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Subsidence Performance of the Bioactive Glass-Ceramic (CaO-SiO2-P2O5-B2O3) Spacer in

Terms of Modulus of Elasticity and Contact Area: Mechanical Test and Finite Element
Analysis
Myoung Lae Jo1,2, Dong Min Son1, Dong Ah Shin3, Bong Ju Moon4, Baek Hyun Kim1, Kyung Hyun Kim5
-OBJECTIVE: The objective of this study is to evaluate the
subsidence performance of a bioactive glass-ceramic
(CaO-SiO2-P2O5-B2O3) spacer in terms of its modulus of
elasticity and contact area using mechanical tests and
finite element analysis.

-METHODS: Three spacer three-dimensional models
(Polyether ether ketone [PEEK]-C: PEEK spacer with a small
contact area; PEEK-NF: PEEK spacer with a large contact
area; and Bioactive glass [BGS]-NF: bioactive glass-
ceramic spacer with a large contact area) are con-
structed and placed between bone blocks for compression
analysis. The stress distribution, peak von Mises stress,
and reaction force generated in the bone block are pre-
dicted by applying a compressive load. Subsidence tests
are conducted for three spacer models in accordance with
ASTM F2267. Three types of blocks measuring 8, 10, and 15
pounds per cubic foot are used to account for the various
bone qualities of patients. A statistical analysis of the re-
sults is conducted using a one-way Analysis of variance
and post hoc analysis (Tukey’s Honestly Significant Dif-
ference) by measuring the stiffness and yield load.

-RESULTS: The stress distribution, peak von Mises stress,
and reaction force predicted via the finite element analysis
are the highest for PEEK-C, whereas they are similar for
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PEEK-NF and BGS-NF. Results of mechanical tests show
that the stiffness and yield load of PEEK-C are the lowest,
whereas those of PEEK-NF and BGS-NF are similar.

-CONCLUSIONS: The main factor affecting subsidence
performance is the contact area. Therefore, bioactive
glass-ceramic spacers exhibit a larger contact area and
better subsidence performance than conventional spacers.
INTRODUCTION
nterior cervical discectomy and fusion (ACDF) surgery has
been widely performed as the standard treatment for
Adegenerative cervical disc diseases since its introduction

by Smith and Robinson in 1958.1-3 Although autologous bone graft
harvested from the iliac crest is used as the gold standard with
regard to fusion rate and biomechanical support for ACDF,4 donor
site morbidity such as pain and wound infection subsidence as
well as graft resorption have been reported.5-7 Hence, various
bone substitutes, including allografts and spacers with osteoin-
ductive materials and ceramics, have been introduced and widely
used. However these substitutes exhibit disadvantages such as
spacer breakage, migration, and nonunion, thus resulting in
delayed bone fusion or reoperation.8-10
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Table 1. Cervical Spacer Models (PEEK-C, PEEK-NF, BGS-NF)

Model PEEK-C PEEK-NF BGS-NF

Image

Size (W x L x H mm) 15 x 13 x 10 15 x 13 x 10 15 x 13 x 10

Contact area (mm2) 89.75 171.58 171.58

PEEK, polyether ether ketone; BGS, bioactive glass.
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Table 2. Finite Element Models (PEEK-C, PEEK-NF, BGS-NF)

Model PEEK-C PEEK-NF BGS-NF

Image

Number of node 1,306,664 1,202,613

Number of element 918,007 849,225

PEEK, polyether ether ketone; BGS, bioactive glass.
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Figure 1. Mechanical test for measuring mechanical properties of bone blocks.
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Over recent decades, several spacer materials have been devel-
oped, most notably titanium alloys and polyether ether ketone
(PEEK) spacers. Titanium alloys are known for their high
biocompatibility and can be directly fused with bone through
surface treatment; however, they exhibit a high modulus of elas-
ticity, thus resulting in a high rate of subsidence.11-13 PEEK spacers
have a modulus of elasticity similar to that of cortical bone;
however, subsidence has been reported in these spacers.14,15

A synthetic bioactive glass-ceramic spacer (NOVOMAX
FUSION) was recently developed; it is fabricated using BGS-
7(CaO-SiO2-P2O5-B2O3) to afford a large contact area and can be
fused with bone tissue by forming a hydroxycarbonate apatite layer
in body fluids, which results in faster osseointegration.16-18 In
addition, it can prevent the breakage of implants as its mechanical
strength is higher than that of conventional synthetic bone ma-
terials, titanium alloys, PEEK.19

This study is performed to evaluate the biomechanical safety of
ceramic spacers in terms of subsidence in ADCF and to prove that
Figure 2. Finite element models with
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the main factor affecting subsidence is the contact area of the
spacer, not the mechanical properties of the spacer material. The
methods used in this study are finite element analysis (FEA) and
mechanical tests.
METHODS

Finite Element Analysis FEA was performed to predict the factors
affecting the material properties and contact area. Three models
were constructed using different materials and contact areas. As a
commercial product, the conventional PEEK spacer (PEEK-C) has
a small contact area. The PEEK spacer (PEEK-NF) and bioactive
glass-ceramic spacer (BGS-NF) were of the same shape as the
large contact surface. These three models were designed to have
the same dimensions (i.e., 15 mm wide, 13 mm long, and 10 mm
high) using the SolidWorks 2020 software (SP5.0, Dassault Sys-
tems, France) (see Table 1).
the bone blocks and spacers.
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Figure 3. Loading and boundary conditions.

Table 3. Classification of Bone Blocks According to Density

PCF Density (g/cc) Classification

8 0.13 Low bone mass

10 0.16 Normal bone

15 0.24 High bone mass

ORIGINAL ARTICLE

MYOUNG LAE JO ET AL. SUBSIDENCE PERFORMANCE OF CERAMIC SPACER
To construct the bone block model for the subsidence test in
accordance with ASTM F2267, it was designed as a
20 mm � 20 mm � 20 mm cube using SolidWorks. The designed
spacer and bone block models were imported into Abaqus (version
6.14; Dassault Systems, France), which is a FEA software, and
constructed as finite element models. The mesh of the finite
element model was composed of a tetrahedral mesh measuring
0.5 mm, and a quadratic mesh shape was selected to realize the
curved shape of the spacer. The number of elements and nodes of
each model are listed in Table 2.
To determine the mechanical properties of the bone block, a

compression test was performed on a bone block measuring 10
pounds per cubic foot (PCF). A stressestrain curve was obtained
via a compression test, and the nonlinear stressestrain curve and
density (0.16 g/cc) values were input simultaneously in the bone
block model (see Figure 1).20 Linear properties were applied to
PEEK (Young’s modulus: 4 GPa; Poisson’s ratio: 0.4)21 and BGS-
Poisson0s Ratio ¼ ½1� 2ðvs=vlÞ2� = 2½1�ðvs=vlÞ2�

Young’s Modulas of Elassticity ¼ �
rv2s

�
3v2l � 4v2s

�� � �
v2l � v2s

�

vs ¼ ultrasonic transverse velocity; vl ¼ ultrasonic longitudinal velocity;

r ¼ density (1)
7 (Young’s modulus: 121 GPa; Poisson’s ratio: 0.28). The me-
chanical properties of BGS-7 were determined via ultrasonic ve-
locity measurements (Equation 1).22
WORLD NEUROSURGERY 180: e1-e10, DECEMBER 2023
Each spacer model was placed between two bone block models
with an intradiscal height (distance between blocks) of 4 mm (in
accordance with ASTM F2267) to achieve the same conditions as
the actual test.23 Furthermore, this would allow the surface of the
bone block and the spacer to be in complete contact (see Figure 2).
A sliding contact with a friction coefficient of 0.4 was applied as

the boundary condition between the spacer and the block.24

The lower block was constrained to avoid movement for all
degrees of freedom, and a displacement of 1 mm was applied to
the upper block in the displacement-control compression direc-
tion (Figure 3). Subsequently, the stress distribution, the von
Mises stress and strain occurring in the bone block, and the
reaction force of the entire structure were predicted for result
analysis.

Mechanical Test
Three types of spacer models created using the SolidWorks soft-
ware were used to prepare the specimens for mechanical testing.
For the bone block, three blocks measuring 8, 10, and 15 PCF were
cut to the same size as the finite element model
(20 mm � 20 mm � 20 mm) to account for the various bone
qualities of each patient (see Table 3).20,25

A stainless steel jig that can be inserted with a block was fixed
to a Servohydraulic MTS (MTS 858 Bionix Testing Machine). Each
spacer was placed between the two bone blocks and fixed on a
testing machine. In accordance with the international test stan-
dard ASTM F2267, an axial compressive load was applied at a load
speed of 0.1 mm/s until a displacement point of approximately
5 mm was reached. Data were obtained at a speed of 50 mm/s (see
Figure 4).23

After the test was completed, a loadedisplacement graph was
obtained using the displacement and load values for each section.
The yield load and stiffness of each implant were measured and
the results were compared. For comparison, the validity of the
difference in results was statistically analyzed using one-way
Analysis of variance and post hoc analysis (Tukey’s Honestly
Significant Difference). In addition, because BGS-NF is an
approved medical device, its Kp value was obtained for compari-
son with those of the Food and Drug Administration-approved
products reported in the literature.26

RESULTS

Finite Element Analysis
The peak von Mises stress (PVMS) and stress distribution in the
bone block for the linear section were verified. When the
displacement was applied in the compression direction, the stress
up to the linear strain section was predicted. The PVMS and
www.journals.elsevier.com/world-neurosurgery e5
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Figure 4. Mechanical test according to ASTM F2267.
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reaction force on PEEK-C were predicted to be approximately 1.5
to 2 times higher than those on PEEK-NF and BGS-NF (Table 4).
Similar results were predicted for the stresses in PEEK-NF and
BGS-NF. Results of stress distribution prediction indicated that
high stresses were more widely distributed in PEEK-C than in the
other spacers (Figure 5). In addition, PEEK-NF and BGS-NF
showed similar stress distributions despite their different
materials.
Mechanical Test
The stiffness and yield load were obtained for each bone block.
The stiffness was the lowest for PEEK-C in all blocks. In the 8

and 10 PCF blocks, the stiffness of PEEK-NF was the highest, and
in the 15 PCF block, the stiffness of BGS-NF was the highest. In
the 8 PCF and 15 PCF blocks, a statistically significant difference
was observed in terms of the contact area (P < 0.01), whereas no
statistically significant difference was observed when material
difference was indicated (P > 0.01). Among the 10 PCF blocks,
significant difference was indicated (P < 0.01) (Figure 6).
Table 4. Finite Element Analysis Results of the Bone Blocks
Combined with Spacers (PVMS, Reaction Force)

Strain 0.01 0.02 0.035 0.0575 0.0913 0.1

PVMS (MPa)

PEEK-C 0.43 0.86 1.51 2.16 2.16 2.16

PEEK-NF 0.35 0.5 0.88 1.45 2.15 2.14

BGS-NF 0.35 0.52 0.9 1.48 2.15 2.14

Reaction force (N)

PEEK-C 4.61 16.15 42.15 92.48 138.33 205.6

PEEK-NF 4.78 16.73 47.87 95.89 167.79 274.35

BGS-NF 4.81 16.85 48.21 96.58 168.94 276.07

PVMS, peak von mises stress; PEEK, polyether ether ketone; BGS, bioactive glass.
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The yield load was the lowest for PEEK-C and the highest for
BGS-NF in all blocks. In the 8 and 15 PCF blocks, statistically
significant difference was indicated in terms of the contact area
(P < 0.01), whereas no statistically significant difference was
observed when material difference was indicated (P > 0.01).
Among the 10 PCF blocks, significant difference was indicated
(P < 0.01) (Figure 7).
DISCUSSION

In this study, we investigated the safety of a bioactive glass-
ceramic spacer fabricated using BGS-7 against subsidence. The
ceramic spacer exhibited osseointegration on the surface; there-
fore, it does not require a large volume of bone graft (unlike the
conventional cervical spacer) and is designed to allow a wide
contact surface with the endplate. However, because BGS-7 ex-
hibits high mechanical strength and modulus of elasticity owing
to the characteristics of ceramics, the subsidence rate may be
high. Therefore, safety was evaluated in terms of the materials and
contact surface. The comparative material was PEEK, which has a
modulus of elasticity similar to that of bone and has been actively
used as a spacer material for ACDF since the early 2000s. The
causes of subsidence by the spacer are (1) stress shielding due to
the difference in the modulus of elasticity between the bone and
spacer and (2) stress due to the contact area of the spacer. How-
ever, stress shielding is not a significant factor as no structure
other than the spacer exists to transfer the load before interbody
fusion.27,28 Although the PEEK spacer has a modulus of elasticity
similar to that of the endplate,29,30 subsidence by PEEK spacers
has been reported.14,15 Therefore, whether the modulus of
elasticity is the main factor contributing to biomechanical
subsidence remains unclear; as such, contact stress as the main
factor should be considered. To reduce the stress on the contact
surface, the spacer must be designed to have a wide contact
surface; however, the wider the contact surface, the smaller is
the space available for implanting the bone graft material.
Hence, the spacer allows bony fusion directly on the surface.
In this study, a conventional PEEK spacer (PEEK-C) and two

spacers (PEEK-NF and BGS_NF) with the same design but
UROSURGERY, https://doi.org/10.1016/j.wneu.2023.05.034
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Figure 5. Finite element analysis results of the bone blocks (Stress distribution).
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different materials were investigated to elucidate the effects of
contact area and modulus of elasticity on subsidence. FEA and the
ASTM l test method were used for evaluation. First, FEA was
performed to predict the differences among the three models prior
to conducting the ASTM F2267 test. To increase the reliability of
the results, the stressestrain curve obtained via the compression
test of 10 PCF polyurethane bone blocks with normal bone density
was applied to the FEA. The highest PVMS and stress concentra-
tions were predicted for PEEK-C, which features a small contact
area with the endplate. Meanwhile, the PVMS and stress distri-
butions were similar for PEEK-NF and BGS-NF.
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After performing FEA, we conducted subsidence tests on the 8, 10,
and 15 PCF test blocks. The 8 PCF block exhibited a density and
mechanical properties that correspond to low bone density, whereas
the 15 PCF block demonstrated high-quality bone properties, based
on the subsidence test standard ASTM F2267 for the approval of
spinal spacers by various authorities, including the Food and Drug
Administration.20,24,25 We may consider using a cadaver to
implement a clinical environment; however, increasing the number
of test specimens will be difficult owing to limited donors. In
addition, each donor exhibits wide variation in terms of bone
quality. Therefore, to obtain accurate results, multiple specimens
ess

-NF BGS-NF

*
*

*
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0PCF 15PCF

locks combined with spacers (Stiffness).
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should not be tested on the same cervical vertebral body. However,
reliable results can be obtained because polyurethane test blocks
have standardized mechanical properties.31

The test results confirmed that the stiffness and yield load
decreased with the grade of the test block for all three models.
When comparing each model, the general PEEK-C indicated
significantly lower (P < 0.01) stiffness and yield loads than the
other two models for test blocks of all grades. By contrast, the
PEEK-NF and BGS-NF models showed similar values for the 8
and 15 PCF blocks (P > 0.01), whereas no significant difference
Figure 8. Radiographic images of clinical cases (6-month).
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was indicated for the 10 PCF block (P < 0.01). This difference is
attributed to the mechanical properties of the spacer on the test.
In general, the test results confirmed that, although the
modulus of elasticity of BGS-7 was much higher than that of
PEEK, it did not affect subsidence significantly, and the contact
area between the endplate and spacer was the main factor
affecting subsidence.
In this study, subsidence performance was measured based on

Ks, which is the result of the entire system with both the test
blocks and spacer. The stiffness value recommended by author-
ities responsible for medical devices is Kp, which is converted
from Equation 2, where Kp represents the subsidence
performance of the test block. The actual commercialized
medical device is BGS-NF, which converts Kp at 15 PCF into Kp.
Based on a comparison of the subsidence performance with those
of cervical spinal spacers registered in the United States, the BGS-
NF belongs to the top 5%e25%.30

Kp ¼ KsKd
�
Kd � Ks

Kd ¼ stif f ness of the intervertebral body fusion device

Ks ¼ stif f ness of the system (2)

In a retrospective study by Kim32 using allospacer-shaped
spacers fabricated using BGS-7, no subsidence (0/32) exceeding
3 mm occurred for 2 years after surgery. Park33 reported that no
subsidence (0/26) occurred in the results of a 12-month study.
UROSURGERY, https://doi.org/10.1016/j.wneu.2023.05.034
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Subsidence occurred in approximately 12.5% (4/32) of Kim’s
spacers in the 2-year follow-up,34 although it was significantly
lower than that reported in the allograft control group (52.5%).
These clinical results are consistent with those of the results of
biomechanical study conducted in the present study. In
addition, based on the radiographic images of the clinical cases,
bone fusion progressed without subsidence at 6 months
(Figure 8). The clinical study was conducted once the analysis
was completed.
A limitation of this study is that safety was predicted based on

only mechanical performance evaluation; hence, further clinical
studies are required. In addition, a comparative study using a ti-
tanium cervical spacer fabricated via additive manufacturing,
which enables a mesh-shaped surface and a wide contact area, is
necessary.
WORLD NEUROSURGERY 180: e1-e10, DECEMBER 2023
CONCLUSIONS

A bioactive glass-ceramic spacer featuring a large contact area with
the endplate in ACDF was designed in this study. Our results indi-
cated its good subsidence performance. Additionally, its good me-
chanical properties did not affect subsidence performance, unlike
PEEK.
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