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INTRODUCTION

The prevalence of childhood hypertension (HTN) has increased 
alongside overweight, obesity, and alterations in dietary hab-
its.1-3 Between 2009 and 2012, the prevalence of HTN among 
adults in the United States was reported to be approximately 
32.6%, while that among children and adolescents was report-
ed to be 3.6%.4 This is believed to reflect underdiagnosis given 
that growing evidence suggests that mild blood pressure (BP) 
elevation is much more common among children and adoles-
cents than previously thought.2 This is concerning, as increased 

BP in childhood and adolescence is associated with an in-
creased risk of cardiovascular disease in adulthood, also known 
as the tracking phenomenon.5

Historically, childhood HTN has been considered to be poly-
genic, with genetic, environmental, adaptive, neural, mechani-
cal, and hormonal mechanisms believed to be the basis of HTN.6 
Evidence from family studies has shown that HTN is heritable, 
with 15%–40% of office systolic BP and 15%–30% of office dia-
stolic BP being attributed to variations in genetic factors.7 A 
much smaller component (4%–17%) is attributed to environ-
mental factors.8 From these findings, it can be understood that 
BP is a complex and polygenic trait. 

However, there are several rare syndromes with monogenic 
inheritance that present with very high or low BP early in life.9 
The discovery of these monogenic HTN syndromes emphasiz-
es the importance of the genetic and molecular bases of BP 
and HTN, including more than 25 rare mutations and 53 single 
nucleotide polymorphisms.10 Therefore, genetic testing, such as 
whole genome or exome sequencing, is necessary to diagnose 
rare monogenic syndromes. 

This review highlights recent advances in the monogenic 
forms of pediatric HTN. We discuss how genetics may assist cli-
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nicians in diagnosing and treating patients with monogenic 
HTN. Genes responsible for hereditary forms of HTN are also 
mentioned, although syndromes, such as Turner, Williams, 
and Marfan, are not within the scope of this review.

MONOGENIC HTN SYNDROMES

Monogenic HTN syndromes refer to hypertensive disorders 
caused by a single gene mutation that follows Mendelian in-
heritance patterns.11 According to the 2017 Clinical Practice 
Guidelines for HTN by the American Academy of Pediatrics, 
monogenic forms of HTN are uncommon due to the lack of ex-
act incidence data.1 In the 2016 European Society of Hyperten-
sion (ESH) guidelines on HTN in children and adolescents, the 
Working Group also stated that monogenic causes of HTN are 
rare, but should be discovered during the pediatric age for suc-
cessful treatment and avoidance of HTN-related morbidity and 
mortality in adulthood.2

However, some familial disorders are proving common 
enough to be implicated in the differential diagnosis of any hy-
pertensive child.12 Genetic testing for familial hyperaldosteron-
ism type I (FH-I) or glucocorticoid-remediable aldosteronism 
(GRA) has confirmed the presence of genetic mutations in 3% 
of the population.13 Other monogenic forms of HTN, including 
Gordon syndrome (GS), apparent mineralocorticoid excess 
(AME), familial glucocorticoid resistance, and Liddle syndrome 
(LS), manifest as HTN with suppressed plasma renin activity 
(PRA) and increased sodium absorption in distal tubules, caus-
ing extracellular volume expansion.1,12 In primary aldosteron-
ism (PA) such as GRA and FH-II, the most discriminatory test 
is aldosterone-to-renin ratio (ARR; ng/dL and ng/mL/h, re-
spectively): a value >30 indicates PA,12 whereas in FH-I, an ARR 
>10 is an indication to perform genetic testing in a hypertensive 
child.13 If a family member has been diagnosed with HTN at an 
early age or if accompanied by hypokalemia, genetic testing is 
also recommended.

The test for PRA and aldosterone is usually performed from a 
vein in the upper arm in the early morning after fasting while 
lying down on the bed for more than 30 minutes: Renin (refer-
ence range, 0.17–5.38 ng/mL/h) and aldosterone (2.5–39.2 ng/
dL) levels exhibit diurnal variations and are influenced by posi-
tion, certain foods, beverages, or medications before the test. 
When the patients develop symptoms or signs associated with 
increased aldosterone production, such as elevated BP, mus-
cle weakness, and low potassium, a blood sample is drawn 
from a vein in the arm or a 24-hour urine sample. At special-
ized medical centers, blood from the kidneys or adrenal veins 
is sometimes also collected.

Serum potassium anomalies, metabolic acid-base disorders, 
and abnormal plasma aldosterone concentrations may be 
noted. Interestingly, the term “low-renin HTN” (LRH), which 
describes a phenotype of HTN in which renin activity is low 

and hyperaldosteronism is not overt, is also used by the ESH.2 
Hypokalemia is a common feature of most LRH cases, except 
in GS. Moreover, mild metabolic alkalosis is common in all 
cases except in GS, which is associated with metabolic acido-
sis.12 Notably, urinary electrolytes should not be used to rule 
out disorders, as all patients progress to a neutral, steady-state 
electrolyte balance despite extracellular volume expansion. 
Therefore, monogenic diseases should be suspected in hyper-
tensive children with a family history of early-onset HTN, es-
pecially if plasma renin levels are suppressed and distal tubule 
sodium absorption is increased. Although genetic testing and 
analysis are warranted to differentiate these disorders, a pre-
sumptive diagnosis can be achieved in some patients based on 
clinical features, laboratory results, and response to specific 
pharmacological drugs. Therefore, routine use of next-genera-
tion sequencing (NGS) is not recommended to discover genetic 
mutations or variants in asymptomatic children.

The two main organs involved in monogenic HTN are the 
kidneys and adrenal glands, which regulate Na+ and volume 
balance. In this review, monogenic HTN is divided into two 
categories based on these two organs and is discussed in terms 
of clinical features, mutations in a single gene, and treatment 
agents. A summary of the various forms of monogenic HTN is 
presented in Table 1. Fig. 1 shows a diagnostic and therapeutic 
approach for patients with LRH.

MUTATIONS IN THE ADRENAL GLAND

FH

FH-I/GRA
The first described form of inheritable PA is GRA, also known 
as FH-I or aldosterone synthase hyperactivity.13 PA is the most 
prevalent cause of LRH. GRA is an autosomal dominant dis-
order that results in high serum aldosterone levels, low renin 
activity, and HTN. GRA is caused by a chimeric gene, with re-
combination of the promoter region of the 11β-hydroxylase 
gene (CYP11B1) and aldosterone synthase gene (CYP11B2) on 
chromosome 8q.14,15 The new chimeric fusion gene encodes for 
an aldosterone synthase that is activated by not only low blood 
volume, angiotensinogen II, and high serum K+ levels, but also 
adrenocorticotropic hormone (ACTH).16 Upon ACTH stimula-
tion, aldosterone is expressed in the zona fasciculata and is 
produced along with cortisol. This causes a significant increase 
in aldosterone concentration, resulting in increased secretion 
of K+ and reabsorption of NaCl and water.17

Patients with GRA usually show symptoms of severe HTN, 
mild hypokalemia, metabolic alkalosis, and low plasma renin 
levels. Testing for plasma ARR can help in screening to detect 
high aldosterone levels with suppressed PRA.18 The gold stan-
dard for diagnosis is confirmation of the chimeric CYP11B1/
CYP11B2 gene through genetic sequencing. Some patients with 
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GRA may appear to be particularly at risk for cerebral aneu-
rysms and intracranial bleeding. Therefore, magnetic reso-
nance angiography screening at the onset of puberty is recom-
mended.19

As the nomenclature indicates, treatment of GRA includes 
low-dose glucocorticoids (prednisolone, dose of 2.5–5 mg dai-
ly) to suppress ACTH-stimulated aldosterone production, and 
mineralocorticoid receptor (MR) antagonists, such as spirono-
lactone or eplerenone, to suppress the effects of aldosterone.20,21 
The epithelial sodium channel (ENaC) antagonists amiloride 
or triamterene can be used as adjunctive therapies. As PRA is 
already suppressed, antihypertensive agents, such as ACE in-
hibitors or β-blockers, are ineffective in treating GRA. Howev-
er, management of PA should be personalized according to pa-
tient age, disease severity, anatomic type of disease (unilateral 
adenoma vs. bilateral hyperplasia), and preference between 
medicine or surgery.22 Laparoscopic adrenalectomy is ideal for 
treating aldosterone excess and improving long-term BP con-
trol in unilateral adenoma,21,23 although medical therapy is as-
sumed to be as effective as surgical therapy if BP is normal-
ized.22 Presently, further studies are necessary to determine the 
precise therapeutic criteria for medical and surgical therapies 
for PA.

FH-II
Recently, the gene responsible for FH-II has been identified in 
affected subjects as CLCN2, which encodes the voltage-gated 
chloride channel ClC-2 expressed in the adrenal glomerulo-
sa.24 A gain-of-function mutation causes the depolarization of 
the glomerular cell membrane and activation of voltage-gated 
calcium channels, upregulating the expression of CYP11B2. 
This in turn encodes an enzyme for aldosterone biosynthesis.25 
FH-II is characterized by the familial form of PA with aldoste-
rone-producing adenomas or idiopathic bilateral adrenal hy-
perplasia. It has been reported that HTN due to FH-II usually 
manifests in adults.25 The previous diagnostic method to distin-
guish PA from sporadic PA is the presence of two or more family 
members affected by PA.26 Therefore, this condition should be 
diagnosed when there is a positive family history given the pos-
sibility of other familial forms of PA being excluded.27 However, 
genetic testing is the standard method for diagnosing FH-II. As 
FH-II is unresponsive to glucocorticoids, unlike FH-I, using 
mineralocorticoid antagonists together with unilateral adrenal-
ectomy is advised for the amelioration of symptoms. 

FH-III
FH-III is caused by mutations in KCNJ5, which encodes an in-

Fig. 1. A diagnostic and therapeutic approach to patients with low-renin hypertension. ACTH, adrenocorticotropic hormone; Aldo, aldosterone; (allo)THF, 
(allo)tetrahydrocortisol; GFR, glomerular filtration rate; PRA, plasma renin activity.
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ward rectifying potassium channel, Kir3.4.28 In FH-III, a gain-
of-function germline mutation in the KCNJ5 gene induces loss 
of potassium selectivity in the zona glomerulosa potassium 
channel, resulting in increased Na+ influx, a higher cell mem-
brane potential, and lower depolarization threshold; conse-
quently, aldosterone synthesis and secretion increases in the 
adrenal glomerulosa cells.29 Patients with FH-III present with se-
vere HTN, hypokalemia, and bilateral hyperplasia. In most 
cases, bilateral adrenalectomy is required.

FH-IV
Recently, Scholl, et al.30 described a fourth type of FH, or FH-
IV. FH-IV occurs due to a germline gain-of-function mutation 
in the CACNA1H gene, which encodes the T-type voltage-de-
pendent calcium channel Cav3.2.26 The activation of CACNA1H 
drives excessive calcium to enter adrenal glomerulosa cells 
and increases hyperaldosteronism.31 In addition, somatic mu-
tations in CACNA1H, including KCNJ5, ATP1A1, and ATP2B3, 
have been identified in more than 50% of patients with aldo-
sterone-producing adenomas.32,33 The ongoing discovery of new 
genetic forms of PA will lead to a reclassification of FH.

Congenital adrenal hyperplasia
Congenital adrenal hyperplasia (CAH) is an autosomal reces-
sive disorder caused by cortisol biosynthesis-related gene mu-
tations. CYP11B1 and CYP17A1 each encode 11β-hydroxylase 
and 17α-hydroxylase, and their mutations are linked to early-
onset HTN and hypokalemia.34 Defects in 11β-hydroxylase and 
17α-hydroxylase lead to increased ACTH due to the absence 
of cortisol’s negative feedback and overproduction of 21-hy-
droxylated steroids, which ultimately activate MR.35 If MR ac-
tivation is excessive due to increased 11-deoxycorticosterone 
(DOC) levels, Na+ reabsorption takes place, and intravascular 
volume expansion increases, ultimately resulting in hypokale-
mic alkalosis and LRH.36 

Depending on the severity of the mutations in 11β-hydroxylase 
deficiency, patients may present with genital ambiguity, hirsut-
ism, premature bone maturation, and precocious puberty. The 
most common features of 17α-hydroxylase deficiency are the 
absence of secondary sexual characteristics, amenorrhea, and 
LRH in affected females.37 These presentations result from the 
elevation of DOC levels and resultant MR-mediated LRH and 
impaired steroidogenesis in both the adrenals and gonads. A 
hybrid CYP11B/B1 gene can also be produced from the recom-
bination of CYP11B2 and CYP11B1 genes, showing a CYP11B1 
deficiency phenotype (virilization due to excessive androgen 
synthesis). 

Diagnosis is generally based on the presence of clinical fea-
tures and confirmed by elevated DOC and androgen levels, 
along with 11β-hydroxylase and 17α-hydroxylase genetic se-
quencing. In CAH, 21-hydroxylase deficiency is the most com-
mon type and is distinguished from 11β-hydroxylase and 17α- 
hydroxylase in the sense it is a Na+-losing condition without 

HTN. Treatment involves the use of MR antagonists, such as 
spironolactone, for HTN. 

Familial glucocorticoid resistance
An inherited defect in the glucocorticoid receptor is induced 
by inactivating mutations in the NR3C1 gene on chromosome 
5q31-q32.38,39 This is a rare syndrome in families with mutations 
inherited either by an autosomal recessive or dominant pattern, 
rendering the glucocorticoid receptor unresponsive to cortisol. 
Consequently, increased ACTH and cortisol levels cause ACTH-
induced overproduction of adrenal mineralocorticoids and an-
drogens and hypercortisolism-mediated MR activation in the 
kidney tubules. Cortisol has a high affinity for both glucocorti-
coid receptors and MR. Therefore, the classic clinical features 
of glucocorticoid resistance are increased plasma ACTH and 
cortisol, LRH, low aldosterone levels, hypokalemia, hirsutism in 
females, precocious puberty, chronic fatigue, and malaise.40 
Patients with glucocorticoid resistance do not present with the 
features of Cushing’s syndrome due to glucocorticoid resis-
tance. 

This disorder can be diagnosed by markedly elevated corti-
sol levels and genetic analysis. Treatment with overnight low-
dose dexamethasone suppresses ACTH secretion and improves 
excessive mineralocorticoids, hypercortisolism, and hyperan-
drogenism. The use of MR antagonists, such as spironolactone 
and eplerenone, helps to control HTN in familial glucocorti-
coid resistance.

MUTATIONS IN THE DISTAL 
CONVOLUTED TUBULE AND 
COLLECTING DUCT

GS (pseudohypoaldosteronism type II, familial 
hyperkalemic HTN) 
GS (OMINM 145260), also known as type 2 pseudohypoaldo-
steronism, is an autosomal dominant disorder caused by mu-
tations in the WNK1, WNK4, CUL3, and KLHL3 genes.41,42 Mu-
tant WNK1 genes on chromosome 12 are associated with the 
overexpression of L-WNK1, leading to the activation of SPS-1- 
related proline/alanine-rich kinase (SPAK) and enhanced phos-
phorylation of the NaCl cotransporter (NCC), thereby increasing 
NaCl reabsorption and HTN. Mutations in WNK4 genes induce 
the disruption of KLHL3 binding, thereby impairing ubiquiti-
nation and subsequent proteolysis. This increases WNK4 lev-
els and phosphorylates NCC via SPAK, together with concom-
itant inhibition of the renal outer medullary potassium channel 
(ROMK).16 The simultaneous suppression of ROMK leads to a 
decrease in K+ secretion and hyperkalemia. Two additional 
mutations in CUL3 or KHLH3 are involved in the pathophysiol-
ogy of proteasomal degradation of WNK proteins, resulting in 
the phenotype of GS.

The clinical phenotype of patients with GS is LRH, with vary-
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ing but relatively low aldosterone levels, hyperkalemia, meta-
bolic acidosis, hypercalciuria, and low urinary sodium excre-
tion.43 Interestingly, CUL3 mutations are related to a more 
severe presentation with higher BP, more severe hyperkalemia, 
acidosis, and earlier onset.42 Dramatic improvement in GS has 
been observed for treatment with thiazide diuretics that inhibit 
NCC. Both hyperkalemia and HTN are reversed by low-dose 
thiazide diuretics and a Na+- and K+-restricted diet.44

LS 
LS, first identified by Liddle, et al.45 in 1963, is an autosomal 
dominant genetic disorder caused by gain-of-function muta-
tions in genes encoding the ENaC subunits. Heterozygous 
mutations in the SCNN1B and/or the SCNN1G genes located 
on chromosome 16 lead to a truncated C-terminus on either 
the β- or γ-subunits of ENaC, resulting in the loss of regulatory 
binding sites for Nedd4-2 (NEDD4L), a ubiquitin ligase re-
quired in proteolytic degradation.46,47 Mutations in SCNN1B 
and SCNN1G, encoding β- and γ-subunits, respectively, are the 
most frequent forms of LS. Additionally, a new heterozygous 
missense mutation in SCNN1A encoding the α-subunit was 
identified using exome sequencing.48 Thus, genetic analysis is 
essential for the definitive diagnosis of LS.

LS-associated Na+ reabsorption resembles states of miner-
alocorticoid excess but is independent of aldosterone.49,50 The 
inhibited breakdown of ENaC produces an increase in ENaC 
expression on the apical membrane, which results in increased 
Na+ reabsorption, intravascular volume expansion, and severe 
HTN. Increased Na+ influx into the principal cell activates Na+/
K+ ATPase, causing an increased influx of K+ into the cell at the 
basolateral membrane, thereby facilitating the secretion of K+ 
into the lumen. Na+ influx also induces a more negative lumen 
potential and H+ secretion in type A intercalated cells. There-
fore, hypokalemia and metabolic alkalosis are observed with 
suppressed PRA and aldosterone. 

Patients with LS are recommended a salt-restricted diet and 
are treated with direct inhibitors of ENaC. Both amiloride and 
triamterene are highly effective in lowering BP and normaliz-
ing potassium levels. A recent trial showed that using ENaC 
blockers was the most effective treatment for uncontrolled 
HTN in patients with a low renin and aldosterone phenotype.51

AME
The AME syndrome is an autosomal recessive disorder caused 
by a loss-of-function mutation in the HSD11B2 gene encod-
ing the 11β-hydroxysteroid dehydrogenase type II enzyme 
(11β-HSD2), which converts cortisol to cortisone and requires 
an NAD+ cofactor.52 The main effects of cortisol on the kidneys 
include an increase in glomerular filtration rate, renal plasma 
flow, Na+ reabsorption, K+ secretion, and water diuresis.16 The 
inactivating mutation in the HSD11B2 gene leads to excess 
cortisol accumulation and activation of MR, resulting in symp-
toms of mineralocorticoid excess, such as sodium retention, 

hypokalemic alkalosis, and LRH. Patients with severe AME 
may present with hypercalciuria, nephrocalcinosis, and even 
end-organ damage in the heart, retina, and central nervous 
system.53,54

Mutations in the HSD11B2 gene result in both mild and se-
vere phenotypes of AME.22 While 11β-HSD2 expression is al-
most absent in the severe phenotype of AME early in life, a milder 
version of AME may appear later in life, possibly due to a de-
crease in cortisol clearance rate, a potential age-dependent de-
cline in HSD11B2 activity, less severe mutations or heterozy-
gosity with partial activity of 11β-HSD2, and consumption of 
exogenous inhibitors of 11β-HSD2, such as licorice or grape-
fruit.55-57 

AME should be suspected in children with LRH and low al-
dosterone with signs of mineralocorticoid excess. Urine steroid 
profiles have traditionally been used for the diagnosis. Profil-
ing to check for an abnormal ratio of cortisol metabolites, which 
include tetrahydrocortisol (THF) and allotetrahydrocortisol, to 
a cortisone metabolite tetrahydrocortisone in a 24-h urine col-
lection is performed. Genetic testing can also be performed to 
confirm diagnosis. Treatment is composed of MR antagonists, 
K+ supplementation, dietary Na+ restriction, epithelial Na+ 
channel blocker (amiloride), and hydrochlorothiazide for hy-
percalciuria.

Geller syndrome (HTN exacerbated by pregnancy)
Geller syndrome, also referred to as pregnancy-exacerbated 
HTN, is an autosomal dominant inheritance disorder of HTN 
resulting from a heterozygous mutation in the MR gene 
(NR3C2).58,59 This mutation in MR leads to altered nuclear re-
ceptor ligand selectivity and activation.60 Subsequently, ste-
roid hormones, such as progesterone, act as agonists of MR, 
resulting in increased activation of mineralocorticoid signal-
ing cascades that enhance Na+ reabsorption and K+ secretion. 
As the level of progesterone rises 100-fold during pregnancy, 
affected women display severe HTN. 

The substitution of a leucine for a serine at codon 810 (S810L; 
MRL810) on chromosome 4q31 alters the conformation of the 
hormone-binding domain.61 The MRL810 mutation can result in 
increased expression and activity of ENaC and Na/K ATPase, 
causing Na+ reabsorption and inducing gestational HTN. The 
term is slightly confusing, as the syndrome is not confined to 
pregnant women. Severe HTN is present in both men and wom-
en. This can be explained by the fact that cortisol levels are sig-
nificantly more abundant than aldosterone in men and bind 
MR with similar affinity. There is no specific treatment for men 
and non-pregnant women with Geller syndrome. 

Patients with this mutation present with HTN and sup-
pressed PRA and low serum aldosterone levels. Unlike in other 
types of monogenic HTN, the MR antagonist spironolactone is 
contraindicated because the mutated MR has increased affini-
ty for spironolactone and paradoxically activates MR, exacer-
bating HTN. 
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FUTURE DIRECTION IN RESEARCH

Several areas for future research in the genomics of pediatric 
HTN were recently highlighted by Padmanabhan and Domi-
niczak.62 The key points are summarized in this article. The 
known genetic architecture of BP encompasses more than 30 
genes, with rare variants resulting in monogenic forms of HTN 
or hypotension, and more than 1477 common single-nucleo-
tide polymorphisms (SNPs) have been shown to be associated 
with BP. These SNPs identified in genome-wide association 
studies are pleiotropic and mapped to non-coding regions of 
the genome, which makes functional mapping challenging.62 
Unraveling these pleiotropic associations can potentially help 
us understand the causal pathways for HTN and clinical appli-
cations for SNPs, including drug repositioning, repurposing, 
and pharmacogenomics for the treatment of HTN. Drug repur-
posing is the discovery of new indications for drugs that already 
exist. To increase the possibility of success in drug development 
and approval, repurposing drugs is necessary for a target that 
has a genetic basis. However, drug repurposing should be per-
formed with care to ensure that patients are not exposed to ad-
verse effects from the increased drug target range. Further stud-
ies are necessary to clarify which medications are optimal to use 
by comparing various classes of antihypertensive medications in 
diverse racial and ethnic populations. 

In addition, the clinical phenotypes and genotypes of mono-
genic HTN vary from milder symptoms, encompassing nor-
motension or normokalemia, to life-threatening conditions.63-65 
Genotype-phenotype interactions and correlations, epigenetic 
modifications, and non-genetic factors, such as age, nutrition, 
and environment, are all related to the variable phenotype and 
penetrance of monogenic HTN. As for testing siblings of pa-
tients with monogenic HTN, routine use of NGS is not always 
recommended in children without HTN, abnormal renin and 
aldosterone levels, and abnormal serum electrolytes. Even if 
family screening is available in national reference laboratories in 
some countries, adverse events of genetic testing should also be 
considered.

The field of genomics in monogenic HTN has identified nu-
merous genomic signals, but actionable results are lacking. Clini-
cal translation of such genetic data is much needed with the in-
tegration of pleiotropic, pharmacogenomics, and functional 
studies, leading to precision medicine for HTN in the future.

CONCLUSIONS

As the true prevalence of HTN in children is still unknown, 
monogenic HTN is not a rare condition of secondary HTN, es-
pecially for those with a positive familial history, severe early-
onset, and refractory HTN that is unresponsive to traditional 
antihypertensive agents, such as calcium channel blockers and 
β blockers, together with LRH. Due to specific mutations that 

contribute to the development of monogenic HTN, genetic 
testing is beneficial for the early diagnosis and tailored thera-
py of affected subjects. An increased understanding of the mo-
lecular pathways that regulate BP will promote precision medi-
cine. Accordingly, genetic or genomic confirmation is warranted 
to facilitate new drug development and personalized treat-
ment, which may lead to a new classification of pediatric HTN. 

Novel gene mutations causing BP variability will continue 
to be discovered and increase our knowledge of BP modula-
tion. Further studies are necessary to provide a better under-
standing of the etiology and therapeutic strategies for mono-
genic HTN and to improve the prognosis in adulthood. 
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