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Abstract: This study investigated the immunogenicity of, and reactogenicity to, the ChAdOx1
nCoV-19 vaccine according to pre-existing adenovirus immunity. Individuals scheduled for COVID-
19 vaccination were prospectively enrolled in a tertiary hospital with 2400 beds from March 2020
onwards. Pre-existing adenovirus immunity data was obtained before ChAdOx1 nCoV-19 vaccination.
A total of 68 adult patients administered two doses of the ChAdOx1 nCoV-19 vaccine were enrolled.
Pre-existing adenovirus immunity was identified in 49 patients (72.1%), but not in the remaining
19 patients (27.9%). The geometric mean titer of S-specific IgG antibodies was statistically higher
in individuals without pre-existing adenovirus immunity at several time points: before the second
ChAdOx1 nCoV-19 dose (56.4 (36.6–125.0) vs. 51.0 (17.9–122.3), p = 0.024), 2–3 weeks after the
second ChAdOx1 nCoV-19 dose (629.5 (451.5–926.5) vs. 555.0 (287.3–926.0), p = 0.049), and 3 months
after the second ChAdOx1 nCoV-19 dose (274.5 (160.5–655.3) vs. 176.0 (94.3–255.3), p = 0.033).
In the absence of pre-existing adenovirus immunity, systemic events were observed with higher
frequency, especially chills (73.7% vs. 31.9%, p = 0.002). In conclusion, individuals without pre-
existing adenovirus immunity showed a higher immune response to ChAdOx1 nCoV-19 vaccination
and a higher frequency of reactogenicity to ChAdOx1 nCoV-19 vaccination was observed.
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1. Introduction

Adenovirus (Ad)-derived vectors are currently the most commonly used vectors in
gene therapy, cancer, and vaccine clinical trials worldwide [1]. Ad-derived vectors have
several advantages, such as efficient transduction of many proliferating and quiescent cell
types, packaging large amounts of foreign deoxyribonucleic acid (DNA), large scale pro-
duction while meeting clinical good manufacturing practice standards, and rare integration
into the host chromosome [2,3].

However, due to the high incidence of Ad infections in the general population, pre-
existing Ad immunity may have an impact on therapeutic efficiency and safety [4,5].
Antibodies bound to the viral capsid mediate sequestration by Fc receptor-positive cells
and may lead to vector clearance and poor tissue transduction [2,6,7]. Zak et al. report
that responses of volunteers with pre-existing Ad5 neutralizing antibodies show drastically
reduced inflammatory responses to the vaccine [8]. On the other hand, Varnavski et al.
show that the presence of pre-existing anti-vector immunity is associated with increased
mortality following systemic vector infusion [9].

Several approaches are being tested to overcome pre-existing Ad immunity, such as
generation of chemically modified Ad5 capsids, generation of chimeric Ads, complete
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replacement of Ad5-based vaccine platforms with alternative (human and non-human
origin) Ad serotypes, and Ad5 genome modification [10]. Nevertheless, in the case of
the Janssen (Ad26) or ChAdOx1 nCoV-19 vaccine, the antibody response rate of the Ad
vector vaccine is lower than that of the mRNA vaccine [11,12]. In the case of pre-existing
Ad immunity, the immune response may be reduced when the Ad vector vaccine is
administered compared with that of the control group.

Therefore, this study investigated the immunogenicity of and reactogenicity to the
ChAdOx1 nCoV-19 vaccine according to pre-existing Ad immunity.

2. Materials and Methods
2.1. Study Design

Individuals scheduled for COVID-19 vaccination among patients and health care
workers were prospectively enrolled in a tertiary hospital with 2400 beds starting from
March 2020. The ChAdOx1 nCoV-19 vaccination was administered from 8 March 2021.
Individuals who were not vaccinated with two doses (n = 6), individuals who received
heterologous vaccination (n = 6), individuals who were not vaccinated with the ChAdOx1
nCoV-19 vaccine (n = 118), and individuals with a history of previous infection (n = 1) were
excluded from the study (Figure 1a). A total of 68 adult individuals that received two doses
of the ChAdOx1 nCoV-19 vaccine were finally enrolled.

The Institutional Review Board (IRB) of Yonsei University College of Medicine (IRB
no. 4-2020-1377) approved this study. Informed consent was obtained from all participants.
This study complied with the Declaration of Helsinki and Good Clinical Practice guidelines.

2.2. Sample Selection

Peripheral blood samples were obtained at five time points: T0, before the first ChA-
dOx1 nCoV-19 dose; T1, 21.0 (18.0–24.0) days after the first ChAdOx1 nCoV-19 dose; T2,
before the second ChAdOx1 nCoV-19 dose [71.0 (68.0–76.0) days after the first ChAdOx1
nCoV-19 dose]; T3, 16.0 (13.0–20.0) days after the second ChAdOx1 nCoV-19 dose; and T4,
103.0 (97.0–109.0) days after the second ChAdOx1 nCoV-19 dose (Figure 1b).

2.3. Adenovirus Titer Immunoassay

Pre-existing Ad immunity data was obtained using the QuickTiter™ Adenovirus Titer
enzyme-linked immunosorbent assay Kit (Cell BioLabs, San Diego, CA 92126, USA) at time
point T0, before the first ChAdOx1 nCoV-19 dose [13]. HEK 293T cells (5 × 105 cells/mL)
were grown as monolayers in 96-well plates and incubated at 37 ◦C, 5% CO2 for 1 h. HEK
293T cells were infected with 10-fold serial dilution of T0 samples from enrolled patients or
a 2-fold serial dilution of an Ad-β-gal positive control. After the immunoassay, the optical
density at 450 nm was measured using a VersaMax Microplate Reader (Molecular Devices,
LLC, San Jose, CA 95134, USA). Viral titers were calculated based on standard curves from
Ad-β-gal positive control titrations.

2.4. Immunogenicity of the ChAdOx1 nCoV-19 Vaccine

Immunogenicity data were obtained at each time point along the primary series of
ChAdOx1 nCoV-19 vaccination. The humoral immune response was assessed by testing
anti-SARS-CoV-2 spike (S) antibody titers in the serum using the Elecsys® Anti-SARS-CoV-2
S assay Kit (Roche Diagnostics International Ltd., Rotkreuz, Switzerland). Plaque reduction
neutralization tests (PRNT) were performed in duplicate using 24-well tissue culture plates
(TPP Techno Plastic Products AG, Trasadingen, Switzerland) in a biosafety level 3 facility
with Vero E6 TMRESS2 cells. Antibody titers were defined as the highest serum dilution
that resulted in >50% (PRNT50) reduction in the number of virus plaques [14–16].
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Figure 1. (a) Flow chart of individuals with ChAdOx1 nCoV-19 vaccination according to pre-exist-
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Figure 1. (a) Flow chart of individuals with ChAdOx1 nCoV-19 vaccination according to pre-existing
adenovirus immunity; (b) Timetable of individuals with ChAdOx1 nCoV-19 vaccination.

2.5. Reactogenicity to the ChAdOx1 nCoV-19 Vaccine

Solicited local and systemic adverse reactions were self-reported over 7 days after each
dose, including rash, edema, vomiting, diarrhea, headache, fatigue, chills, muscle pain,
joint pain, and fever. Unsolicited adverse events within 28 days after each dose and any
adverse reactions leading to discontinuation were also reported. Reactogenicity severity
was reported on a scale of 0–4: 0, none; 1, mild; 2, moderate; 3, severe; and 4, very severe.
Serious adverse events were collected throughout the entire study period.
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2.6. Statistical Analysis

Categorical variables were described by numbers and percentages, and continuous
variables were expressed as median with interquartile range (IQR). Comparisons between
groups were analyzed using the Chi-square and Fisher’s exact tests for categorical variables
and the Mann–Whitney U test for continuous variables. p < 0.05 was considered significant.
Statistical analysis was performed using GraphPad Prism 5 (GraphPad Software Inc.; San
Diego, CA, USA) and IBM SPSS Statistics for Windows version 26 (IBM Corp., Armonk,
NY, USA).

3. Results
3.1. Characteristics of Patients Who Received Two Doses of the ChAdOx1 nCoV-19 Vaccine

Out of 199 patients and health care workers, 68 individuals, who received two doses
of the ChAdOx1 nCoV-19 vaccine, were finally enrolled (Figure 1a). These individuals
were divided into two groups based on their pre-existing Ad immunity. Pre-existing Ad
immunity was identified in 49 patients (72.1%), but not in the remaining 19 patients (27.9%).

The median age was 55 years (36–64), and 50.0% of patients were female (Table 1). The
median body mass index was 22.1 (20.5–24.6) kg/m2. There were no significant differences
in baseline comorbidities between the two groups. Out of the finally enrolled patients,
15 individuals (22.1%) had hypertension, 11 (16.2%) had diabetes mellitus, 2 (2.9%) had
coronary artery occlusive disease, 2 (2.9%) had congestive heart failure, 6 (8.8%) had
peripheral vascular disease, 3 (4.4%) had chronic kidney disease, 5 (7.4%) had chronic
obstructive pulmonary disease, 4 (5.9%) had liver disease, and 1 (1.5%) had connective
tissue disease. The median of Charlson comorbidity index was 3 (0–8). The time intervals
of blood sampling based on ChAdOx1 nCoV-19 vaccination were not statistically different
between the two groups (p = 0.951, p = 0.625, p = 0.143, and p = 0.134, respectively).

Table 1. Baseline characteristics of individuals with ChAdOx1 nCoV-19 vaccination according to
pre-existing adenovirus immunity.

Total (n = 68)
Adenovirus Immunity

p ValueNegative
(n = 19, 27.9%)

Positive
(n = 49, 72.1%)

Age (years) 55 (36–64) 40 (30–61) 56 (37–65) 0.158
Male sex (%) 34 (50.0%) 10 (52.6%) 24 (49.0%) 0.787

Body mass index (kg/m2) 22.1 (20.5–24.6) 23.0 (20.8–25.0) 21.5 (20.1–24.4) 0.403

Hypertension 15 (22.1%) 3 (15.8%) 12 (24.5%) 0.530
Diabetes mellitus 11 (16.2%) 1 (5.3%) 10 (20.4%) 0.163

Coronary artery occlusive disease 2 (2.9%) 2 (10.5%) 0 (0.0%) 0.075
Congestive heart failure 2 (2.9%) 1 (5.3%) 1 (2.0%) 0.484

Peripheral vascular disease 6 (8.8%) 3 (15.8%) 3 (6.1%) 0.338
Solid tumor 34 (50.0%) 8 (42.1%) 26 (53.1%) 0.590

Chronic kidney disease 3 (4.4%) 0 (0.0%) 3 (6.1%) 0.554
Chronic obstructive pulmonary disease 5 (7.4%) 2 (10.5%) 3 (6.1%) 0.614

Liver disease 4 (5.9%) 1 (5.3%) 3 (6.1%) 0.999
Connective tissue disease 1 (1.5%) 0 (0.0%) 1 (2.0%) 0.999

Peptic ulcer disease 2 (2.9%) 2 (10.5%) 0 (0.0%) 0.075
Charlson comorbidity index 3 (0–8) 0 (0–9) 4 (0–8) 0.880

Intervals (days)
Interval between the first ChAdOx1 nCoV-19 dose and T1 21.0 (18.0–24.0) 21.5 (18.0–24.0) 20.0 (18.5–23.5) 0.951
Interval between the first ChAdOx1 nCoV-19 dose and T2 71.0 (68.0–76.0) 70.0 (67.5–74.5) 71.0 (68.0–76.5) 0.625

Interval between the second ChAdOx1 nCoV-19 dose and T3 16.0 (13.0–20.0) 15.5 (13.0–16.5) 18.0 (13.5–23.5) 0.143
Interval between the second ChAdOx1 nCoV-19 dose and T4 103.0 (97.0–109.0) 100.0 (96.0–105.0) 104.0 (97.5–118.5) 0.134

Continuous variables are described as median and interquartile range (IQR), and discrete variables are described
as numbers (%). T0, before the first ChAdOx1 nCoV-19 vaccination; T1, 2–3 weeks after the first ChAdOx1
nCoV-19 dose; T2, before the second ChAdOx1 nCoV-19 dose; T3, 2–3 weeks after the second ChAdOx1 nCoV-19
dose; T4, 3 months after the second ChAdOx1 nCoV-19 dose.

3.2. Immunogenicity of the ChAdOx1 nCoV-19 Vaccine

The geometric mean titer (GMT) of S-specific IgG antibodies 2–3 weeks after the first
ChAdOx1 nCoV-19 dose (T1) was higher in individuals without pre-existing Ad immunity
(29.6 (6.6–75.3) vs. 14.0 (1.6–84.5), p = 0.109) (Table 2). The GMT of S-specific IgG antibodies
was statistically higher in individuals without pre-existing Ad immunity before the second
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ChAdOx1 nCoV-19 dose (T2) (56.4 (36.6–125.0) vs. 51.0 (17.9–122.3), p = 0.034), 2–3 weeks
after the second ChAdOx1 nCoV-19 dose (T3) (629.5 (451.5–926.5) vs. 555.0 (287.3–926.0),
p = 0.049), and 3 months after the second ChAdOx1 nCoV-19 dose (T4) (274.5 (160.5–655.3)
vs. 176.0 (94.3–255.3), p = 0.033) (Figure 2a, Table 2).

Table 2. Humoral responses of individuals with ChAdOx1 nCoV-19 vaccination according to pre-
existing adenovirus immunity.

Immunogenicity Total (n = 68)
Adenovirus Immunity

p ValueNegative
(n = 19, 27.9%)

Positive
(n = 49, 72.1%)

PRNT50
a at T0 5.07 (3.04–9.55) 5.35 (3.84–14.39) 3.77 (1.43–9.35) 0.231

Spike (S)-specific IgG titers at T0 0.4 (0.4–0.4) 0.4 (0.4–0.4) 0.4 (0.4–0.4) 0.479

PRNT50 at T1 146.5 (57.3–271.5) 245.2 (142.6–377.1) 94.1 (44.4–157.5) 0.021 b

S-specific IgG titers at T1 5.0 (0.4–31.6) 29.6 (6.6–75.3) 14.0 (1.6–84.5) 0.109

PRNT50 at T2 37.6 (19.3–100.1) 50.0 (22.7–105.4) 33.6 (18.9–98.4) 0.774
S-specific IgG titers at T2 31.9 (6.1–74.1) 56.4 (36.6–125.0) 51.0 (17.9–122.3) 0.034 c

PRNT50 at T3 432.2 (163.5–904.8) 647.5 (283.2–1014.3) 352.4 (149.2–867.9) 0.292
S-specific IgG titers at T3 415.5 (165.3–831.0) 629.5 (451.5–926.5) 555.0 (287.3–926.0) 0.049 c

PRNT50 at T4 117.8 (89.8–262.3) 245.1 (96.5–432.2) 108.8 (85.8–166.5) 0.065
S-specific IgG titers at T4 245.0 (141.3–339.0) 274.5 (160.5–655.3) 176.0 (94.3–255.3) 0.033 c

Seroconversion rate
After the first dose 51 (75.0%) 16 (84.2%) 35 (71.4%) 0.359

After the second dose 68 (100.0%) 19 (100.0%) 49 (100.0%)
a PRNT50: Plaque reduction neutralization test, highest serum dilution that resulted in >50% reduction in viral
plaques. b The PRNT50 at T1 was statistically higher in individuals without pre-existing Ad immunity. c The
geometric mean titer of S-specific IgG antibodies at T2, T3, and T4 was statistically higher in individuals without
pre-existing Ad immunity. T0, before the first ChAdOx1 nCoV-19 dose; T1, 2–3 weeks after the first ChAdOx1
nCoV-19 dose; T2, before the second ChAdOx1 nCoV-19 dose; T3, 2–3 weeks after the second ChAdOx1 nCoV-19
dose; T4, 3 months after the second ChAdOx1 nCoV-19 dose.

The PRNT50 2–3 weeks after the first ChAdOx1 nCoV-19 dose (T1) was statistically
higher in individuals without pre-existing Ad immunity (245.2 (142.6–377.1) vs. 94.1
(44.4–157.5), p = 0.021) (Figure 2b, Table 2). The PRNT50 of other time points after ChAdOx1
nCoV-19 vaccination were higher in individuals without pre-existing Ad immunity but were
not statistically different: before the second ChAdOx1 nCoV-19 dose (T2) (50.0 (22.7–105.4)
vs. 33.6 (18.9–98.4), p = 0.774), 2–3 weeks after the second ChAdOx1 nCoV-19 dose (T3)
(647.5 (283.2–1014.3) vs. 352.4 (149.2–867.9), p = 0.292), and 3 months after the second
ChAdOx1 nCoV-19 dose (T4) (245.1 (96.5–432.2) vs. 108.8 (85.8–166.5), p = 0.065) (Figure 2b,
Table 2).

The seroconversion rate was 75% after the first dose of ChAdOx1 nCoV-19 vaccine
(84.2% vs. 71.4%, p = 0.359), but 100% after the second dose (Table 2).

3.3. Reactogenicity to the ChAdOx1 nCoV-19 Vaccine

At time point T1 (2–3 weeks after the first ChAdOx1 nCoV-19 dose), fatigue (n = 38,
57.6%) and myalgia (n = 39, 59.1%) were the most frequently observed systemic events,
followed by headache (n = 28, 42.4%), chills (n = 29, 43.9%), fever (n = 23, 34.8%), and arthral-
gia (n = 21, 31.8%) (Figure 3, Table 3). For these systemic adverse reactions, 48 patients
(72.7%) took antipyretic medication (Table 3).
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Table 2. Humoral responses of individuals with ChAdOx1 nCoV-19 vaccination according to pre-
existing adenovirus immunity. 

 Immunogenicity  Total (n = 68) 
Adenovirus Immunity 
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Value Negative 

(n = 19, 27.9%) 
Positive 

(n = 49, 72.1%) 
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Spike (S)-specific IgG titers 
at T0 
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PRNT50 at T1 146.5 (57.3–
271.5) 

245.2 (142.6–
377.1) 

94.1 (44.4–157.5) 0.021 b 
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Figure 2. (a) Spike (S)-specific IgG titers after ChAdOx1 nCoV-19 vaccination according to pre-
existing adenovirus immunity; (b) Plaque reduction neutralization test (PRNT50) data after ChAdOx1
nCoV-19 vaccination according to pre-existing adenovirus immunity; *, p < 0.05.
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Figure 3. Reactogenicity to ChAdOx1 nCoV-19 vaccination according to pre-existing
adenovirus immunity.

Table 3. Reactogenicity to the first dose of ChAdOx1 nCoV-19 vaccine according to pre-existing
adenovirus immunity.

Reactogenicity Total (n = 68)

Adenovirus Immunity
p ValueNegative

(n = 19, 27.9%)
Positive

(n = 49, 72.1%)

Use of antipyretic
medication 48 (72.7%) 15 (78.9%) 33 (70.2%) 0.471

Rash 6 (9.1%) 2 (10.5%) 4 (8.5%) 0.999
Edema 7 (10.6%) 3 (15.8%) 4 (8.5%) 0.401
Vomiting 1 (1.5%) 0 (0.0%) 1 (2.1%) 0.999
Diarrhea 5 (7.6%) 2 (10.5%) 3 (6.4%) 0.621
Headache 28 (42.4%) 11 (57.9%) 17 (36.2%) 0.106
Fatigue 38 (57.6%) 12 (63.2%) 26 (55.3%) 0.560
Chills 29 (43.9%) 14 (73.7%) 15 (31.9%) 0.002 a

Myalgia 39 (59.1%) 12 (63.2%) 27 (57.4%) 0.669
Arthralgia 21 (31.8%) 7 (36.8%) 14 (29.8%) 0.577
Fever 23 (34.8%) 8 (42.1%) 15 (31.9%) 0.431

a Chills were statistically higher in individuals without pre-existing Ad immunity. Solicited local and systemic
adverse reactions are self-reported over 7 days after each dose. Reactogenicity severity is reported on a scale from
0–4: 0, none; 1, mild; 2, moderate; 3, severe; and 4, very severe.

In the absence of pre-existing Ad immunity, systemic events were observed with a
higher frequency, but were not statistically different: fever, 42.1% vs. 31.9%, p = 0.431;
headache, 57.9% vs. 36.2%, p = 0.106; and fatigue, 63.2% vs. 55.3%, p = 0.560 (Table 3).
However, chills were significantly higher in individuals without pre-existing Ad immunity
(73.7% vs. 31.9%, p = 0.002).

At time point T3 (2–3 weeks after the second ChAdOx1 nCoV-19 dose), there was no
significant difference in the systemic reactions of both groups according to pre-existing Ad
immunity (Supplemental Table S1).
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4. Discussion

In this study, individuals without pre-existing Ad immunity had a higher immune
response and increased reactogenicity to the ChAdOx1 nCoV-19 vaccine. In addition, the
humoral response to the ChAdOx1 nCoV-19 vaccine lasted longer in individuals without
pre-existing Ad immunity.

Adenovirus infection is a common cause of upper respiratory tract infections and can
manifest in a range of clinical symptoms such as gastroenteritis, pneumonia, conjunctivitis,
hepatitis, nephritis, and meningoencephalitis [17]. Adenoviruses have been identified
in more than 100 genotypes and 50 serotypes, with the predominant serotypes varying
by geographic regions and changing over time periods [18]. Most individuals have been
exposed to one or more adenoviruses during their lifetime, and it typically leads to the
development of long-lasting immunity against the specific serotypes that were encoun-
tered [19]. Among the adenoviruses one distinguishes to date more than 50 serotypes
and >100 genotypes, the seroprevalence of neutralizing antibodies produced during the
convalescent period after Ad infection varies depending on the subtype but is reported
to be approximately 30–60% [20]. Kolavic-Gray SA et al. report that pre-existing serum
neutralizing antibody has a protective effect for subsequent infection [20]. These findings
are supported by clinical studies showing Ad seroprevalence increases with age and that
more than 80% of Ad infections are observed in children under 4 years of age [21,22].

Adenoviral vectors have been employed in numerous applications of gene therapy,
anti-cancer therapy, and vaccines due to their many advantages, which include efficient
transduction of both dividing and non-dividing cells, the capacity to carry large DNA
loads, large scale production capabilities meeting clinical good manufacturing practices,
and low risk of integration into the host chromosome [2]. The influence of pre-existing
immunity may vary depending on the specific application of adenoviral vectors. Although
gene therapy and anti-cancer therapy employing adenoviral vectors aim to introduce ther-
apeutic genes or drugs into cells, vaccines utilizing adenoviral vectors are intended to
trigger an immune response against a particular pathogen or antigen [19]. Pre-existing
immunity to Ad can take different forms, such as the presence of neutralizing antibodies,
Ad-protein-specific T cell responses, and innate immune responses [3,10]. In particular,
serum neutralizing antibodies can hinder the desired immune response against the tar-
geted antigen. In some cases, pre-existing Ad immunity is associated with strong innate
inflammatory responses within hours or increased mortality following systemic vector
infusion [9,21]. However, in other cases, pre-existing Ad immunity shows significantly
reduced inflammatory responses to the vaccine [8]. These immune responses affect not
only the vector itself, but also transgene products and cascades [3]. Therefore, to overcome
pre-existing Ad immunity, various strategies have been attempted.

Numerous methods are currently being explored to overcome pre-existing Ad im-
munity, including the production of chemically altered Ad5 capsids, the development
of chimeric Ads, modification of Ad5 genomes, and substitution of Ad5-based vaccine
platforms with alternative Ad serotypes [10]. In the case of the ChAdOx1 nCoV-19 vaccine,
chimpanzee adenovirus is used as a vector to overcome pre-existing Ad immunity [23].
Chimpanzee adenovirus serotypes 63 (ChAd-63), ChAd-68, and ChAd-Y25, which are fre-
quently used, exhibit approximately 90% sequence similarity with the human adenovirus
species group E [24,25]. Additionally, up to 90% of residues in three-dimensional positions
among ChAd-68, fowl adenovirus 1, Ad2, Ad4, and Ad5 were found to be closely matched
when comparing their hexon models using crystallographic methods [26]. Therefore, the
similarity of both the sequences and three-dimensional structures implies that the presence
of pre-existing immunity to different subtypes via a common hexon structure may impact
the immune response [24,26]. Xiang Z et al. reported that the immune response to the
Ad5 vaccine was abolished in mice with pre-existing immunity to Ad5 and showed a
reduced response in mice with pre-existing immunity to other human adenoviruses, such
as serotypes 2, 4, 7, and 12 [27]. Furthermore, neutralizing antibodies against ChAd-68,
ChAd-6, and ChAd-1 were frequently detected without any prior history of exposure, and
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their seroprevalence was reported to range from 21% to 44% [28–30]. The higher sero-
prevalence of neutralizing antibodies against chimpanzee adenoviruses might indicate the
possibility of cross-species neutralization of these viruses [30,31]. These findings suggest
that the host immune response may be affected by the cross-reaction of pre-existing Ad
immunity despite the use of ChAdOx1. Specifically, this study found that the host immune
response to the ChAdOx1 nCoV-19 vaccine was reduced when pre-existing immunity to
adenoviruses was present.

In both groups, the seroconversion rate reached 100% after the second dose, but the
overall median titer of S-specific IgG antibodies was lower in the group with pre-existing
Ad immunity and was significantly reduced at time points T2–T4. For S-specific IgG titers
at time point T2, seroconversion was not achieved in three individuals, all of whom had
pre-existing Ad immunity. Seroconversion was achieved in all individuals 2–3 weeks after
the second ChAdOx1 nCoV-19 dose (T3). However, at three months after second ChAdOx1
nCoV-19 dose (T4), both the median and minimum titers of S-specific IgG antibodies were
reduced in the group with pre-existing Ad immunity. Furthermore, the ratio of S-specific
IgG titers at time point T4 to S-specific IgG titers at time point T3 was lower in the group
with pre-existing Ad immunity (31.7% (176.0/555.0) vs. 43.6% (274.5/629.5)). The fact that
S-specific IgG titers in the group with pre-existing Ad immunity showed a lower peak and
greater decline (68.3% vs. 56.4%) over the same period suggested that antibody waning
might occur more quickly in these patients. This indicated that antibody response longevity
was longer in the group without pre-existing Ad immunity.

In our study, the PRNT50 after ChAdOx1 nCoV-19 vaccination was also higher in
individuals without pre-existing Ad immunity, and statistically significantly higher at
2–3 weeks after the first ChAdOx1 nCoV-19 dose (T1). The association between neutralizing
antibody titer and clinical protection against COVID-19 is intricate and requires many
considerations [32,33]. According to the findings of David S. Khoury and colleagues,
neutralization titer serves as a significant predictor of both protective immune responses
and the long-term dynamics of SARS-CoV-2 immunity [33]. The study also suggests that
a decline in the neutralization titer post-immunization can result in a substantial loss of
protection against SARS-CoV-2 infection, while protection against severe disease is expected
to remain mostly intact [33].

Reactogenicity to the first ChAdOx1 dose (T1) was observed at a higher frequency
in the group without pre-existing Ad immunity. In particular, systemic events, such as
chills were significantly higher in individuals without pre-existing Ad immunity. However,
reactogenicity to the second ChAdOx1 dose did not show a significant difference. The
difference of immunogenicity after the first ChAdOx1 dose (T1) was also reduced after the
second ChAdOx1 dose (T3 and T4). These observations suggested that repeated administra-
tion of adenoviral vectors reduces subsequent immune response. Successful gene delivery
and expression were achieved upon repeated administration of adenoviral vectors, albeit
at significantly reduced levels in comparison to the initial vector administration [34,35]. In
the case of Ad5-vectored COVID-19 vaccine, pre-existing immunity to the Ad5 vector was
associated with reduced humoral immune responses and lower occurrence of fever after
vaccination [36].

Ad-derived vectors are used in various trials because of their advantages, such as
efficient transduction, packaging of large amounts of foreign DNA, and rare integration
into the host chromosome [2,3]. However, according to the results of recent population-
based studies, the efficacy of Ad vector-based vaccines has decreased compared to mRNA
COVID-19 vaccines, and mRNA COVID-19 vaccines are preferred as a booster vaccine
for COVID-19 [11,12]. These results suggest that there are limitations to Ad vector-based
vaccines due to the presence of pre-existing Ad immunity or repeated administration of
Ad-derived vectors. Nevertheless, the fact that the seroconversion rate is increased by
re-administration suggests that there is potential for improvement with a proper under-
standing of the immune response according to pre-existing Ad immunity.
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This study has several limitations. First, because the sample size of this study was
small, the statistical analysis was performed using a non-parametric test. To minimize the
influence of confounding factors, the baseline characteristics and blood sampling times
of the two groups were matched as closely as possible. Second, because the study was
only conducted in Korea, various races could not be considered. However, since the
study was conducted in a population with equal seroprevalence of Ad, the influence of
confounding factors was also reduced. Third, this study only assessed the humoral immune
response based on pre-existing Ad immunity. Further research examining the pre-existing
and post-vaccination T cell response could offer additional insights into the subsequent
immune response.

5. Conclusions

In conclusion, in individuals without pre-existing Ad immunity, the immune response
to ChAdOx1 nCoV-19 vaccination was higher and reactogenicity to ChAdOx1 nCoV-19
vaccination was observed with a higher frequency. Seroconversion was achieved in all
individuals after the second ChAdOx1 nCoV-19 dose; however, the humoral response
to ChAdOx1 nCoV-19 vaccination lasted longer in individuals without pre-existing Ad
immunity. Thus, for Ad-derived vaccination to have sufficient immune response and
longevity, pre-existing Ad immunity must be evaluated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/vaccines11040784/s1. Table S1. Reactogenicity to the second dose of
ChAdOx1 nCoV-19 vaccine according to pre-existing adenovirus immunity.
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