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Moving closer towards a comprehensive view
of tumor biology and microarchitecture using
spatial transcriptomics

Young Min Park & De-Chen Lin Check for updates

Spatial transcriptomic profiling of cancer has
enabled spatial delineation of malignant tran-
scriptional heterogeneity, intercellular commu-
nication, and organization of microanatomical
structures within the tumor microenvironment.
This technical breakthrough paves the way for
the development of precision diagnostic meth-
ods and targeted therapies.

Spatial transcriptomics has emerged as a powerful tool in cancer
research, allowing for the visualization of gene expression patterns
within the spatial context of tumor tissues.Methodologically, there is a
wide range of such technologies available today1, which canbe broadly
categorized into sequencing-based (e.g., Visium, GeoMx, Stereo-seq)
and imaging-based methods (e.g., MERFISH, Xenium, CosMx).
Sequencing-based spatial methods offer advantages such as high
scalability, plexity, and short scanning time of large areas. However,
they have relatively lower RNA capture efficiency and often do not
achieve single-cell resolution. In comparison, imaging-based technol-
ogies provide subcellular resolution with high RNA capture efficiency.
Nevertheless, technical limitations of imaging-based methods include
modest-to-limited scalability, optical crowding, and long imaging time.
Therefore, selecting the most suitable method depends on specific
research goals, spatial resolution requirements, sensitivity and detec-
tion limit, as well as properties of the tissue or samples1.

Intratumoral heterogeneity and functional plasticity of malignant
cells is a cancer hallmark, enabling tumor evasion from immune sur-
veillance/attack, adaptation to metabolic constraints, as well as treat-
ment resistance2. For example, the transition between epithelial-
mesenchymal states is crucial for tumor metastasis and drug
resistance2. Notably, spatial transcriptomic profiling has shown that
cellular plasticity and intratumoral heterogeneity are strongly depen-
dent on spatial context3–5.

To spatially delineate intratumoral transcriptional heterogeneity,
the computational pipeline typically begins with the deconvolution of
cellular composition and identification of malignant spots using
supervised machine learning based on curated training data. Subse-
quently, regional transcriptional programs (or “gene modules”) are
identified. A clustering approach next takes gene module scores as
input values to identify consensus transcriptional programs that can
be horizontally integrated across patient tumor samples. A correlative
analysis then uses shared transcriptional programs as anchors to per-
form spatially-weighted correlations to explore the colocalization of
intratumoral transcriptional programs. Spatial transcriptomic

investigations have successfully captured intratumoral transcriptional
programs established by single-cell RNA sequencing (scRNA-seq). For
example, in gliomas, scRNA-seq-defined four cellular states:6

mesenchymal-like, neural progenitor-like, astrocyte-like, and oligo-
dendrocyte precursor-like, were all identified by a spatial study using
the Visium platform5. Importantly, distinct cellular states appear to be
spatially segregated. Indeed, perhaps unsurprisingly, EMT (epithelial-
mesenchymal transition)-like cancer cells tended to inhabit along the
leading front versus tumor core, demonstrated by Visium-based
investigations3,7. Glioma cells expressing a reactive-hypoxia program
occupied the necrotic edge, which might reflect ongoing metabolic
stress5. In breast cancer, different subclone territories exhibited dis-
tinguishing transcriptional and histological characteristics, which can
be observed even in ductal carcinoma in situ, a precancerous lesion4.
This spatially organized pattern of intratumoral transcriptional het-
erogeneity and cellular state is somewhat surprising. Indeed, con-
sidering the stochastic accumulation of genomic aberrations during
clonal evolution, one might expect tumor regions to be a mosaic of
various cellular states. Thus, the micro-regional segregated pattern
indicates the spatial constraint as a powerful selection pressure in
shaping the intratumoral transcriptional heterogeneity. However,
technical limitations (e.g., detection sensitivity, resolution limit, and
cluster assignment) should be kept in mind since they may partially
contribute to the lack of detection of the mosaic pattern.

This remarkable spatial segregation of cancer cell states begs an
important question: what are the underlying molecular mechanisms?
By developing a base-specific in situ sequencing technology (BaSISS)4

to spatially co-map gene mutations and transcription at the single-cell
level in breast cancer samples, Lomakin et al. demonstrate that geno-
mic diversification is at least partially responsible. Indeed, the authors
spatially resolved the locations ofmany genetically-defined subclones,
and charted the relationships between genomic and transcriptional
patterns. Perhaps the most striking finding is that virtually every
sample displayed spatial segregation and organization of multiple
genetic subclones (albeit only a total of 10 tissue samples were pro-
filed), exhibiting clone-specific gene expression accompanied by dis-
tinct stromal surroundings4. These observations are echoed by a
spatial transcriptomic map of human glioblastoma samples, wherein
the researchers investigated the relationship between copy number
aberrations and spatially distinct transcriptional programs. Upon
reconstruction of clonal architecture using patient-specific hier-
archical clustering of copy number aberrations, Ravi et al.5 noted that
cells expressing a reactive-hypoxia program, which were spatially
segregated, harbored distinguishable and more complex chromoso-
mal alterations, compared with other spatial spots. Consistently,
orthogonal experimentation revealed that chronic hypoxia culture of
patient-derived glioblastoma lines induced a significant accumulation
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of copy number aberrations than normoxia, establishing a causal
relationship between hypoxia and genomic instability. Additionally,
the hypoxia condition led to promoter DNA hypermethylation of the
MGMT gene5. These results underscore the complex interplay between
local metabolic stress, intratumoral transcriptional adaptation, and
genomic diversification, in a highly spatial-dependent manner.

Beyondneoplastic cells, scRNA-seqprofiling has comprehensively
and systematically cataloged many stromal and immune cell types in
the tumor microenvironment. However, these works only provide
circumstantial information on how cells communicate and interact
with each other. Spatial transcriptomic analyses have begun to reveal
the characteristics of various forms of cell-cell communications over
different proximity length scales, such as direct interactions, short-
range, and even far-range interactions.

The crosstalk involving immune cells is perhaps hitherto themost
extensively studied. A pattern repeatedly seen is the immune-
suppressive microenvironment frequently characterized by interac-
tions between tumor cells, different T-cell subsets, and suppressive
macrophages3,8. For example, in skin squamous cell carcinoma, a
tumor-specific keratinocyte population displayed both autocrine and
paracrine interactions with macrophages and myeloid-derived sup-
pressor cells, among other cell types3. In an imaging mass cytometry
analysis of breast cancer8, enriched interactions between Treg cells,
exhaustive T cells, and macrophages were found in an immune-
suppressive niche.

In addition to immune cells, fibroblasts often show dynamic
spatial distribution and interaction patterns, likely owing to their
highly versatile and plastic functional states. Indeed, different fibro-
blastic cell subsets appear to have different preferences in their spatial
localization. In breast cancer characterized by the Visium method,
myofibroblast-like fibroblasts resided along tumor peripherals while
certain immunoregulatory fibroblasts were observed to disperse
across stroma- and immune-enriched niche9. Various ligands from
immunoregulatory fibroblasts were identified to mediate the com-
munication with T cell receptors nearby. Unsurprisingly, interacting
partners of fibroblasts are reciprocally versatile. In colorectal cancer,
for example, Visium-generated data showed that FAP+

fibroblasts
resided in close proximity to SPP1+ macrophages, and their interaction
led to a desmoplastic reaction and inhibition of immune cell
infiltration10.

It should be noted, however, that not all cells in close proximity
are having biological interactions. In fact, data from3Dhigh-resolution
optical analyses of morphological and physical features suggests that
only a minority of spatially co-localizing cells may have direct
crosstalk11. Indeed, about 20% of immune cells in close contact with
melanoma cells showed likely biological interactions featured by cell
surface molecular polarization. The same study also identified that
somemacrophages could extend inhibitory synapses with CD8+ T cells
which were at least over one cell diameter away (>10μm), highlighting
that non-adjoining cells can establish functional contacts with one
another11. These emerging observations suggest that spatial proximity
is neither sufficient nor necessary for biological cell-cell communica-
tions, underscoring the complex nature of cellular crosstalk in the
cancer ecosystem. On the other hand, this research has also empha-
sized the necessity for the development of deep learning-based
computational vision algorithms to fully automate the analysis of high-
resolution, high-plex tissue images, which currently rely partially on
manual inspection and interpretation.

At the millimeter scale, large multi-cellular organizations have
been observed in the tumor ecosystem as spatially segregated com-
partments andmicroanatomical structures, sometimes involving three
or more distinct cell types1. In general, tumors organize into a com-
partment dense with malignant cells, while a stromal compartment is
often formed predominantly by immune cells, fibroblasts, endothelial
cells, and extracellular matrix (ECM). The interface between these two
compartments, also known as the leading edge, is characterized by
distinct cellular composition, ECM makeup, and distribution1. Biolo-
gically, the tumor-stromal border appears to contribute to the reg-
ulation of anti-tumor immune response11,12. Indeed, in melanoma, a
consolidated and spatially confined immune-suppressive micro-
environment was identified along the tumor-stromal interface, fea-
turing melanoma cells making simultaneous contact with both CD8+

T cells and Treg cells11. The tumor-stromal boundary of breast cancer
was enriched with PD-L1+ myeloid cells and MHCII+ tumor cells, indi-
cative of an immune-suppressive structure, as revealed by a multi-
plexed ionbeam imagingmethod12. The leading edge is also implicated
in the regulation of tumor cell invasion and infiltration. For example,
the aforementioned skin cancer subpopulation, characterized by
expressing geneprograms associatedwith EMTandcellularmigration/
invasion, was localized specifically at the leading edge3. A similar spa-
tial pattern was also seen in other cancer types, such as head and neck
cancer7.

Tertiary lymphoid structures (TLSs) are spatially organized
aggregates of immune cells, including a B cell-rich center zone sur-
rounded by T cells, dendritic cells, and macrophages. TLSs are mainly
observed in tissues exposed to chronic inflammation but have also
been identified in various tumor types. TLSs within the tumor micro-
environment appear to be a result of ongoing immune responses
against the tumor, serving as sites for immune cell activation, pro-
liferation, and interaction13. Recent spatial methodologies have
revealed greater granularity of the TLS structure and highlighted their
biological significance in anti-tumor immune responses. For example,
a Visium-based profiling of renal tumors showed that the entire pro-
cessof B cellmaturation couldbecompletedwithinTLSs14. By focusing
on the architecture of TLSs and their spatial vicinity, this study
demonstrated that mature plasma cells, disseminated along the
fibroblastic track in the tumor microenvironment, produced IgG
antibodies which caused cancer cell apoptosis. Moreover, therapeutic
responses and patient survival were correlated with IgG-bound tumor
cells in renal cancer patients treated with immune checkpoint
inhibitors14. Importantly, recognizing that the Visium method (cap-
turing 3′ RNA sequence) is not best suited for sequencing the BCR
repertoire, the authors validated some of the key findings using
complementary 5′ bulk RNA-seq.

The field of spatial cancer transcriptomics is experiencing rapid
growth and evolution, uncovering unprecedented molecular and
spatial details of tumor biology. Moving forward, integrating spatial
transcriptomics data with other omics technologies, including geno-
mics, proteomics, and metabolomics, will enable the simultaneous
analysis of different layers of spatial regulation, providing a truly
comprehensive view of the molecular landscape of tumors. Advance-
ments in companion computational methods, including deep learning
algorithms,will facilitate the identification of complex spatial patterns,
molecular interactions, and predictive models for tumor behavior and
treatment response. Another exciting front of spatial cancer biology is
the development of spatial genetic perturbation using animal
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models15,16, which can reveal the direct functionality of spatially regu-
lated gene expression or mutations. Indeed, early works such as Per-
turb-map, an approach combining spatial transcriptomics (using the
Visium platform) with in vivo CRISPR screens, have already linked
certain gene knockouts to spatial immune responses in the tumor
microenvironment16. Overall, the future of spatial cancer research
holds immense potential to advance our understanding of tumor
biology, guide personalized medicine approaches, and drive the
development of innovative therapeutic strategies for cancer
treatment.
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