
Sung et al. Light: Science & Applications          (2023) 12:265 Official journal of the CIOMP 2047-7538
https://doi.org/10.1038/s41377-023-01309-w www.nature.com/lsa

ART ICLE Open Ac ce s s

Three-dimensional label-free morphology of
CD8+ T cells as a sepsis biomarker
MinDong Sung 1, Jong Hyun Kim2, Hyun-Seok Min 3, Sooyoung Jang2, JaeSeong Hong2, Bo Kyu Choi2, JuHye Shin1,
Kyung Soo Chung 1✉ and Yu Rang Park 2✉

Abstract
Sepsis is a dysregulated immune response to infection that leads to organ dysfunction and is associated with a high
incidence and mortality rate. The lack of reliable biomarkers for diagnosing and prognosis of sepsis is a major
challenge in its management. We aimed to investigate the potential of three-dimensional label-free CD8+ T cell
morphology as a biomarker for sepsis. This study included three-time points in the sepsis recovery cohort (N= 8) and
healthy controls (N= 20). Morphological features and spatial distribution within cells were compared among the
patients’ statuses. We developed a deep learning model to predict the diagnosis and prognosis of sepsis using the
internal cell morphology. Correlation between the morphological features and clinical indices were analysed. Cell
morphological features and spatial distribution differed significantly between patients with sepsis and healthy controls
and between the survival and non-survival groups. The model for predicting the diagnosis and prognosis of sepsis
showed an area under the receiver operating characteristic curve of nearly 100% with only a few cells, and a strong
correlation between the morphological features and clinical indices was observed. Our study highlights the potential
of three-dimensional label-free CD8+ T cell morphology as a promising biomarker for sepsis. This approach is rapid,
requires a minimum amount of blood samples, and has the potential to provide valuable information for the early
diagnosis and prognosis of sepsis.

Introduction
Sepsis is a “life-threatening organ dysfunction caused by

the dysregulated host response to infection”1. Sepsis has
high mortality rates2,3, and sepsis-specific treatment is
lacking. One reason is that the immune response to sepsis
is complex and varies among patients4. Therefore, making
an early diagnosis and taking quick action is crucial
because even a delay of 1 h in interventions can result in
increased mortality5.
Numerous specific sepsis biomarkers have been recog-

nised to enhance diagnostic accuracy, facilitate early

recognition of organ dysfunction, assist in risk stratifica-
tion, and monitor an individual’s immune response6,7.
These biomarkers should deliver prompt results, allow for
recurrent measurements, and accurately reflect the real-time
status of the patient, ensuring that any changes in the
condition are immediately mirrored in the biomarker
reading, thus enabling timely interventions. However, com-
monly used biomarkers such as C-Reactive Protein (CRP)8,9

and Procalcitonin (PCT)10,11 have limitations, such as
delayed responses. This delay arises from the time required
for transcription in response to cytokines secreted by
immune cells, followed by translation and protein synth-
esis12–14. Cytokines such as Interleukin-6 (IL-6) have been
suggested as potential biomarkers to decrease this time lag.
However, IL-6 presents its own challenges due to the lack of
standardization and high susceptibility to other influences,
which can make interpretation difficult15. Efforts have been
made to further reduce this time lag, such as using RNA
levels as biomarkers16,17 and leveraging single-cell
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sequencing to identify sepsis-specific immunologic sig-
natures18. However, the extensive time required for RNA
sequencing and analysis limits its immediate use as a bio-
marker. Newly developed biomarkers, including histidine-
rich glycoprotein19,20, calprotectin21, and HMGB-1122, and
newer technologies, such as microfluidic23, which can speed
up these measurements still exhibit an inherent time lag, a
common shortcoming of secretory molecules.
Despite the potential of the current biomarkers, their

inherent limitations necessitate exploring novel approaches
to identify sepsis biomarkers. One promising avenue is the
study of immune cell morphology. These morphological
changes in immune cells occur swiftly upon the onset of
inflammation, closely mirror the patient’s immune status,
and provide an immediate snapshot of the cellular responses
to inflammation24–27. Advancements in microscopic tech-
niques have enabled rapid and repeated measurements.
However, most studies rely primarily on cell lines or healthy
human cells for experimentation, which may not fully cap-
ture the complex dynamics of human immune responses.
Therefore, more comprehensive investigations are needed to
address these constraints and accurately depict the intricate
dynamics of immune cells following sepsis.
We investigated the potential of immune cellular

structures as a biomarker in sepsis based on the two
technologies within a human sepsis sample: holotomo-
graphy imaging and deep learning. Traditional staining
and fixation methods may alter the native state of cells,
inhibit dynamic cellular studies, and are time-
consuming28–30. Holotomography imaging circumvents
these drawbacks by providing label-free three-dimen-
sional (3D) images of live cells and enabling an unaltered,
real-time study of cells. This advanced technique mea-
sures a quantifiable physical parameter, the refractive
index (RI), which correlates with cellular biochemical and
biophysical properties31,32. Simultaneously, deep learning
advancements have simplified the feature engineering
process, and improved overall analysis accuracy33,34.
In this study, we employed label-free 3D imaging to

analyze changes in immune cell structures, from healthy
states to sepsis diagnosis, and throughout the sepsis
recovery period. We identified noticeable alterations in
the morphological features such as the volume and dry
mass of CD8+T cells, by comparing the data between
healthy controls and patients with sepsis at different
recovery stages. Additionally, we studied the spatial dis-
tribution within cells, revealing intriguing disparities in
the cellular structures related to sepsis. To handle the
substantial data derived from these 3D cellular structures,
we utilized a deep learning model that demonstrated good
performance in sepsis diagnosis and prognosis prediction.
We also explored the correlation between cell morphol-
ogy and clinical outcomes of sepsis, furthering our
understanding of this relationship. Finally, we validated

our deep learning model using interpretable algorithms to
maintain transparency, suggesting that our methodology
can be integrated effectively into clinical settings.

Results
Our study workflow, as illustrated in Fig. 1, involved

enrolling sepsis patients with sepsis and collecting their
clinical data along with blood samples at three crucial
time points: upon diagnosis of septic shock (T1), follow-
ing resolution of the septic shock (T2), and immediately
before discharge (T3). Patients’ survival outcomes were
recorded. Blood samples were obtained from healthy
participants to serve as a control group. We isolated
CD8+T cells from these blood samples using magnetic-
activated cell sorting (Fig. 1a), followed by obtaining label-
free 3D imaging using a holotomography microscope
(Fig. 1b). This process enabled us to extract biophysical
features such as cell volume, refractive index (RI), and dry
mass and to study the spatial distribution of internal cell
components based on their RI values. Using these data, we
constructed two distinct deep-learning models. The first
model was designed to diagnose sepsis by differentiating
healthy controls and patients with sepsis. The second
model aimed to predict prognosis by distinguishing
between survivors and non-survivors of sepsis patients.
Both models are shown in Fig. 1c.
The primary advantage of our workflow is its excep-

tional ability to diagnose sepsis and predict prognosis
using just a single cell or a few cells, thereby providing a
crucial tool for sepsis management. Given that the time
for image capture and analysis amounts to approxi-
mately less than 10 min, the overall process would take
about an hour. For CRP, PCT, and IL-6 provide results
in an hour, but the time from initiation of infection to
biomarker detection takes about 1–3 h. RNA sequen-
cing can detect the response immediately, but the pro-
cess from preparation to data analysis can take several
days (Fig. 1d).

Participant characteristics
Our study enrolled 28 patients, including eight patients

with sepsis and 20 healthy controls. The median age of the
participants was 54 years, and 17 patients (61%) were female.
In the sepsis cohort, three (11%), three (11%), and two (7.1%)
patients were diagnosed with biliary, pneumonia, and urin-
ary septic shock, respectively. The Sequential Organ Failure
Assessment (SOFA) scores at time points 1, 2, and 3 were 8,
2, and 0, respectively. A total of 6198 3D images were
obtained for analysis (Table 1).

CD8+ T cell morphological changes through sepsis
recovery
In our study, we examined the morphological differ-

ences in CD8+T cells during sepsis recovery compared
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with those in healthy controls. Figure 2a illustrates these
differences in 3D cells (first row), optical sections of these
images (second row), and colour maps of the overall and
nuclear components (third and fourth rows).
We assessed the morphological features of cells at dif-

ferent time points during septic shock recovery and in

healthy controls. Both cell volume (F-value 1043, P
value < 2e-16) and dry mass (F-value 2174, P value < 2e-16)
exhibited significant differences between the sepsis
recovery time points and the healthy controls. Further-
more, the mean values of the overall (F-value 336.2, P
value < 2e-16) and nuclear component RI (F-value 836.3, P
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Fig. 1 Schematic overview of the study workflow. a This study included sepsis recovery and healthy control. The sepsis recovery cohorts were
classified into survival and non-survival groups. Blood was sampled three times in the sepsis recovery cohort and once in the healthy control cohort.
CD8+ T cells were extracted from the blood using a Magnetic Cell Separator (MACS). b 3D cell images were acquired using holotomography. The
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compared with that of the shell structure. c Deep learning models for predicting the diagnosis and the prognosis of sepsis were developed and
validated based on internal cell structure. PBMCs, peripheral blood mononuclear cells; ICU, intensive care unit. d This schematic view compares the
timeline of currently used biomarkers, including C-reactive protein (CRP), procalcitonin (PCT), and IL-6, with our proposed method (holotomography).
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value < 2e-16) demonstrated significant differences
between sepsis recovery time points and healthy controls
(Fig. 2b). We conclude that the significant morphological
differences observed in CD8+T cells during sepsis
recovery and in healthy controls highlight their potential
as biomarkers for the diagnosis and monitoring of sepsis
progression.

Spatial distribution within cells
In septic shock (T1), the spatial distribution within cells

showed that the decreasing points existed more periph-
erally at T1 than that in the other statuses. In Shell 6, 7,
and 8, there was a difference in shell density among the
statuses (P value= 1.80e-15, 1.02e-35, and 3.70e-24,
respectively) (Fig. 3a). In the nuclear component, the shell
component density was higher in all shells, and the
decrease in density in Shell 6 was slightly more peripheral
than that in the other groups (Shell 4). These results
indicated that the cell and nuclear sizes were larger and
the components were denser at the septic shock time
point (T1) compared to other status (Fig. 3b).
Moreover, comparing survival and non-survival at the

septic shock time point (T1), the overall shell density
showed differences in Shells 7 and 8 (P value= 0.0003 and
9.50e-10, respectively), resulting in the decreasing points
existing more peripherally in the non-survival group than
in the survival group. This indicated that the number of
cells was higher in the non-survival group than in the
survival group (Fig. 3c). The nuclear component showed
no consistent pattern between the two groups, with

significant differences in Shells 5 and 8 (P value= 0.0006
and 1.15e-15, respectively) (Fig. 3d).

Deep learning models for predicting the diagnosis and
prognosis of sepsis
The spatial distribution within cells was significantly

different among patients with sepsis. Based on this
knowledge, we used a deep learning model to extract
morphological features efficiently. In predicting the
diagnosis, nearly 100% of the area under the receiver
operating characteristic (AUROC) curve was shown in the
model that differentiated cells between septic shock (T1)
in sepsis recovery cohorts and healthy controls (H) with a
few cells. Our model performed significantly better than
established clinical indices such as SIRS, qSOFA, SOFA,
and MEWS with AUROC values of 0.70, 0.77, 0.78, and
0.50, respectively, for diagnosis35 (Fig. 4a). Furthermore,
in the model that predicted prognosis with the cells in T1,
the performance showed nearly 100% AUROC with a few
cells. The predicted prognostic performances of the
known indices, including SIRS, qSOFA, SOFA, and
MEWS was 0.63, 0.52, 0.68, and 0.64, respectively
(Fig. 4b). Even the model with a single cell showed better
performance than the other clinical indices in predicting
diagnosis and prognosis. When we examined the AUROC
using random sampling to account for possible selection
bias, we observed that the range of the AUROCs
decreased as the number of cells increased, indicating that
the more cells were selected, the less selection bias and
variance was identified (Fig. 4c, d). These results suggest

Table 1 Demographic characteristics, and the total number of cell images acquired in sepsis recovery and healthy
control cohorts

Overall (N= 28) Healthy (N= 20) Sepsis (N= 8)

Age, year 54 (35, 72) 39 (34, 56) 78 (74, 88)

Male, n (%) 11 (39%) 7 (35%) 4 (55%)

Diagnosis

Biliary septic shock, n (%) 3 (11%) - 3 (38%)

Pneumonia septic shock, n (%) 3 (11%) - 3 (38%)

Urinary septic shock, n (%) 2 (7.1%) - 2 (25%)

Mechanical ventilator, n (%) 1 (12%) - 1 (12%)

Renal replacement therapy, n (%) 1 (12%) - 1 (12%)

1st time point SOFA* 8.00 (7.75, 9.75) - 8.00 (7.75, 9.75)

2nd time point SOFA* 2.00 (1.00, 5.25) - 2.00 (1.00, 5.25)

3rd time point SOFA* 0.00 (0.00, 1.50) - 0.00 (0.00, 1.50)

ER† length of stay, days 1.28 (0.91, 1.50) - 1.28 (0.91, 1.50)

Total length of stay (days) 15 (10, 23) - 15 (10, 23)

Number of total cells 6198 3335 2863

*SOFA Sequential Organ Failure Assessment, †ER emergency room
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that we uncovered the potential of deep learning models
using CD8+T cells morphological features as a promis-
ing method to diagnose sepsis more accurately and pre-
dict its prognosis.

Validation with clinical features and a visual explanation
We observed that the morphological features and other

clinical features, such as laboratory test results, including
white blood cells (WBC), neutrophils, lymphocytes, CRP,
and cytokine levels, were highly correlated. Laboratory tests
related to inflammation in sepsis, including WBC, CRP, and
neutrophils, decreased in sepsis recovery over time, except
for lymphocytes. Additionally, the levels of the cytokines,
including CCL2/MCP-1, IL-10, IL-2, and TNF-alpha,
decreased. The morphological feature in each time point
showed a similar pattern with the laboratory test and cyto-
kines, which showed a high correlation (CRP 0.88, WBC
(/µL) 0.68, neutrophil (%) 0.76, lymphocyte (%) 0.81, CCL2/
MCP-1 0.944, IL-10 0.994, IL-2 0.995, and TNF-alpha 0.991)
with a mean value of each time point lab values (Fig. 5a).

Moreover, we applied the Grad-CAM algorithm to
understand which regions of the cell images were the
most important for the prediction using the deep learning
model. Figure 5b shows representative cell images with
the accompanying saliency heat maps, highlighting the
features that had the greatest influence on the model’s
prediction. In the heat maps, the model prediction was
based on features within the cells. The heat maps varied
among the different time points, indicating that the model
could recognise the changes within the cells. We dis-
covered a strong correlation between cell morphology and
clinical features, indicating the promising role of cellular
biomarkers and deep learning models in advancing the
diagnosis, prognosis, and understanding of the underlying
biological processes of sepsis.

Discussion
This study demonstrated that 3D label-free CD8+T

cell morphology could be a potential biomarker for sepsis.
These morphological features of immune cells are
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potential biomarkers of sepsis because they are rapid,
require the least number of samples, and can differentiate
between different states of sepsis. We observed that the
morphological features of CD8+T cells differed between
the time points of sepsis recovery and healthy control.
Using spatial distribution analysis, the cells and nuclei at
the first time point of sepsis recovery, which was septic
shock, showed a larger volume and higher RI than those at
other time points and in healthy controls. Moreover, the
cell volume in the non-survival group was larger than in
the survival group at the first time point of recovery from
sepsis. Because the spatial distribution within a cell is an
important feature, we developed a deep learning model
based on the 3D cellular structures that can predict the
diagnosis and prognosis of sepsis. The performance of

models showed a nearly 100% AUROC for predicting
events with a few cells. The diagnostic model achieved an
AUROC of 99.7%, whereas the prognostic model
archieved a performance of 99.9%. Furthermore, cell
morphological features such as CRP, WBC count, lym-
phocytes, and cytokines were highly correlated with the
clinical features used by physicians when making deci-
sions in patients with sepsis. Therefore, 3D label-free
CD8+T cell structures are amenable to periodic and
repeated testing of patient samples, as they require only a
drop of blood for rapid measurement.
When compared to currently used biomarkers such as

CRP, PCT, and IL-6, our methodology considerably
reduces the time lag between the initiation of the infection
and the response. Our method also overcomes the
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limitations of the sequencing approaches which currently
lack the capacity for immediate detection of RNA
expression or biomarkers upon infection initiation.
Enhancements in our technique have allowed for speedy
and frequent measurements, further reducing this time
lag. Furthermore, we anticipate that the efficiency of our
workflow could be considerably amplified with upcoming
advancements in sample preparation techniques. As such,
we see an extensive potential for the expansion of its
practical applications in the future.
In sepsis diagnosis and prognosis prediction, conven-

tional clinical indices such as MEWS, SIRS, qSOFA, and
SOFA35 are widely used. However, these have several
limitations. First, their prediction performance is often
only reaches less than 80% of the AUROC performance20.
Secondly, although patients may have the same clinical

scores, sepsis symptoms, severity, and progression may
vary. The use of rule-based scores may be insufficient to
capture patient-specific statuses.
Several recent studies have been conducted to diag-

nostic and prognostic prediction models for sepsis. Goh
et al.36 used both structured and unstructured data from
electronic medical records (EMRs) to predict early sepsis.
They observed that the performance of the model, mea-
sured by the AUROC metric, was high at 0.94 at the time
of diagnosis; however, it decreased as the prediction time
increased. Hu et al.37 developed a prognosis prediction
model using machine learning with 57 clinical parameters.
They predicted hospital mortality and showed an AUROC
of 0.884. However, EMRs can have time delays in data
entry and availability, which can affect the accuracy of
predictions.
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Early Warning Score; CI, confidence interval
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Our method, using a few CD8+T cell morphologies,
achieved an average AUROC performance of nearly 100%
for both diagnosis and predicted prognosis of sepsis. This
high performance underscores that cell morphology can
serve as a highly accurate and efficient biomarker for
sepsis.
In this study, the changes in the shape of the cells were

clear as sepsis recovered, particularly when viewed cen-
trally at the periphery of the cells. At time point 1 of sepsis
recovery, the RI values were higher than those in the other
states, and the nuclear compartments also increased.
Furthermore, the RI values of the non-survival groups at
time point 1 of sepsis recovery status were higher than
those of the survivor group. This is thought to reflect
changes in T-cell activation. A central DNA pattern was
observed during T-cell activation, and nuclear size
increased, which is likely related to T-cell differentia-
tion38. In addition, lymphocytes from infected or vacci-
nated animals have a high RI due to increased protein
concentrations resulting from the production of
antibodies39,40.
Our study demonstrated a strong correlation between

the morphological features, clinical features, and cyto-
kines. Clinical features and cytokines showed a decreasing
pattern throughout recovery from sepsis, except for an
increasing pattern in lymphocytes. This suggests that cell
morphology has the potential to predict clinical features
and could be used to predict patient status. Moreover,
using Grad-CAM, it is clear that the deep learning model
focuses on the internal regions of the cells when making
predictions.
Similar to all other studies, our study has some limita-

tions. First, the intervals between the blood samples were
not consistent. This could potentially affect the accuracy
and comparability of the results. However, the recovery
time for each patient varied, and the duration was based
more on whether the patients recovered from shock
rather than on a specific time interval. That is, recovery
status was defined by considering the patient’s condition;
resolved septic shock (T2) was defined as tapering out the
vasopressor, and discharge (T3) as recovery from organ
failure, rather than a consistent time interval, to accu-
rately reflect the patient’s recovery. Second, the age dif-
fered between the sepsis recovery and healthy cohorts. As
people get younger, they tend to have fewer comorbid-
ities, making them a more accurate healthy control group.
Additionally, strict criteria were used for the sepsis group
to eliminate the differences caused by comorbidities,
immunocompromised, or immunosuppressed status. This
led to a significant age difference between the healthy
control and sepsis groups; however, this was thought to
help demonstrate the differences between the two groups.
In conclusion, 3D label-free CD8+T cells can be used

as biomarkers to predict the diagnosis and prognosis of

patients with sepsis. Our findings demonstrate that
CD8+T cell morphology can reflect changes in sepsis
status during recovery and help predict the prognosis of
patients with sepsis. This efficient and accurate method
has the potential to assist in the clinical management of
patients with sepsis. Furthermore, sepsis is considered an
important disease in which immune dynamics play a
significant role. From this perspective, the use of immune
cell morphology as a biomarker of sepsis could potentially
be expanded to other immune-related diseases.

Materials and methods
Participant enrollment
This study included two cohorts: sepsis recovery cohort

and a healthy control cohort. The sepsis recovery cohort
was recruited from the emergency department of Sever-
ance Hospital between April and June 2022. They con-
sisted of patients diagnosed with sepsis as defined by the
Sepsis-3 consensus definitions41. Immunocompromised
patients and those taking immunosuppressants were
excluded (see Section 1 of the Supplementary Informa-
tion). Clinical data were collected for each individual, and
blood was sampled at three-time points: septic shock
diagnosis (T1), septic shock resolution (T2), and before
discharge (T3). The healthy cohort (H) comprised 20
healthy volunteers as the control group. The sampled
blood was processed into peripheral blood mononuclear
cells (PBMC), and the CD8+T cells were extracted
through magnetic-activated cell separation.
Informed consent was obtained from all participants.

This study was approved by the Institutional Review
Board of Severance Hospital, Yonsei University Health
System, Seoul, Korea (IRB nos. 4-2021-1236 and 4-2022-
0317).

Plasma and peripheral blood mononuclear cell (PBMC)
isolation
Peripheral whole blood was collected in EDTA tubes

and processed fresh using Ficoll‒Paque Plus separation
(GE Healthcare, Barrington, IL, USA, 17144002). The
blood was first diluted with 5 mL of 2 mM EDTA‒PBS
(Invitrogen, Carlsbad, CA, USA, 1555785-038) before
10–20 mL of diluted blood was carefully layered onto
15mL of Ficoll in a 50mL Falcon tube. The samples were
centrifuged at 900 g for 30min at room temperature
(22 °C–24 °C). The plasma layer was carefully separated,
and the PBMC layer was collected using a sterile Pasteur
pipette. The PBMC layer was washed with three volumes
of EDTA-PBS by centrifugation at 500 g for 5 min. The
pellet was resuspended in EDTA-PBS and centrifuged at
400 g for 5 min. The PBMC pellet was collected, and the
cell number and viability were assessed using Trypan blue
and a Countess II Automated Cell Counter (Thermo
Fisher Scientific, Waltham, MA, USA).
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Cell sorting
Cells were sorted using magnetic-activated cell sorting

(Miltenyi Biotec, Bergisch Gadbach, Germany), a typical
method for isolating the cells from a mixed population.
The CD8+T cells were negatively selected. The isolated
cells were maintained at 4 °C to maintain cell viability.
Then, 80 µL of isolation buffer and 20 μL microbeads
were added, and the cells were incubated for 15min at
4 °C. By setting the magnetic stand and column for sort-
ing, we first equilibrated the column by washing it with
3 mL of isolation buffer. We withdrew the column from
the magnetic rack to collect each lymphocyte and set up a
conical tube. Next, 5 mL of isolation buffer was added,
and the solution was pumped through the column to
extract the final sorted cells from the collection tube.

Cell image acquisition and processing
Three-dimensional (3D) cell images of CD8+T cells

were obtained using 3D holotomography (HT-2H;
Tomocube Inc., Daejeon, Republic of Korea), which
reconstructs a 3D RI image using multiple 2D quantitative
phase images42. Cellular RI is an intrinsic optical para-
meter that determines how light travels through the cell-
matrix, demonstrated through physical phenomena such
as the scattering and absorption of light. RI is closely
linked to the amount and distribution of cellular mass.
We manually filtered out low-quality, low-resolution,
noisy background images and images in which two or
more cells were too closely adjoined.
For the deep learning process, we used a pre-processing

method that considers the size of each 3D cell image. We
first applied a predefined threshold to each selected image
to create a binary mask that separated the target cells
from the background. To ensure that the cropping was
centred on the cells themselves, the centre of each cell was
determined from the binary mask. Next, to determine the
appropriate crop size for each image, the radius of each
cell was measured using the SciPy packages, and we
defined a bounding box through the centre and radius of
each cell. Then the images were cropped according to
their respective bounding boxes.

Quantitative analysis of morphological features
within cells
Quantitative cell morphological features (structural and

biochemical features) were calculated from the 3D RI
tomograms of individual cell images. Each cell was seg-
mented from the surrounding medium based on a pre-
determined threshold RI value. We then calculated the
cell volume (V) based on the number of voxels observed
in each inner region of the cell. Next, we calculated the
biochemical features’ protein density since we need the
values of protein density and cell volume to calculate dry
mass. The protein density was calculated by subtracting

the medium’s RI from the divided cells’ RI. The difference
between RI and protein concentration was divided by the
increase in the RI values to calculate the protein density.
After calculating the protein density, the dry mass of the
cells was calculated. The calculated protein density (g/dL)
was multiplied by the cell volume (V) and multiplied by
10−2 to obtain the dry mass in picogram (pg) units.
Centre coordinate points were measured using SciPy

packages. Based on the centre coordinate points of each
cell, we extracted cross-sectional images specific to that
cell region by slicing the region centered on each cell.
From the cross-sectional images, we measured the overall
and nuclear component RI. The nuclear component RI
focused on points with RI component values higher than
1.38. These quantitatively measured morphological fea-
tures were then compared between each time point of
sepsis recovery and the healthy cohorts.

Spatial distribution of cellular shells
We extracted the cross-sectional images by slicing the

region of each cell based on the centre coordinate points.
The centre coordinates of each cross-sectional image were
used to calculate the radius of the cell. Each cell was
divided into eight elliptically shell regions. First, we cal-
culated the Euclidean distance from the centre of the cell
to each voxel and sorted all the voxels based on this
distance. This created a ranked list from the closest to the
furthest voxels. This list was then evenly divided into eight
parts, each corresponding to a single shell. The region
closest to the centre is called Shell 1, and the region
furthest from the centre is referred to as Shell 8. This
ensured a consistent distribution of voxels across each
shell, effectively generating eight distinct ‘sub-regions’
within each cell. After generating the shells, the shell was
converted into a binary mask. We applied a lower-
intensity threshold to the original image to enhance the
focus on cellular structures and reduce background noise.
We then multiplied the binary mask of each shell to the
original image to create a shell-specific image. This pro-
cedure effectively selected only the voxels within each
specific shell, with all others set to zero for clear differ-
entiation. The density of each shell was calculated by
counting the number of non-zero voxels and dividing this
by the total number of voxels in that shell43.

Deep learning models for predicting the diagnosis and
prognosis of sepsis
The models that predict the diagnosis and prognosis

were developed based on the 3D images of cells: the
diagnosis prediction model that differentiates between
septic shock (T1) and healthy controls (H), and the prog-
nostic prediction model that differentiates survival from
non-survival at the septic shock time point (T1). To account
for the variability of each cell, an input size of
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210 × 276 × 276 pixels was individually centre-cropped
according to the size of each cell. The images were then
resized to the median size to maintain consistency in the
input data for the model. Following the cropping step, the
cropped images were min-max normalized to each image44.
To align the input size of the deep learning model, all
cropped images were resized to match the median size of
the original image. Finally, the dataset was divided into
training, validation, and test sets in an 8:1:1 ratio.
The model architecture was based on a modified Den-

seNet, which consists of an overall structure of 82 dense
layers (Fig. S1a) divided into four dense blocks (Fig. S1b),
with transition layers (Fig. S1c) placed between them for
feature dimension reduction45. A cross-entropy loss and
stochastic gradient descent algorithm with 16 mini-batch
sizes were used to train the model. The cosine annealing
method was used to determine the learning rate, which
was set to an initial step size of 0.001 and a period of 64
epochs. Data augmentation and early stopping methods
are applied to prevent model overfitting. Data augmen-
tation, including random rotation processes and hor-
izontal and vertical flips, was performed for each image
once in every epoch. The early stopping method mea-
sured the performance with validation loss to terminate
training, with a patience of 30.
To evaluate the performance of our model while

accounting for the inherent cellular variability, we
employed a bootstrapping method. This approach
ensured the robustness of our models against patient-
specific variances due to individual cellular differences.
We ran 1000 iterations to estimate performance metrics
AUROC to provide a reliable measure of the model’s
predictive performance.
All deep learning processes were performed using

PyTorch (version 1.13.0) on a server with two Intel Xeon
Platinum 5253 processors, 128 Gb memory, and two
NVIDIA Quadro RTX 8000 GPU 48 Gb, with CUDA
version 10.0.

Model validation with clinical features and the model itself
The relationships between morphological and clinical

features, such as WBC count and neutrophil, lymphocyte,
CRP, and cytokine levels, were evaluated. The mean RI of
the cells was used to represent morphological features.
Laboratory test results were extracted from EMRs. The
following plasma cytokine levels were measured using the
Human Magnetic Luminex® Discovery Kit (R&D Sys-
tems, Inc., Minneapolis, MN, USA)46 from the sampled
blood: CXCL2/MCP-1, IL-10, IL-2, and TNF-alpha.
The gradient-weighted class activation mapping (Grad-

CAM)47 algorithm was applied to derive the visual
explanations by localising the image area that most
influenced the decisions made using the deep
learning model.

Statistical analysis
Demographic and clinical variables and acquired cell

counts were summarised for the entire cohort. Categorical
variables are shown as frequencies and percentages, and
continuous variables as medians with interquartile ranges.
Morphological features were compared using one-way

analysis of variance (ANOVA) tests, and post-hoc analysis
was performed using Student’s t-test for each time point
of sepsis recovery and healthy controls. To compare the
spatial distribution within cells, the density of each shell
component was compared among the time points of
sepsis recovery with those of healthy controls using
ANOVA. The density of each shell component was also
compared between cell images in the survival and non-
survival groups taken at T1 using Student’s t-test. The
Bonferroni correction was used to adjust for multiple
comparisons.
The AUROC was used to measure the model perfor-

mance. The AUROC was calculated by randomly select-
ing one to five cell images from each test set. The
confidence interval (CI) of the AUROC was calculated
using 1000 resamples. To compare conventional clinical
indices, such as Systemic Inflammatory Response Syn-
drome (SIRS), Quick Sequential Organ Failure Assess-
ment (qSOFA), Sequential Organ Failure Assessment
(SOFA), and Modified Early Warning Score (MEWS), to
predict the diagnosis or prognosis of sepsis, we depicted
the previously known sensitivity and specificity values of
each index on the same AUROC plots. Moreover, we
plotted box plots to show the distribution of AUROCs
with randomly selected cells to show the selection bias
and variation of a random sampling of one to five cells.
Morphological and clinical features at each time point

during sepsis recovery were plotted. We calculated Pear-
son’s correlation coefficients between morphological and
clinical features to explore this association, including
laboratory tests and cytokine levels.
Statistical analyses were conducted using the R software

(version 4.2). Statistical significance is indicated as fol-
lows: *P < 0.05, **P < 0.01, and ***P < 0.001.
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