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Human–machine cooperation 
meta‑model for clinical diagnosis 
by adaptation to human expert’s 
diagnostic characteristics
Hae‑Jeong Park 1,2,3*, Sung Huhn Kim 4, Jae Young Choi 4 & Dongchul Cha 4,5,6*

Artificial intelligence (AI) using deep learning approaches the capabilities of human experts in 
medical image diagnosis. However, due to liability issues in medical decisions, AI is often relegated 
to an assistant role. Based on this responsibility constraint, the effective use of AI to assist human 
intelligence in real‑world clinics remains a challenge. Given the significant inter‑individual variations in 
clinical decisions among physicians based on their expertise, AI needs to adapt to individual experts, 
complementing weaknesses and enhancing strengths. For this adaptation, AI should not only acquire 
domain knowledge but also understand the specific human experts it assists. This study introduces 
a meta‑model for human–machine cooperation that first evaluates each expert’s class‑specific 
diagnostic tendencies using conditional probability, based on which the meta‑model adjusts the AI’s 
predictions. This meta‑model was applied to ear disease diagnosis using otoendoscopy, highlighting 
improved performance when incorporating individual diagnostic characteristics, even with limited 
evaluation data. The highest accuracy was achieved by combining each expert’s conditional 
probabilities with machine classification probability, using optimal weights specific to each individual’s 
overall classification accuracy. This tailored model aims to mitigate potential misjudgments due to 
psychological effects caused by machine suggestions and to capitalize on the unique expertise of 
individual clinicians.

Deep learning-based diagnostic assistant systems have made significant strides in various medical fields, such 
as radiology, retinal fundus, and dermatology  images1–10. While these systems have demonstrated performance 
comparable to domain specialists, the integration of these technologies into real-world clinical practice remains 
an underexplored challenge. One pivotal concern surrounding these systems is liability. Hence, assistive coopera-
tion of artificial intelligence (AI) to human intelligence (HI) is  imperative10. This cooperation means AI aids in 
the decision-making process, with human experts retaining final decision-making responsibility. A few studies 
have focused on incorporating DL models to help medical experts in various  tasks10–12.

The differences between training AI models and human experts and their distinct strengths and limitations 
in the diagnostic process lead to AI-HI cooperation. For instance, AI models have shown statistical bias towards 
prevalent  diseases13,14, yet maintain remarkable  consistency15. Conversely, human experts, while not as biased 
towards prevalent conditions, exhibit significant inter-rater  variability16,17. This variability can sometimes prompt 
patients to seek multiple opinions. These distinctions should be considered in the cooperation between humans 
and machines for practical use.

In a real-world setting, automated diagnostic systems primarily serve as assistants, offering insights from AI 
as a supplementary opinion. However, if a diagnostic assistant system makes a suggestion based solely on the 
outcome of AI classification, users, especially less experienced physicians, could be biased toward or against 
the suggestion of the  AI10. A promising alternative is a cooperative model that treats both humans and AI as 
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independent classifiers and merges their outputs. However, due to the substantial variability in human experts’ 
accuracies and diagnostic tendencies, such a unified model might exhibit unpredictable performance for experts 
with different expertise in clinical practice.

Thus, the ideal AI system should be tailored to individual practitioners, accounting for their unique diagnos-
tic strengths and biases. Such adaptability not only harnesses the domain-specific expertise of the human but 
also aligns with their diagnostic tendencies. This alignment is vital; experts’ skepticism towards AI decisions, 
especially when they conflict with their own judgments, might lead to the rejection of correct AI suggestions 
even in cases the human expert is not proficient. Adapting AI to individual human diagnostic characteristics 
might mitigate such challenges, ensuring smoother AI-HI collaboration. Therefore, AI should learn not only the 
domain knowledge but also the human partners’ tendencies that it assists.

In this study, we advocate for an AI-HI cooperation strategy tailored to individual diagnostic traits. By first 
assessing an expert’s proficiency with a small set of labeled data, we formulate a meta-model to maximize each 
party’s strength in integrative diagnosis by adaptively weighting each player’s diagnostic characteristic for the 
final decision. We compared this AI-HI meta model with a simple ensemble method that adds each party’s 
predictions according to predefined weight. By doing so, we argue that the cooperation of human and machine 
experts should be individual-specific, considering the pros and cons of each human expert for clinical usage.

Using ear disease classification from otoendoscopic images—which shows heterogeneous diagnostic perfor-
mance among human  experts15—we underscore the practicality of this cooperative strategy. Ear and mastoid 
diseases are common in, but not limited to, developing  countries18. They are one of the core medical licensing 
exam tests, and primary care physicians are expected to treat these disease groups. However, medical students 
may not receive sufficient training on  otoscopy19, and even for experts, the performance may not be good enough 
to ensure  consistency20. By testing our meta-model with a diverse group of physicians, including six otolaryngolo-
gists or otolaryngology residents and eight non-otolaryngologists, we seek to address these challenges.

Results
This study used convolutional neural network (CNN)-based otoendoscopy classification models (see Cha et al.15) 
trained with 6,900 otoendoscopic images of six classes (Table 1). Table 1 summarizes two independent data sets 
used to train and test the cooperation models. The first test set (Test 1) is equally distributed, while the second 
test set (Test 2) is chosen according to the imbalanced prevalence. Six ENT (Ear, Nose, and Throat) physicians 
and eight non-ENT physicians (family medicine specialists, emergency medicine specialists, and general practi-
tioners) scored an average ± SD of 71.17 ± 3.37% and 45.63 ± 7.89%, respectively. Our ensemble AI model, based 
on pre-trained DL models (ResNet152, DPN92, Inception-V4, and Densenet201) and modified to handle the 
class imbalance problem, scored an accuracy of 80.33% in balanced test set (Test 1) and 86.67% in imbalanced 
test set (Test 2). For detailed results, see Cha et al.15. We compared the proposed method with a simple ensemble 
method in combining human experts and AI’s decisions.

Synergistic effects of AI and human experts according to human expertise and classes with 
different prevalences
To evaluate the synergistic effects of human experts and DL models according to classes, we tested the perfor-
mance of a simple ensemble between HI and AI by weighting the top 4 performing DL models’ softmax values 
and a human rater’s diagnosis. Since otolaryngologists were often better at predicting less common disease enti-
ties, appropriately combining decisions from both parties synergized overall accuracy (Fig. 1a). This was even 
true for non-otolaryngologists. Still, the benefit was minimal since the diagnostic performance was far worse 
than DL models. We also assessed the per-class accuracy of six individual classes.

Each class had a different optimal human weight value: smaller classes, such as tumors and myringitis, had 
higher human weight values, which implies better performance in the human–computer hybrid classifier than 
machines alone in these classes. Since DL models outperformed both human physician groups for each class, 
setting the alpha (human weight) value more than 3 had an adverse effect on class-specific outcomes in otolar-
yngologists (Fig. 1b). In non-otolaryngologists, accuracy was usually better off by allowing less physician’s input 
to reflect the final result (Fig. 1c).

This experimental result can be summarized in two points: (1) an appropriate combination of both human 
experts and artificial intelligence synergizes overall accuracy, and (2) the class-specific tendency of each individual 

Table 1.  Training and test sets for otoendoscopic images.

Classification

Number of images

Training (%) Test 1 (%) Test 2 (%)

(1) Tympanic perforation 1793 (25.99) 50 (16.77) 51 (17.00)

(2) Attic retraction/Atelectasis 521 (7.56) 50 (16.77) 20 (6.67)

(3) Myringitis/Otitis externa 256 (3.71) 50 (16.77) 15 (5.00)

(4) Otitis media with effusion 506 (7.33) 50 (16.77) 29 (9.67)

(5) Tumors 285 (4.13) 50 (16.77) 18 (6.00)

(6) Normal 3539 (51.29) 50 (16.77) 167 (55.67)

Total 6900 (100.0) 300 300
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might play a more critical role in practical human–machine cooperation than merely weighting each individual’s 
general accuracy. Thus, we took these two points as the core for the current meta-model.

AI and HI: cooperation meta‑models
The experimental AI-HI cooperative classification models were designed to blend the human and DL models’ 
classification results with appropriate weighting. The proposed cooperative model first incorporated the overall 
accuracy of individuals: weighting high for experts with higher performance. The cooperative classifier then 
weighted the human rater’s class-specific diagnostic characteristics and the DL models’ predictions. A human 
rater’s diagnostic characteristics are assessed from the confusion matrix of the human expert for an evaluation 
data set in the form of the conditional probability of being a true class for a diagnosed class by an individual.

As described in the methods section, we sampled each clinician’s given answer and correctness from balanced 
test set (Test 1 dataset) from zero up to 200 samples. We compared the proposed AI-HI cooperation model of 
the performance-weighted conditional probability of individual (PCoptMH) with (1) a simple average of the 
conditional probability of the human diagnosis and machine classification probability (CavgMH) and (2) the 
optimally weighted average of the human delta response (1 for the diagnosed class, and 0 for the other classes) 
of an individual expert and machine classification probability (PoptMH). The PCoptMH considers each human 
expert’s overall diagnostic performance and class-specific diagnostic tendency. Meanwhile, the CavgMH consid-
ers the class-specific diagnostic tendency but does not consider each individual’s overall performance: it does not 
differentiate highly accurate human experts from those with low accuracy. In contrast, the PoptMH considers 
each human expert’s overall performance but does not consider class-specific diagnostic characteristics.

Figure 2 shows an example of this cooperative procedure applied to a third-year otolaryngology resident. 
From the classification results and diagnosis results for 100 evaluation samples of Test 1 dataset, we evaluated 
the DL models’ and the physician’s overall accuracy and class-specific tendency (Fig. 2a, b). Then, we built a 
conditional probability of the clinician (Fig. 2c) based on the confusion matrix of the clinician for the evaluation 
data set (Fig. 2d, e).

For comparison purposes, the accuracies of the DL model and the human expert are depicted in the confu-
sion matrix using a new test set (Fig. 2f, g). This test set comprised both Test 1 and Test 2 datasets, excluding the 
100 evaluation samples selected from the Test 1 dataset, resulting in 500 samples. This arrangement ensured that 
all diagnostic labels rated by each individual were included. The same test set was also employed to assess the 
performance of the cooperation methods, PoptMH and PCoptMH (Fig. 2h, i). In subsequent analyses involving 
different evaluation samples, the test dataset was assembled following the same method.

Using cooperation with PoptMH resulted in only a minimal gain in accuracy (Fig. 2h). Applying the 
PCoptMH, a slight decrease in overall accuracy was obtained compared to DL models alone (0.84 vs. 0.83, 
Fig. 2f, i); however, the decision was more tailored toward the physician’s decision, which respects individual 
tendencies to diagnose each class.

In summary, increased accuracy was obtained across almost all groups when there were sufficient data for 
evaluating human rater skills—by adding machine classification probability and the conditional probability of 
each individual’s classification (Fig. 3, CAvgMH). Combining the conditional probability of human decisions 
for each class with overall personal accuracy (PCoptMH) produced more accurate results than only using each 
human expert’s overall accuracy (PoptMH).

Figure 1.  A human weight (α) and its overall accuracy for analysis of human–machine cooperation. The 
alpha value (α) indicates the weight of the HI decision. Since the model consists of humans and four different 
AI models, the alpha value ranged from 0 (no human intelligence) to 4 (no artificial intelligence). (a) 
Otolaryngologists improved the overall accuracy, while non-otolaryngologists have limited contributions. The 
dashed grid line indicates the overall accuracy of the ensemble DL model (α = 0), which is 80.33%. Peak accuracy 
was 82.33% (2.43% increase) in ENT (α = 0.75) and 81.00% (0.09% increase) in non-ENT (α = 0.5). The overall 
average accuracy of each group (α = 4) is 71.17% and 45.63% in ENT and non-ENT physicians, respectively. The 
mean recall for each class was displayed in the ENT group (b) and the non-ENT group (c). When appropriately 
counted, physicians’ diagnostic result enhances the diagnosis of rare cases (e.g., Myri and Tumor). No, normal; 
Tp, tympanic perforation; Ar, Attic retraction; Ome, otitis media with effusion; Myri, myringitis (otitis externa); 
Tumor, middle or external auditory canal tumors, or cerumen impactions. Dotted horizontal lines indicate the 
reference recall of AI for each class.
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Figure 2.  A demonstration of the AI-HI cooperation scheme. Cooperation between AI models and a human 
expert (HI, an ENT resident, 3rd year) is presented. (a) The DL classifier generates outputs corresponding to 
the probability of being each class resulting from the softmax layer. (b) Human experts choose a class among six 
classes, represented as a delta-response vector assigning one to the diagnosed class, and the other classes are set 
to zero. (c) We used a conditional probability of a true label for a given human diagnosis label to consider the 
human expert’s classification tendency, i.e., accuracy for each class. The conditional probability of a true label 
is derived from one’s confusion matrix of the evaluation data set. (d) Confusion matrix of AI and (e) confusion 
matrix of a human otolaryngologist (HI) for the evaluation data (100 samples of Test 1), (f) confusion matrix of 
AI predictions, and (g) confusion matrix of a human expert for the test dataset (500 samples of Test 2 and Test 1 
except for the 100 samples for evaluation) are displayed. (h) Confusion matrix of a cooperation model between 
AI and HI by optimizing weight for AI predictions in (a) and HI delta-response in (b) according to HI’s overall 
accuracy (PoptMH), without considering individual characteristics for classes in each person, for the test dataset 
and (i) confusion matrix of the cooperation model optimally adding AI predictions in (a) and HI conditional 
probability in (c) by considering overall personal accuracy and diagnostic pattern of classes of human expert 
(PCoptMH) for the test dataset are displayed.
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Regarding practical points, the performance did not require many probing samples to estimate the confu-
sion matrix for each person. Even five samples for each class (30 in total, Fig. 3a) helped capture the tendency of 
human classification and improve the cooperative classifier.

Discussion
DL models are expected to play a cooperative role in  clinics3,21 with human intelligence because the two have dif-
ferent diagnostic strategies and may complement each other. In our previous  study15, DL models show consistent 
performance but weakness in imbalanced data, as indicated by higher prediction bias toward prevalent cases. In 
contrast, human raters showed higher individual variances but little bias toward  prevalence15. We speculate this 
is due to differential learning or training tactics between humans and computers.

Collective intelligence (CI) was introduced in medical  diagnostics22 and decision-making23 and proved ben-
eficial. In a  study22 with skin cancer detection, diagnostic accuracy should be similar between doctors to enhance 
the overall detection accuracy. In another  study23, which focused on mammography screening, CI increased 
true positives and decreased false positives and helped overcome the decision accuracy of a single radiologist.

Our study can be viewed as CI between humans and computers, as our experimental model independently 
takes input from both parties. A similar approach has been studied in skin cancer  classification24, predicting 
the course of multiple  sclerosis25. In the skin cancer classification by Hekler et al.24, they classified dermoscopic 
images into five categories and combined dermatologists’ answers, which were independently taken. They applied 
the  XGBoost26 algorithm to combine the probability of each class label with the dermatologist’s answer. In another 
study, they surveyed medical students to predict the duration of the relapsing–remitting phase in multiple scle-
rosis. They used random  forests27 to train the DL model and bootstrapping with medical students’ predictions to 
enhance the classification performance. Of note, they also used a linear combination of predictions of humans 
and computers but got worse performance.

Weighted averaging between DL models and human physicians showed improvement in diagnostic accuracy, 
especially in minor classes (Fig. 1). As an exception, otitis media with effusions were hard to diagnose because 
of many subtle cases, and physicians were better off by accepting the DL model’s answers. But for tumors and 
myringitis classes, human physicians showed the possibility of aiding the DL model’s lack of data availability. 
In non-otolaryngologists, since the diagnostic skills are too inferior to DL models, they could offer little help to 
increase the accuracy.

With the conditional probability method, our system analyzes the strengths and weaknesses of the human 
experts and weighs DL results to make suggestions depending on the situation: it provides strong suggestions 

Figure 3.  The performances of human–machine cooperation models according to evaluation sample sizes. 
(a)–(d) Displays the performance of human experts (HI), DL model (AI), CavgMH, PoptMH, and PCoptMH 
for probing samples of 30, 60, 100, and 150 to evaluate the human expert’s characteristics. The CavgMH is a 
simple averaging method between DL classifier probability and the conditional probability of human ratings 
without optimizing weights for each individual’s performance. PoptMH indicates AI-HI cooperation with 
optimized weight for the person’s contribution to the final decision in averaging the DL classifier probability and 
human delta response (1 for the diagnosed class, 0 for others) without using the conditional probability of true 
labels for given human ratings. PCoptMH indicates AI-HI cooperation with optimized weight for the person in 
adding the DL classifier probability and the conditional probability of human decision. The difference Δ (gain) 
between HI and the other four models is displayed. Blue dots indicate 0 < Δ ≤ 0.05, green triangle, 0.05 < Δ ≤ 0.1, 
yellow square, 0.1 < Δ ≤ 0.2, magenta square, 0.2 < Δ ≤ 0.3 and red dots, 0.3 < Δ. Black dots indicate a decrease in 
accuracy. Although the DL model generally shows higher performance than human experts and cooperation 
may lose performance that the DL model alone has in some experts, this approach takes account of the human’s 
knowledge and responsibility. Overall accuracy was gainable across almost all individuals, even when using 
small samples of evaluating human rater’s skills. ENTF, otolaryngologists; ENTR, otolaryngology residents 
(numbers indicate years of training); FM, family medicine specialists; ER, emergency medicine specialists; GP, 
general practitioners.
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when DL is superior and weak suggestions when DL is vulnerable. As shown in Fig. 2, PoptMH utilizes the delta 
decision of each individual (1 or 0 for classes) when combined with the machine classification probability. In 
contrast, PCoptMH uses conditional probabilities representing an individual’s diagnostic tendency. By intro-
ducing the conditional probability of a diagnosis of each human expert, cooperation performance is increased 
compared to simple weighting for the human expert’s overall accuracy. In this manner, the combined prediction 
is tailored to the specific physician.

It should be noted that our proposed system does not require an extensive number of samples to evaluate each 
human expert’s classification performance or bias. Only 30 or 60 samples are sufficient to learn human experts’ 
diagnostic characteristics. This makes the current method suitable for real-world clinics, as shown in Fig. 3.

The relative merits of the parallel cooperation of humans and machines and the sequential approach from the 
machine to the human (the DL model provides an opinion to the human expert) have been argued. The sequential 
approach may be a conventional concept for AI–HI cooperation in medicine. However, in a previous  study10, the 
diagnoses made by human raters were adversely affected when the computer made faulty suggestions, especially 
in less experienced physicians. The strength of our system is that it takes predictions by humans and the DL 
model as inputs independently. Therefore, users may avoid the psychological effects initiated by the suggestions 
of the prediction systems. Parallel cooperation, however, could be of disadvantage in terms of time-saving since 
it requires human physicians’ answers to see the result of the meta-model. However, inspecting eardrums and 
external auditory canals does not usually require extensive time as to radiologic image analysis. Therefore, in 
this situation, the parallel cooperation in the current study makes a plausible choice.

Although the accuracy of the predictions of the AI model exceeds most human raters, relying on automated 
systems without human guidance is discouraged. As noted in a study on skin  cancer28, physicians put clinical 
information together with imaging information, which may ultimately result in a more accurate diagnosis than 
considering image alone as in AI models. Also, the current DL model treats all diseases equally. The system does 
not know that it is dire to misdiagnose diseases such as external auditory canal cancer.

We can extend the current parallel cooperation to serial cooperation, i.e., AI decision result is suggested to 
a human expert. Instead of directly providing the classification decision in terms of the final class label or the 
softmax probability of the classifier, we may adjust the suggested probability by weighting the classification 
probability of the machine with the inverse of human conditional probability (for the false classes) to guide the 
human decision. An experiment with this scheme will be further explored.

Diagnosing otologic diseases from a single image poses significant challenges, even for physicians with 
extensive  experience20. Physicians may lack confidence in diagnosing certain diseases, especially when dealing 
with complex ear pathologies unless they have received specialized training. This is where DL models can be 
particularly beneficial, aiding physicians by not only enhancing overall accuracy but also instilling confidence 
in their diagnostic decisions, akin to consulting with a colleague. Nevertheless, the dynamics of an individual’s 
confidence in the machine, as well as in their own judgments, warrant further exploration in future studies.

The current study has some limitations. Otoendoscopic images often contain more than one finding, which 
calls for multi-label multi-class models in future studies for a more realistic automated diagnosis system. In this 
study, if more than one pathology was present, labeling was performed according to a predefined labeling prior-
ity, but at the time of prediction, only one class was chosen as the argmax value, not the labeling priority, due to 
the AI model’s design. In addition, we presented a cooperation model only for the case of otoendoscopic image 
classification. The cooperation model should be validated in other domains of cooperation between human 
experts and machines. Also, even though we obtained parallel input from both parties, the final confirmation 
should be done by the attending physician because of the reasons mentioned earlier. This is eventually double 
consideration of the human rater. Most importantly, the design of the cooperative classifier was post-hoc, which 
is based on snapshots of physicians’ answers. Physicians’ decision accuracy is likely to increase as they gain more 
experience, whether with our diagnostic assistance or not. Future studies on the collaborative model should be 
designed to follow physicians’ enhancement of skills so that the model could rely more on human physicians’ 
answers. Also, DL models with consideration of clinical information as well as images, which are multi-modal 
systems, should be conducted to offer a more physician-like model in the future.

In conclusion, we suggest a cooperation method that weighs the strengths and weaknesses of both parties 
for improved and consistent healthcare services. For this, the system first assesses the diagnostic characteristics 
of human experts for all classes. Based on this individualized assessment, the proposed model appropriately 
respects both the user diagnosis patterns and DL models by independently taking answers from both parties. 
Furthermore, the model minimizes psychological effects often present in conventional diagnosis assistant sys-
tems. We did not use domain-specific knowledge in the AI-HI cooperation meta-model; hence, the strategies we 
applied are not confined to otoendoscopic image classification. It may be generalizable to all decision-making 
tasks, where individual human knowledge plays an important role.

Materials and methods
AI classifiers
We used CNN-based DL models for otoendoscopy classification, which we previously reported in Cha et al.15. 
The DL models were trained with 6900 images out of 7500 otoendoscopic images of patients who visited the 
outpatient clinic in a tertiary referral center (Severance Hospital, Seoul, South Korea, Department of otorhino-
laryngology). The details of labeling and training of the models can be referred to Cha et al.15.

In brief, otoendoscopic photos of the tympanic membrane and the external auditory canal (EAC) were 
labeled into six categories based on the Color Atlas of Endo-Otoscopy29 (Table 1). If more than one etiologies 
were present in the image, it was labeled according to our labeling order, determined by the clarity of the diag-
nosis and the next required step in real-world clinics. Post-surgery status, similar images, including the same 
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patient’s eardrum image from multiple angles, blurry images, and otoendoscopic images from the same patient’s 
follow-up data, were excluded. To minimize noisy labeling, three additional steps were taken. First, we checked 
the medical record of the given image created by the attending physician at the time, who had at least ten years 
of clinical experience in our center. Second, we also checked audiometric and radiologic test results when the 
otoendoscopic image could not be classified clearly. Lastly, the image was excluded if the last author (D.C.) could 
not agree even after the aforementioned steps.

ImageNet pre-trained CNN models were used to perform transfer-learning of otoendoscopic images. After 
several models, four top performers were chosen for further optimization:  ResNet15230,  InceptionV431,  DPN9232, 
and  DenseNet20133. Affine transformations on images (horizontal flip, rotation, random scales, levels, and warp-
ing) were performed when augmenting otoendoscopic image data when oversampling. Since the training dataset 
was imbalanced, we used oversampling,  mixup34, and focal  loss35 (γ = 1) to mitigate the class imbalance problem. 
Training, validation, and testing were implemented using Pytorch with Fastai  library36.

Participants and experiments
A computerized online questionnaire consisting of two each mutually exclusive sets containing 300 anonymized 
otoendoscopic images (Table 1) was presented to fourteen physicians: six otolaryngology department personnel 
(two otolaryngologists, four otolaryngology residents) and eight non-otolaryngologist but practicing otoscopy 
in clinics: two emergency medicine specialists, two family medicine specialists, and four general practitioners. 
No clinical nor demographic information was presented in the survey; images were the only clues to come up 
with a conclusion. We obtained written informed consent from all physician participants.

All participants answered the evaluation images in identical order. The first set was a balanced image set, 
which does not affect human physicians, but may adversely affect the DL model’s performance due to the imbal-
anced training dataset. The second set was an imbalanced image set, which may favor DL models, even with 
aforementioned class imbalance mitigation  strategies15, but also may be a practical measure for real-world clini-
cal performance since the incidence represents real-world proportions of disease in a tertiary referral hospital.

Similar to the machine models, participants were requested to answer according to the same labeling priority 
order if more than one pathology was present in the image. Human raters were not aware of whether the test 
set was balanced or not.

The Severance Hospital Institutional Review Boards approved this study. (IRB No 2019–0467-001). All meth-
ods were performed in compliance with the Declaration of Helsinki.

AI‑HI cooperative classifier
Human physicians and DL models make classifications using different mechanisms; hence, combining both 
classifications would lead to improvement, similar to creating ensemble classifiers in DL models.

1. Evaluation of synergistic effects according to classes and human expertise.

Before introducing AI-HI cooperation models, we examined the synergistic effects of combining human diag-
nostic results and predictions by DL models according to human expertise and classes with different prevalences.

For the four best-performing DL model classifiers in the previous  study15, a basic ensemble of the prediction 
results was done by adding each value following the softmax activation function. In mathematical notations,

where PMi (x) = σ(Mi(x)) generates a probability vector of being each class of the i-th model Mi (among n = 4 
models) for an input image x using a softmax function σ . δ(x) is a function that takes the input from the human 
and returns a one-dimensional binarized vector, having 1 in the human-predicted class and 0 otherwise. α is a 
personalized human weight for adjusting the influence of the human-predicted class. If α is set to 0, the human 
input is not used, whereas if α is set to 4, the human input is always bigger than the sum of each four DL classi-
fiers’ softmax values. c∗ is the final class prediction that has the maximal vector sum of all HI and DL classifiers. 
Upon inspection of maximum values in both test sets, they ranged from 0.9 to 3.65, with an average of around 
2.5. This basic ensemble method corresponds to PoptMH, explained below.

We divided all participating human doctors into ENT and non-ENT groups. For each class, we evaluated the 
mean accuracies and the mean recalls for each class in the ENT group and non-ENT group according to differ-
ent weights α . The recall of a class is defined by the number of true-positive samples divided by the number of 
true samples for the class.

The results are displayed in Fig. 1.

2. Basics of AI-HI cooperation models.

Considering individual differences in classification performance and quality, we proposed a cooperation 
strategy by appropriately weighing the classification results of both humans and DL models so that the classifier 
reflects the physician’s personal diagnostic preferences.

First, the system learns the human rater’s diagnostic characteristics by evaluating the class-specific bias and 
overall accuracy of the human rater from the expert’s diagnostic result of the evaluation dataset of a maximum 
of 300 balanced samples. Using a human expert’s confusion matrix of the evaluation dataset, we derived the 

c∗ = arg max
c

(

n
∑

i=1

σ(Mi(x))+ αδ(x)

)

, 0 ≤ α ≤ 4,
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conditional probability of the true class given each diagnostic decision (predicted label) for the human expert. 
Based on this, the optimal weight for the human expert compared to the DL classifiers is estimated. The math-
ematical formulation is explained below.

For an evaluation data set composed of N samples of images XE
n=1,..,N , let’s assume the i-th human rater Hi 

performs diagnostic decisions.

1. For N evaluation sample images XE
n=1,..,N for total C classes, we derive a set of a conditional probability vec-

tor {Pn
Hi

}n=1,...,N,Pn
Hi

∈ R1×C . Pn
Hi

 is composed of a conditional probability pi
(

Tl |D
i
n

)

 of being a true label 
Tl given a diagnosed label Di

n for the n-th image performed by the human rater Hi . The conditional probabil-
ity pi

(

Tl |D
i
n

)

 is calculated based on each individual’s confusion matrix Ci (for the evaluation data set) by 
normalizing each column (predicted class) of the confusion matrix by the sum of the column along with the 
true label.

Thus, a conditional probability vector for a sample n is defined by
Pn
Hi

=

[

pi

(

T1|D
i
n

)

pi

(

T2|D
i
n

)

· · · pi

(

TC |D
i
n

)]

.
Each expert has a matrix of conditional probabilities for all evaluation samples.

2. For the same XE
n=1,..,N , we calculate a classification probability matrix (the output of the softmax layer) for 

each DL model, e.g., for j-th model Mj , PMj =

[

P1
Mj

. . .PN
Mj

]T
∈ RN×C . We then concatenate all DL and 

the i-th human rater Hi ’s probability matrices, i.e., 
[

PM1 . . .PMMPHi

]

∈ RN×C×(M+1) to derive optimal 
weights for classes for the human expert.

3. The optimal weights for a total of M classifiers and a human rater, W∗ ∈ R(M+1)×C , are determined to best fit 
the target ground-truth labels Y for the evaluation dataset (for each sample n, the n-th row of Y is assigned 
with 1 for the sample label, otherwise all zeros, thus Y ∈ RN×C) in terms of cross-entropy (CE) loss between 
weighted sum of diagnosis 

([

PM1 . . .PMMPHi

]

W ∈ RN×C
)

 and Y.

4. For the final procedure for a new test sample, Xt , the system choose the class of maximum probability (arg-
max) from the weighted probabilities drawn from DL models and the human rater.

Figure 4 illustrates the current procedure.

3. Evaluations of AI-HI cooperation models in human individuals according to evaluation sample sizes.

To utilize small data samples for the evaluation of each individual and to reduce the number of parameters to 
estimate, we simply averaged the classification results of four machine models as they show a more or less similar 
pattern of classification. We then combined the classification result of one machine model and one human rater 
by weighting them with a single ratio variable W = {w}, rather than a vector.

For a human expert Hi , the human diagnostic decision for a new test data, X t , is denoted as delta-response 
vector δt

Hi
(assigning only the chosen label to be one, others to be zeros). The conditional probability ( Pt

Hi
) of 

the true label given a human diagnosed label is derived from the delta-response. The weighted sum 
(

Sti
)

 of the 
classification probability of the DL classifiers ( Pt

M
) and the conditional probability of the human decision ( Pt

Hi
) 

is used to classify new samples. The three different cooperation models are based on whether the conditional 
probability is used and whether the weight for the human and machine’s decision is optimized based on the 
human individual’s overall accuracy.

pi

(

Tl |D
i
n

)

=
Ci

(

Tl , D
i
n

)

∑C
k=1 Ci

(

Tk , D
i
n

)

PHi =
[

P1Hi
. . .PNHi

]T
∈ RN×C

W
∗ = arg min

W
CE

(

Y,
[

PM1 . . .PMMPHi

]

W
)

C∗
i = arg max

c

[

PtM1
. . .PtMM

PtHi

]

W
∗

Sti = 0.5 PtM + 0.5 PtHi

(

CavgMH
)

Sti =
(

1− w∗
i

)

PtM + w∗
i δ

t
Hi

(

PoptMH
)

Sti =
(

1− w∗
i

)

PtM + w∗
i P

t
Hi

(

PCoptMH
)
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From the evaluation data set conducted by a human expert Hi , the optimal weight for the human w∗
i  is esti-

mated for PoptMH and PCoptMH by minimizing the cross-entropy loss between SEi  of the evaluation data set 
and YE , the true label for the evaluation data set.

For all three different models, the final label was chosen to maximize Sti for each individual.

To test how many evaluation samples are needed to reliably assess the diagnostic characteristics of each 
individual, the system evaluates each human expert using a portion of 300 balanced data, i.e., 30 (6 samples per 
class), 60 (12 samples per class), 100 (20 samples per class), and 150 (30 samples per class) evaluation samples. 
The average accuracies of the five-fold training and tests were used to evaluate the performance of the coopera-
tions models in learning the individual and choosing the minimal number of evaluation samples.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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