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Objective: This study aimed to create an ideal machine learning model to predict mechani-
cal complications in adult spinal deformity (ASD) surgery based on GAPB (modified global 
alignment and proportion scoring with body mass index and bone mineral density) factors.
Methods: Between January 2009 and December 2018, 238 consecutive patients with ASD, 
who received at least 4-level fusions and were followed-up for ≥ 2 years, were included in 
the study. The data were stratified into training (n = 167, 70%) and test (n = 71, 30%) sets 
and input to machine learning algorithms, including logistic regression, random forest gra-
dient boosting system, and deep neural network.
Results: Body mass index, bone mineral density, the relative pelvic version score, the rela-
tive lumbar lordosis score, and the relative sagittal alignment score of the global alignment 
and proportion score were significantly different in the training and test sets (p < 0.05) be-
tween the complication and no complication groups. In the training set, the area under re-
ceiver operating characteristics (AUROCs) for logistic regression, gradient boosting, ran-
dom forest, and deep neural network were 0.871 (0.817–0.925), 0.942 (0.911–0.974), 
1.000 (1.000–1.000), and 0.947 (0.915–0.980), respectively, and the accuracies were 0.784 
(0.722–0.847), 0.868 (0.817–0.920), 1.000 (1.000–1.000), and 0.856 (0.803–0.909), re-
spectively. In the test set, the AUROCs were 0.785 (0.678–0.893), 0.808 (0.702–0.914), 
0.810 (0.710–0.910), and 0.730 (0.610–0.850), respectively, and the accuracies were 0.732 
(0.629–0.835), 0.718 (0.614–0.823), 0.732 (0.629–0.835), and 0.620 (0.507–0.733), re-
spectively. The random forest achieved the best predictive performance on the training and 
test dataset.
Conclusion: This study created a comprehensive model to predict mechanical complications 
after ASD surgery. The best prediction accuracy was 73.2% for predicting mechanical com-
plications after ASD surgery. This information can be used to prevent mechanical compli-
cations during ASD surgery.

Keywords: Machine learning, Adult spinal deformity, Mechanical complication, Body mass 
index, Bone mineral density, Random forest
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INTRODUCTION

Adult spinal deformity (ASD) is a disorder that is globally 
prevalent.1 It is characterized by significant low back/leg pain, 
stooping, and poor health-related quality of life (HRQoL) in 
patients with ASD compared with the general population. Al-
though spinal surgery for correcting ASD is invasive, it is effec-
tive in symptomatic cases where conservative treatment is often 
unsuccessful.2 However, the surgical correction of ASD is a dif-
ficult procedure that is known to have a high risk of complica-
tions during the surgery and postoperative period.3 The esti-
mated incidence of morbidity and mortality due to surgical cor-
rection is 31.3% and 0.5%, respectively.3 Since there are many 
complications of ASD surgery, there are some ideal surgical tar-
get parameters such as Scoliosis Research Society-Schwab clas-
sification and age-adjusted alignment goals.4,5 There are also 
formulas, such as the global alignment and proportion (GAP) 
score, which predict mechanical complications after ASD sur-
gery, and the modified global alignment and proportion scor-
ing with body mass index and bone mineral density (GAPB) 
system, which combines body mass index (BMI) and bone 
mineral density (BMD) with the GAP score.6,7

Most studies have been performed using simple statistical 
techniques such as linear regression and logistic regression, and 
in practice, they provide information on mean values that do 
not properly reflect the characteristics of the population. How-
ever, in the past few years, the medical field has increasingly ad-
opted computational techniques that allow the processing of 
large amounts of data and the creation of complex mathemati-
cal models that describe the relationships between different vari-
ables. The idea behind artificial intelligence is to create a system 
that mimics the natural ability of humans to continuously learn 
as they access new data and apply it to new situations in the fu-
ture. Our research team reported that GAPB predicts mechani-
cal complications better than other systems related to ASD.6 This 
study aimed to create an ideal machine learning model to pre-
dict mechanical complications in ASD surgery based on the 
GAPB system.

MATERIALS AND METHODS

1. Patient Population
This was a retrospective analysis of surgically treated patients 

with ASD enrolled from 2009 to 2017. This study was approved 
by the Institutional Review Board (IRB) of the Ajou University 
Hospital (IRB No. 2022-0546-008). Written informed consent 

was obtained from all participants. The inclusion criteria were as 
follows: patients who underwent ASD surgery to correct sagittal 
imbalance; the presence of one of the following radiological cri-
teria, including coronal Cobb angle > 20°, sagittal vertical axis 
>5 cm, pelvic tilt (PT) >25°, and/or thoracic kyphosis >60°, and/
or pelvic incidence minus lumbar lordosis (PI–LL) > 10°; use of 
posterior spinal fixation and instruments with ASD surgery at 
≥ level 4; and patients with a follow-up period of ≥ 2 years. The 
exclusion criteria were patients with ASD due to syndrome, auto-
immune disease, infection, tumor, or other pathological condi-
tions. Between January 2009 and December 2017, 491 patients 
with ASD underwent ASD surgery at our hospital. Among 
them, 253 patients with a follow-up period of < 2 years, patients 
without corrective surgery for ASD, and those with a surgical 
level of ≤ 3 were excluded. Between January 2009 and Decem-
ber 2017, 238 consecutive patients with sagittal imbalance who 
underwent ASD surgery were ultimately included in the study.

2. Data Collection
Demographic data, radiologic parameters, surgical charac-

teristics, HRQoL data were collected for all 238 patients includ-
ed in the electronic medical records. Demographic data includ-
ed age, sex, BMI, BMD, and GAP score variables. Yilgor et al.7 
created the GAP score. The overall goal of the GAP score is to 
achieve patient-specific spine-pelvic alignment guidance, and 
the GAP score predicts mechanical complications. After that, 
Noh et al.8,9 made GAPB including BMI and BMD in GAP. Fac-
tors frequently used to predict mechanical complications after 
ASD were used to create an artificial intelligence model.

The following sagittal alignment parameters were measured: 
PI, PT, lumbar vertebral lordosis (LL [L1–S1]), PI–LL, and glob-
al tilt. Radiographic measures included preoperative, postoper-
ative, and final follow-up alignment parameters. We defined 
mechanical complications after ASD surgery as the following 
(proximal junctional kyphosis, proximal junctional failure, dis-
tal junctional failure, distal junctional kyphosis, rod fracture, 
implant-related complications) and investigated their preva-
lence. Proximal junctional kyphosis was defined as a ≥ 10° in-
crease in kyphosis between upper Instrumented vertebra (UIV) 
and UIV+2 between the early postoperative and 2-year follow-
up radiographs. Proximal junctional failure was defined as a 
fracture of UIV or UIV+1, withdrawal of the instrument in 
UIV, and/or sagittal subluxation. Distal junctional kyphosis/
failure referred to a ≥ 10° increase in kyphosis angle between 
lowest instrumented vertebra (LIV) and LIV-1, and/or with-
drawal of the apparatus from the LIV. Rod breakage referred to 
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Fig. 1. Flowchart of the patients in our study. F/U, follow-up.

January 2009–December 2017

Adult spinal deformity

238 Patients

491 Patients

253 Patients Less than 4 level &  
less than 2-year F/U

Training set 
167 Patients (70%)

Test set 
71 Patients (30%)

Table 1. Patient demographics

Variable

Training set (n = 167) Test set (n = 71)

Complication
p-value

Complication
p-value

No (n = 96) Yes (n = 71) No (n = 42) Yes (n = 29)

Age (yr) 67.18 ± 7.07 68.63 ± 7.99 0.215 66.40 ± 6.64 67.72 ± 7.49 0.438

Sex

   Male 12   9   8   5

   Female 84 62 0.973 34 24 0.847

BMI (kg/m2) 23.54 ± 2.92 24.70 ± 3.05 0.013* 23.39 ± 2.53 25.02 ± 2.79 0.013*

BMD (T-score) -1.57 ± 0.85 -2.60 ± 0.98 < 0.001* -1.85 ± 0.83 -2.41 ± 0.86 0.007*

GAP score

Relative pelvic version score 0.003* 0.002*

   0 41 17 24   5

   1 10   6   4   3

   2 35 25 11 11

   3 10 23   3 10

Relative lumbar lordosis score

   0  42 13 19   5

   2 45 21 18   9

   3   9 37 < 0.001*   5 15 0.001*

Lordosis distribution index score

   0 54 33 26 13

   1   9   6   3   5

   2 15 16   7   1

   3 18 16 0.547   6 10 0.045*  

Relative spinopelvic alignment score

   0  35 15 19   4

   1 51 31 17   8

   3 10 25 < 0.001*   6 17 < 0.001*

Values are presented as mean ± standard deviation or number.
GAP, global alignment and proportion; BMI, body mass index; BMD, bone mineral density.
*p < 0.05, statistically significant differences.

single or double rod breakage. Implant-related complications 
included other radiographic implant-related complications 
such as screw loosening, breakage, pullout, or interbody graft, 
hook, or screw leave. HRQoL was measured using the Oswes-
try Disability Index, the Scoliosis Research Society-22 Spinal 
Malformation Questionnaire, and Short Form-36.

3. Prediction Models and Evaluation
The patients were randomly divided into training (n = 167, 

70%) and test (n= 71, 30%) datasets (Fig. 1). The training set 
was used to develop the model, and the test set was used to eval-
uate the model. Among the models that can be implemented 
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with R, we compared logistic regression, which is widely used 
conventionally, gradient boosting, which is a representative boost-
ing method, random forest, which is a representative bagging 
method, and deep neural network, which has recently become 
an issue. We performed 4 analyses to classify the occurrence of 
complications. First, univariable and multivariable logistic re-
gressions were used. Variables with p< 0.05 in the univariable 
analysis were entered in the multivariable analysis. The final 
multivariable model was determined using a stepwise variable 
selection method. Second, the gradient boosting model was 
created with the R package “xgboost,” and variable importance 
was visualized. For this analysis, a maximum tree depth of 2, 
learning rate of 0.3, and number of boosting of 20 were consid-
ered. Third, random forest classification was performed using 
the R package “random forest.” For this analysis, the number of 

trees was set to 500, and the number of variables used in each 3 
was set to 5, which had the largest Kappa value. Fourth, a deep 
neural network was used via the R package “nnet.” For this anal-
ysis, a hidden layer of 10 was employed.

Diagnostic performance was evaluated using the area under 
receiver operating characteristic (AUROC), area under precise 
recall curve (AUPRC), accuracy, sensitivity, and specificity for 
each dataset. To calculate the accuracy, sensitivity, and specific-
ity, the optimal cutoff points were computed using Youden in-
dex. Comparisons of AUROC, AUPRC, accuracy, sensitivity, 
and specificity were performed using generalized estimating 
equations.

4. Statistical Analysis
Descriptive statistics are presented as frequencies and percent-

Table 2. Logistic regression

Variable
Univariable model Multivariable model 3 Multivariable model 4

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Age 1.03 (0.98–1.07) 0.215 1.284 (1.073–1.536) 0.006* 1.284 (1.073–1.536) 0.006*

Sex

   Male Reference

   Female 0.98 (0.39–2.48) 0.973

BMI (kg/m2) 1.14(1.03–1.27) 0.015* 1.13 (0.99–1.30) 0.080  

BMD (T-score) 0.26 (0.16–0.41)  < 0.001* 0.28 (0.16–0.46) < 0.001*  0.28 (0.17–0.47) < 0.001*

Relative pelvic version score

   0 Reference Reference

   1 1.45 (0.45–4.61) 0.532 1.42 (0.35–5.73) 0.620 

   2 1.72 (0.80–3.70) 0.163 0.87 (0.29–2.58) 0.798   

   3 5.55 (2.18–14.10) < 0.001* 0.22 (0.04–1.26) 0.090   

Relative lumbar lordosis score

   0 Reference Reference Reference

   2 1.51 (0.67–3.39) 0.320 1.71 (0.54–5.38) 0.360 1.43 (0.57–3.55) 0.444

   3 13.28 (5.10–34.62) < 0.001* 28.81 (4.77–174.05) < 0.001* 11.02 (3.80–31.98) < 0.001*

Lordosis distribution index

   0 Reference

   1 1.09 (0.36–3.34) 0.879

   2 1.75 (0.76–3.99) 0.187

   3 1.45 (0.65–3.24) 0.359

Relative sagittal alignment score

   0 Reference Reference

   1 1.42 (0.67–3.01) 0.363 0.94 (0.33–2.65) 0.906

   3 5.83 (2.25–15.08) < 0.001* 1.22 (0.24–6.11) 0.813

OR, odds ratio; CI, confidence interval; GAP, global alignment and proportion; BMI, body mass index; BMD, bone mineral density.
*p < 0.05, statistically significant differences.
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ages for categorical variables and as means and standard devia-
tions for continuous variables. To compare the characteristics 
of patients in the complication and no complication groups, the 
chi-square test (or Fisher exact test) was used for categorical 
variables and an independent 2-sample t-test was used for con-
tinuous variables. All statistical analyses were performed using 
SAS 9.4 (SAS Institute Inc., Cary, NC, USA). Statistical signifi-
cance was set at p< 0.05.

RESULTS

1. Patient Demographics
Two hundred thirty-eight patients underwent ASD surgery 

(204 females [86%], 34 males [14%]); their demographic data 
are shown in Table 1. Of those patients, 167 (70.2%) were as-
signed to the training set and 71 (29.8%) to the test set. The pa-
tients’ average age and follow-up period were 67.1± 6.17 years 
and 28.54± 4.25 months, respectively. The mean ages of patients 
in the training and test sets were 67.80± 7.49 years and 66.94±  
6.98 years, respectively. When comparing the groups with and 
without complications in the training set, BMI, BMD, the rela-
tive pelvic version score, the relative lumbar lordosis score, and 
the relative sagittal alignment score were statistically significant. 
When comparing the groups with and without complications 
in the test set, BMI, BMD, the relative pelvic version score, the 
relative lumbar lordosis score, and the relative sagittal alignment 
score were statistically significant. When comparing the group 

with and without complications in the test set, BMI, BMD, the 
relative pelvic version score, the relative lumbar lordosis score, 
the lordosis distribution index score, and the relative sagittal 
alignment score were statistically significant.

2. Logistic Regression Model
The results of the univariate and multivariate logistic regres-

sion analyses are presented in Table 2. The following variables 
were significantly related to mechanical complications of ASD 
surgery in univariate logistic regression: BMI, BMD, relative 
pelvic version score, relative lumbar lordosis score, and relative 
sagittal alignment score. In the multivariate logistic regression, 
BMD and relative lumbar lordosis score were significantly re-
lated to mechanical complications of ASD surgery.

3. Gradient Boosting Model
The results of the gradient boosting analysis are shown in Fig. 

2. BMI, BMD, and relative lumbar lordosis score were the most 
important variables in the gradient boosting model.

4. Random Forest Model
The results of the random forest analyses are shown in Fig. 3. 

BMI, BMD, and relative lumbar lordosis score were the most 
important variables in the random forest model. Since random 
forest has the possibility of overfitting in the training set, it must 
be interpreted carefully considering the validation result.

Fig. 2. Results of the gradient boosting model. The most important variables in the model were BMI, BMD, and relative lumbar 
lordosis score. BMD, bone mineral density; BMI, body mass index; Lumbarlordo, relative lumbar lordosis score; Lordoindex. 
lordosis distribution index score; Sagittal, relative spinopelvic alignment score; Pelvic, relative pelvic version score.

0.0 0.2 0.4 0.6 0.8 1.0

BMD

BMI

Lumbarlordo (3)

Lordoindex (3)

Age

Saggital (3)

Gender

Lumbarlordo (2)
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5. Deep Neural Network Model
The results of the deep neural network analyses are shown in 

Fig. 4. The most important variables in this model were the lordo-
sis distribution index score and relative sagittal alignment score.

6. Diagnostic Performance of the Machine Learning Models
The AUROCs and AUPRCs for the 4 machine learning mod-

els are presented in Table 3. In the training set, the AUROCs for 

logistic regression, gradient boosting, random forest, and deep 
neural network model were 0.871 (0.817–0.925), 0.942 (0.911–
0.974), 1.000 (1.000–1.000), and 0.947 (0.915–0.980), respective-
ly, the AUPRCs for logistic regression, gradient boosting, ran-
dom forest, and deep neural network model were 0.793 (0.677–
0.895), 0.93 (0.878–0.965), 1.000 (1.000–1.000), and 0.942 (0.898-
0.972), respectively, and the accuracies were 0.784 (0.722–0.847), 
0.868 (0.817–0.920), 1.000 (1.000–1.000), and 0.856 (0.803–0.909), 

Fig. 3. Results of the random forest model. The most important variables in this model were BMI, BMD, and relative lumbar 
lordosis score. BMD, bone mineral density; BMI, body mass index; Lumbarlordo, relative lumbar lordosis score; Lordoindex. 
lordosis distribution index score; Sagittal, relative spinopelvic alignment score; Pelvic, relative pelvic version score.

 0 5 10 15 20 25 30  

Mean decrease accuracy

Lumbarlordo

BMD

BMI

Saggital 

Pelvic

Gender

Lordoindex

Age

 0 5 10 15 20 25

Mean decrease Gini
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Lordoindex

Pelvic

Saggital
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Fig. 4. Results of the gradient boosting model. The most important variables in this model were lordosis distribution index score 
and relative sagittal alignment score. BMD, bone mineral density; BMI, body mass index; Lumbarlordo, relative lumbar lordosis 
score; Lordoindex. lordosis distribution index score; Sagittal, relative spinopelvic alignment score; Pelvic, relative pelvic version 
score.
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respectively. In the test set, the AUROCs for the same models 
were 0.785 (0.678–0.893), 0.808 (0.702–0.914), 0.810 (0.710–
0.910), and 0.730 (0.610–0.850), respectively, the AUPRCs for 
logistic regression, gradient boosting, random forest, and deep 
neural network model were 0.711 (0.523–0.87), 0.717 (0.529–
0.89), 0.748 (0.554–0.882), and 0.667 (0.475–0.818), respective-
ly, and the accuracies were 0.732 (0.629–0.835), 0.718 (0.614–
0.823), 0.732 (0.629–0.835), and 0.620 (0.507–0.733), respec-
tively. The random forest achieved the best predictive perfor-
mance on the training and test dataset. Fig. 5 shows the AUPRCs 
of each model in the training and test sets.

DISCUSSION

The prevalence of mechanical complications, with radiologic Ta
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Fig. 5. Area under precise recall curve of each model in the 
training set (A) and test set (B). LR, logistic regression; GB, 
gradient boosting; RF, random forest; DNN, deep neural net-
work.
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and clinical manifestations, after surgery for adult spinal defor-
mities is reported to be 30%, and more than 50% of these pa-
tients undergo revision surgery for treatment.10 Soroceanu et 
al.11 reported that radiographic and implant-related complica-
tions accounted for 31.7%, and in 52.6% of these complications, 
reoperation for mechanical correction was required. There are 
many aspects of ASD surgery with notable variability, including 
the occurrence of complications and outcomes.12 GAPB is a sys-
tem that is used to predict mechanical complications that occur 
after ASD surgery, including both patient-specific and radio-
logical factors.6 In this study, we constructed a model to predict 
mechanical complications after ASD surgery using GAPB fac-
tors. The GAPB system, including BMI and BMD, showed im-
proved predictability of predicting mechanical complications 
compared to the GAP scoring system.8 In particular, Noh et al.9 
reported that GAPB better predicted mechanical complications 
in the moderately disproportioned and severely disproportioned 
groups in GAP. Park et al.13 reported that osteoporosis and obe-
sity are important risk factors for proximal junctional kyphosis, 
proximal junctional failure and other mechanical complica-
tions. Since most elderly patients in ASD surgery have low mus-
cle mass and severe osteoporosis, BMI and osteoporosis are es-
sential when discussing mechanical complications. Recently, 
several studies using deep learning algorithms, such as random 
forest, gradient boosting, and neural networks, have been con-
ducted for the spine.14 Yagi et al.15 created a postsurgical com-
plication prediction model for ASD surgery in adults using spi-
nal alignment, demographic data, and surgical invasiveness; 
170 participants were enrolled in this study. A decision tree for 
2-year postoperative complications was constructed and con-
firmed by splitting data in a 7:3 ratio for training and testing, 
with the external validation of 25 ASD patients who underwent 
surgery at different hospitals.15 For the test sample, the predic-
tive model was 92% accurate, the AUC was 0.963, and the ex-
ternal validation was 84% accurate. Lafage et al.16 created a ma-
chine learning model to determine the upper vertebra in ASD 
surgery. The samples were stratified into 3 groups: 70% for 
training, 15% for validation, and 15% for performance testing. 
A neural network model was used, and the results showed an 
accuracy of 81.0%, precision of 87.5%, and recall of 87.5%. Pel-
lisé et al.17 created a model to predict the incidence of adverse 
events after ASD surgery using a random forest model. The 
model was trained using 80% of the data for the training set 
and 20% for the test set and showed adequate predictive accu-
racy, with AUCs ranging from 0.67 to 0.92.17 Durand et al.18 
created a model for predicting blood transfusion following sur-

gery for adult spinal deformities. A total of 1,029 patients were 
analyzed and divided into datasets for training (n = 824) and 
validation (n= 205). The random forest model showed an AUC 
of 0.85 (95% confidence interval, 0.80–0.90) and was reported 
to show better predictive ability than single-decision tree mod-
els.(18) Ames et al. created a model to predict the cost of sur-
gery for ASD. The regression tree and random forest models 
were used to predict the occurrence of treatment costs exceed-
ing $100,000.19 The results of the regression tree analysis using 
CTREE resulted in an adjusted R2 value of 56% at 90 days and 
35.6% at 2 years of direct cost forecasting. Random C-forest re-
gression analysis showed an adjusted R2 value of 57.4% at 90 
days and 28.8% at 2 years of direct cost forecasts. Peng et al.20 
created a model to predict proximal junctional kyphosis after 
surgery in adolescent patients with idiopathic scoliosis. The 
random forest has great value for predicting the individual risk 
of developing proximal junctional kyphosis after long instru-
mentation and fusion surgery in patients with Lenke 5 adoles-
cent idiopathic scoliosis. Jain created a model to predict discharge 
delay, medical complications, and readmission within 90 days 
after long-segment posterior lumbar spine fusion surgery21 us-
ing logistic regression, random forest, and elastic net. In our 
study, we created a model to predict the mechanical complica-
tions that occur after ASD surgery. We used logistic regression, 
gradient boosting, random forest, and deep neural networks. 
Important factors were BMD, BMI, relative lumbar lordosis score, 
lordosis distribution index score, and relative sagittal alignment 
score. The patients were randomly divided into training (70%) 
and test (30%) datasets. In the training set, the AUROC for ran-
dom forest was 1.000 and the accuracy was 1.000. In the test 
set, the AUROC for random forest was 0.81 and the accuracy 
was 0.732. Random forest achieved the best predictive perfor-
mance on the training and test dataset.

This study has several limitations. Because our models were 
built using retrospective data, future efforts to update these mod-
els are required. Additionally, the reasons for mechanical com-
plications after ASD correction are multifactorial. Many factors 
affect the outcome of surgery, including the surgical method, 
upper level instrumentation, muscle mass, and various under-
lying conditions. These factors were excluded when the model 
was created.

However, the GAPB system is helpful in predicting mechani-
cal complications after ASD surgery.6 Noh et al.9 reported that 
the GAPB system was more meaningful in the moderately dis-
proportioned and severely disproportioned GAP groups. We 
believe that it will be helpful to develop models that predict me-
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chanical complications through machine learning. And the over-
fitting problem caused by using small data samples is a limita-
tion of this study. We will study with more data samples later.

CONCLUSION

This study created a comprehensive model to predict mechan-
ical complications after ASD surgery. The best prediction accu-
racy was 73.2% for predicting mechanical complications after 
ASD surgery. This information can be used to prevent mechan-
ical complications during ASD surgery.
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