HEC-1A endometrial 
and androgen-insensitive C4-2B prostate xenograft model 
(Li et al. 2014; Yao et al. 2020). In addition, temozolomide-
resistant glioblastoma multiforme U87 (U87R) cells exhibit 
a significant increase in cholesterol and fatty acid synthesis, 
alongside the reduction of lipid unsaturation, resulting in 
diminished membrane fluidity (Choo et al. 2023). Fatostatin 
shows more potent cell growth inhibitory effects in U87R 
cells compared to sensitive U87 cells (Choo et al. 2023). 
Moreover, fatostatin leads to a significant decrease in the 
level of the active form of SREBP1 in pancreatic cancer 
MIAPaCa-2 cells. This reduction is associated with cytotox-
icity and reduction of proteins involved in lipid biosynthesis 
such as FASN, SCD-1, and HMG-CoAR (Siqingaowa et al. 
2017). Similar outcomes have been observed in various cell 
lines such as glioma, prostate, and breast cancer, demon-
strating the potential of fatostatin to attenuate tumor growth 
(Gholkar et al. 2016).

Cerulenin

Cerulenin covalently binds to the ketoacyl synthase domain 
of FASN (Fig. 2, Table 1) (Kuhajda et al. 2000) to signifi-
cantly suppress the proliferation of human pancreatic cancer 
MiaPaCa-2 and AsPC-1 cells (Nishi et al. 2016). In addi-
tion, treatment of tumorsphere Panc1 cells with cerulenin 
leads to reduced cell viability and significant changes in cell 
morphology. There is also a reduction in spheroids, sug-
gesting cytoskeletal reorganization (Brandi et al. 2017). 
Similar to the findings of these studies, treatment with 
cerulenin, an inhibitor of FASN, reduced the invasiveness 
of patient-derived glioma stem cells as well as the expres-
sion of stemness markers such as CD133 and Sox2. These 
findings imply that FASN-driven de novo lipogenesis plays 
a crucial role in maintaining cancer stemness (Yasumoto 
et al. 2016). Consistent with this, impeding the activity of 
FASN by cerulenin in SKBR3 results in high impairment 
of cellular proliferation (Stoiber et al. 2018). Recently, Du 
et al. demonstrated that cerulenin impairs the migration and 
invasion of cervical cancer, specifically HeLa and CaSki 
cells, through cholesterol reprogramming (Du et al. 2022). 
Moreover, cerulenin effectively reduced the lymph node 
volumes and the percentage of popliteal lymph nodes in a 
metastatic mouse model of cervical cancer (Du et al. 2022).
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ND‑654

ND-646 and ND-654 compounds bind to the arginine resi-
due within the biotin carboxylase domain of the ACC protein 
(Fig. 2, Table 1), effectively inhibiting both its dimerization 
and enzymatic activity. While ND-646 is broadly distrib-
uted throughout the body, ND-654 is designed to facilitate 
increased uptake in the liver (Svensson et al. 2016; Lally 
et al. 2019). Treating hepatic cellular carcinoma (HCC) 
HepG2 cells with liver-specific ND-654 leads to a reduc-
tion in the level of ACC phosphorylation by AMPK, which 
is followed by a decrease in cell proliferation. Interestingly, 
HepG2 cells expressing a mutation in ACC serine phospho-
rylation sites exhibit enhanced lipogenesis and proliferation 
(Lally et al. 2019). These studies provide valuable insights 
into the significance of de novo lipogenesis and dysregu-
lation of AMPK-mediated ACC phosphorylation in the 
development of HCC. Furthermore, the findings highlight 
the potential of ACC inhibitors as a targeted approach for 
cancer treatment.

SB‑204990

SB-204990, a γ-lactone prodrug of the potent ACLY inhibi-
tor SB-201076 (Fig. 2, Table 1), effectively suppresses the 
synthesis of cholesterol and fatty acid in both HepG2 cells 
and rats (Pearce et al. 1998). In various human cancer cell 
lines, SB-204990 disrupts the mitochondrial membrane 
potential, impedes cell cycle progression, and inhibits cell 
growth. These effects are closely linked to the impairment of 
glycolytic metabolism and glucose-dependent lipid synthesis 
(Hatzivassiliou et al. 2005). Notably, intraperitoneal admin-
istration of SB-204990 significantly inhibits tumor growth 
in nude mice with xenografts from mouse pancreatic ductal 
cell lines carrying oncogenic K-rasG12D alleles (Hatzivassil-
iou et al. 2005). Furthermore, treatment with SB-204990 in 
K-Ras-driven cancer cells results in a significant loss of cell 
viability in the absence of serum and during glutamine dep-
rivation (Hatzivassiliou et al. 2005; Hatipoglu et al. 2022; 
Sola-Garcia et al. 2023). From the studies, ACL is identified 
as a potential therapeutic target and provides the rationale 
for the development of ACL inhibitors for cancer treatment.

Phytochemicals

Apigenin

Apigenin is a flavonoid abundant in parsley, onions, 
oranges, and chamomile and is effective in treating asthma, 
shingles, and cancer (Fig. 3, Table 2) (Su et al. 2020a, b). 
In combination with other chemotherapeutics, such as dox-
orubicin, apigenin can sensitize inhibitory effects on tumor 
growth and proliferation (Gao et al. 2013, 2018; Nozhat 

et al. 2021). In addition to anti-cancer effects, apigenin 
plays a role in lipid metabolism and has been reported to 
attenuate lipid accumulation in human hepatic cancer cell 
lines and adipocytes (Ono and Fujimori 2011; Lu et al. 
2019; Hsu et al. 2021). In a high-fat diet (HFD)-induced 
obese mouse model, apigenin reduced body weight and 
visceral adipose tissue through downregulation of FASN, 
SCD1, or CD36, suggesting an anti-adipogenic effect (Su 
et al. 2020a, b; Wu et al. 2021). Moreover, apigenin can 
activate lipolysis. In human hepatocarcinoma HepG2 cells, 
apigenin-induced autophagy-dependent lipid degradation 
(Lu et al. 2020). Similarly, apigenin treatment upregulated 
the expression of genes responsible for lipolysis, includ-
ing ATGL, HSL, FOXO1, and ACC in adipose tissues of 
HFD-induced obese mice (Table 2) (Sun and Qu 2019). 
These data suggest that apigenin can exert an anti-can-
cer effect by regulating lipid metabolism, although fur-
ther investigation is required to confirm the phenomenon 
in vitro and in vivo.

Curcumin

Curcumin is a well-known chemopreventive phytochemi-
cal extracted from the rhizome of Curcuma longa that is 
widely used as a spice in Asian countries (Table 2) (Tomeh 
et al. 2019). In addition to anti-inflammatory and anti-
carcinogenic effects, curcumin is closely associated with 
lipid metabolism (Nosrati-Oskouie et al. 2021). Curcumin 
facilitates ACC phosphorylation and fatty acid oxidation 
in 3T3-L1 adipocytes, while inhibiting lipid accumulation 
and adipogenesis (Ejaz et al. 2009; Tian et al. 2017a, b; Wu 
et al. 2019). In HFD-induced obese mice, dietary curcumin 
reduced body weight gain, body fat, lipid levels, and hepatic 
lipid accumulation (Ejaz et al. 2009; Kobori et al. 2018). 
Yan et al. have demonstrated that oral administration of cur-
cumin reduced CD36 and FASN expression in the liver of 
NAFLD mice (Table 2), implying its inhibitory effects on 
fatty acid uptake and biosynthesis (Yan et al. 2018). Moreo-
ver, curcumin promoted cholesterol efflux via ABCA1 in 
THP-1 macrophages to prevent atherosclerosis (Lin et al. 
2015; Tan et al. 2021). In line with that, randomized con-
trolled trial studies showed that curcumin supplementation 
improved lipid profiles in individuals at risk of cardiovas-
cular diseases, polycystic ovary syndrome, and metabolic 
syndrome, further supporting the effects of curcumin on 
lipid metabolism (Tabrizi et al. 2018; Sohaei et al. 2019; 
Rafiee et al. 2021).

Curcumin functions in the lipid metabolism of vari-
ous types of cancers, inducing apoptosis in human breast 
cancer MDA-MB-231 and liver cancer HepG2 cell lines, 
which is mediated by the downregulation of FASN (Fan 
et al. 2014, 2016). In addition to its inhibitory effect on 
lipogenesis, curcumin decreased cholesterol absorption into 
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human colorectal cancer Caco-2 cells, suppressing cancer 
cell proliferation (Qin et al. 2023). Moreover, curcumin 
attenuated stem cell phenotypes of human breast cancer 
cells through the downregulation of fatty acid desaturases, 
such as SCD, FADS1, and FASD2 (Colacino et al. 2016). 
In tumor-bearing mice, curcumin combined with sorafenib 
enhanced serum lipid profiles and reduced FASN expres-
sion compared to the sorafenib-only-treated group (Man 
et al. 2020). Moreover, curcumin further inhibited tumor 
growth and EMT in sorafenib-treated mice, which suggests 
that curcumin sensitizes cells to the anti-cancer effects of 
sorafenib through alteration of lipid metabolism (Man et al. 
2020). Taken together, these results suggest that curcumin 
exerts anti-tumorigenic effects by altering lipid metabolism 
(Fig. 3).

Epigallocatechin gallate (EGCG)

EGCG, a polyphenolic flavonoid, is a main bioactive ingre-
dient in green tea that has been found to possess diverse 
biological functions and health benefits, particularly in 
cancers and metabolic syndrome (Legeay et al. 2015; Alam 
et al. 2022). EGCG has been reported to inhibit adipogen-
esis, lipid accumulation, and cell proliferation in 3T3-L1 
adipocytes (Moon et al. 2007; Kim and Sakamoto 2012). 
In addition to the anti-lipogenic effect, EGCG promoted 
HSL-mediated lipolysis in 3T3-L1 cells (Lee et al. 2009). 
Moreover, EGCG led to autophagy-induced lipolysis in vivo 
and in vitro (Zhou et al. 2014; Kim et al. 2017). These lipid-
modulating effects of EGCG have been demonstrated in diet-
induced obese animal models as well. EGCG intake reduced 
body weight gain and white adipose tissue weight in HFD-
induced obese mice (Choi et al. 2020). Moreover, EGCG 
significantly improved serum lipid profiles in HFD-fed mice 
and rats (Li et al. 2018; Li and Wu 2018). EGCG can stimu-
late lipid catabolism through inhibition of the expression 
of lipogenic genes such as ACC1, FASN, and SCD1 and 
through induction of lipolysis-involved genes, like HSL and 
ATGL (Table 2) (Lee et al. 2009; Li et al. 2018; Choi et al. 
2020).

In cancer settings, EGCG has been reported to suppress 
tumorigenesis by regulating lipid metabolism. EGCG treat-
ment resulted in increased apoptosis and decreased fatty 
acid synthesis through downregulation of FASN, ACC, and 
ACLY in human colorectal cancer cell lines as well as in a 
tumor xenograft mouse model (Khiewkamrop et al. 2022). 
Similarly, EGCG inhibited FASN and subsequent fatty acid 
synthesis, which mediated apoptosis in human prostate and 
liver cancer cells (Brusselmans et al. 2003; Khiewkamrop 
et al. 2022). Moreover, EGCG markedly reduced intracel-
lular triglyceride levels and accelerated lipolysis in human 
hepatoma Huh7 cells (Suihara et al. 2021). In particular, 
EGCG can stimulate autophagy-dependent fat clearance 

in human liver cancer cells (Zhou et al. 2014). These data 
suggest a cross-link between the lipid-modulating and anti-
carcinogenic effects of EGCG.

Resveratrol

Resveratrol is a potent anti-oxidative phytochemical mainly 
found in grapes and berries and can effectively prevent cardi-
ovascular diseases, carcinogenesis, and metabolic syndrome 
(Table 2) (Ko et al. 2017; Hou et al. 2019). In particular, res-
veratrol activates SIRT1 but downregulates PPARγ, imply-
ing its role in lipid metabolism. In 3T3-L1 adipocytes, res-
veratrol suppresses adipogenesis through the downregulation 
of FASN and PPARγ and leads to apoptosis (Rayalam et al. 
2008; Santos et al. 2014; Chang et al. 2016). In HFD-fed 
obese mice, resveratrol can reduce body weight and lipid 
accumulation, while enhancing lipid profiles, which seems 
to be mediated by the expression of key adipogenic genes, 
such as SREBP-1 and FASN (Kim et al. 2011; Andrade et al. 
2014). Consistently, a meta-analysis showed that resvera-
trol intake can enhance lipid profiles in obese people (Zhou 
et al. 2022). Konings et al. have shown that resveratrol intake 
reduced abdominal subcutaneous adipocyte size in obese 
men (Konings et al. 2014). These data suggest that resvera-
trol possesses an anti-adipogenic effect in vitro and in vivo. 
Moreover, resveratrol affects lipolysis and cholesterol trans-
port, facilitating basal and/or drug-induced triglyceride 
hydrolysis in fat cells (Szkudelska et al. 2009; Gomez-Zorita 
et al. 2013). Resveratrol upregulated ATGL expression at 
mRNA and protein levels in 3T3-L1 cells (Lasa et al. 2012). 
In old healthy mice, resveratrol inhibited the expression and 
activation of ACC1, resulting in increased fatty acid oxi-
dation (Gimeno-Mallench et al. 2019). Of note, resveratrol 
accelerated ABCA1/ABCG1-mediated cholesterol efflux in 
human and murine-derived macrophages, implying its pre-
ventive role in atherosclerosis (Voloshyna et al. 2013; Ye 
et al. 2019a, b). Overall, resveratrol is involved in diverse 
processes of lipid metabolism, conferring protection against 
obesity and cardiovascular diseases.

Regarding its anti-carcinogenic and lipid-modulating 
effects, resveratrol has been thought to suppress tumor 
promotion and progression by altering lipid metabolism. 
Resveratrol significantly inhibited lipid synthesis, cell pro-
liferation, and stemness by downregulating the expression 
of lipogenic genes, such as SREBP1 and its downstream 
ACLY1, ACC1, and FASN, in human breast and pancreatic 
cancer cells (Pandey et al. 2011; Khan et al. 2014; Zhou 
et al. 2019). Consistently, resveratrol inhibited adipocyte 
hypertrophy in the mammary fat pad of HFD-fed obese 
mice, leading to suppression of tumor growth (Rossi et al. 
2018). In hepatoma-bearing rats, resveratrol intake reduced 
tumor size, tumor metastasis, and serum cholesterol level 
(Miura et al. 2003). Fukuda et al. have shown that resveratrol 
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inhibited oral cancer cell growth by blocking epidermal 
FABP expression in vitro as well as in the xenograft model 
(Fukuda et al. 2022). Taken together, these findings indicate 
that resveratrol can inhibit lipogenesis and lipid uptake, lead-
ing to the suppression of tumor promotion and progression.

Scutellarin

Scutellarin is isolated from Scutellaria baicalensis, an herb 
widely used in Chinese medicine to treat inflammatory dis-
eases and hyperlipidemia (Table 2) (Wang and Ma 2018). 
Scutellarin has been reported to exert chemopreventive 
and anti-cancer effects in various types of cancers (Li et al. 
2010; Wang et al. 2010; Xu and Zhang 2013). In terms of 
lipid metabolism, scutellarin inhibited adipogenesis through 
PPARα in 3T3-L1 cells (Lu et al. 2013). Moreover, scutel-
larin attenuated hepatic lipid accumulation in both HepG2 
cells and HFD-fed mice, which was mediated by the upregu-
lation of CD36, FASN, and ACC (Luan et al. 2020; Zhang 
et al. 2022a, b). In line with that, scutellarin can protect 
against nonalcoholic fatty liver diseases and hyperlipidemia 
in animal models (Fan et al. 2017; Zhang et al. 2022a, b). 
Thus, scutellarin is a feasible candidate for suppressing 
tumor promotion and progression through the modulation 
of adipogenesis.

Silibinin

Silibinin is a flavonoid derived from the seeds of Silybum 
marianum (milk thistle) and is well-known for its hepato-
protective and chemopreventive activities (Table 2) (Abe-
navoli et al. 2010; Cheung et al. 2010). It has been reported 
that silibinin can improve lipid metabolism in obese mice, 
based on proteomics analysis (Wang et al. 2020a, b, c). In 
adipocytes, silibinin suppressed lipid accumulation and cell 
proliferation, possibly through the downregulation of FASN 
(Ka et al. 2009; Suh et al. 2015). In HFD-fed obese mice, 
silibinin intake reduced body weight gain, white adipose 
tissue weight, and adipocyte hypertrophy (Alsaggar et al. 
2020). In the liver of HFD-fed mice, silibinin attenuated the 
expression of FASN and ACC and triglyceride accumula-
tion, protecting against liver steatosis (Yang et al. 2021).

Silibinin can affect tumorigenesis through lipid modula-
tion as well. Silibinin has been reported to attenuate adipo-
genesis in various types of cancers. In HepG2 cells, silib-
inin inhibited the expression of FASN and ACC and lipid 
deposition (Yang et al. 2021). In human endometrial and 
prostate cancer cell lines, silibinin effectively blocked the 
expression and/or activation of SREBP1, SCD-1, FASN, 
and ACLY, resulting in suppression of lipid accumulation 
and cancer cell proliferation (Nambiar et al. 2014; Shi et al. 
2019). Interestingly, silibinin suppressed expression levels of 
genes responsible for lipogenesis and cell invasion in HepG2 

cells exposed to sera from obese males, suggesting silibinin 
as a potential chemotherapeutic in obesity-induced cancer 
(Miethe et al. 2017). Similarly, silibinin inhibited hypoxia-
induced lipogenesis and angiogenesis under hypoxic con-
ditions in human prostate cancer cells (Deep et al. 2017). 
Furthermore, silibinin administration dramatically decreased 
tumor growth, intratumoral lipid accumulation, and expres-
sion levels of FASN and ACC in the tumor xenograft mouse 
model (Deep et al. 2017). Thus, silibinin may be useful 
for the treatment of cancer patients with highly lipogenic 
phenotypes.

Quercetin

Quercetin is a dietary flavonoid abundant in red onions, 
apples, berries, and citrus fruits that exhibits antioxidant, 
anti-obesity, and anti-cancer effects (Table 2) (Shabir et al. 
2022). In adipocytes, quercetin inhibited differentiation and 
fat accumulation in 3T3-L1 cells (Hong et al. 2021). Querce-
tin provoked upregulation of ATGL and HSL expression and 
downregulation of FASN and LPL expression in OP9 cells 
that differentiate into adipocytes (Seo et al. 2015). In HFD-
induced obese mice, dietary quercetin significantly reduced 
body weight gain, white adipose tissues, and hepatic lipid 
accumulation (Jung et al. 2013). Moreover, quercetin attenu-
ated expression levels of CD36 and FASN in the liver of 
these obese mice (Jung et al. 2013). Thus, quercetin exerts 
its anti-obesity effect by preventing adipogenesis and pro-
moting lipolysis.

In HepG2 liver cancer cells, quercetin downregulated 
FASN expression and accumulation of intracellular fatty 
acids, resulting in increased apoptosis (Li et al. 2013; Zhao 
et al. 2014). Similarly, quercetin blocked FASN expres-
sion and cell proliferation in human nasopharyngeal carci-
noma cell lines (Daker et al. 2013). Quercetin intake sup-
pressed tumor size and lipid accumulation in tumor-bearing 
mice, suggesting a correlation between the anti-cancer 
and lipid-modulating effects of quercetin (Ruidas et al. 
2022). In Fig. 3, an illustration is presented depicting pro-
teins related to lipid metabolism that can be influenced by 
phytochemicals.

Concluding remarks and perspectives

Metabolic reprogramming within the TME has been recog-
nized as a crucial hallmark of cancer (Pavlova and Thomp-
son 2016). Tumors require a huge supply of energy to expe-
dite promotion and progression. To date, investigations into 
metabolic alteration in cancer have focused on glucose uti-
lization, referred to as the Warburg effect. Lipid metabolism 
is emerging as another key player in TME-related metabolic 
reprogramming (Snaebjornsson et al. 2020). TME represents 
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altered lipid metabolic pathways, which are closely associ-
ated with the activation of oncogenic signals (Fernandez 
et al. 2020). Thus, reprogrammed lipid-modulating genes 
in TME may be novel targets for the prevention and treat-
ment of cancers. Targeting lipid metabolic reprogramming 
factors that promote cancer progression would support new 
strategies for cancer treatment. As numerous phytochemicals 
exert anti-obesity and anti-cancer effects concomitantly, it 
would be worth repurposing lipid-modulating drugs and/
or phytochemicals as chemotherapeutics. Therefore, further 
investigations are needed to fully understand the underly-
ing mechanisms and the correlation between altered lipid 
metabolism and tumorigenesis.
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