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Simple Summary: Vision transformers have been recently spread out to enhance segmentation
accuracy, becoming an active area of research and development involved in radiotherapy. We found
that the new network architecture did not guarantee improvement. Conventional CNN-based
networks struggled with being expanded to the auto-segmentation of tumors from normal organs
due to local geometric dependence and difficulty in the hyper-parameter selection. As seen in the
development and success of nnU-Net, we emphasized the importance of finding suitable hyper-
parameters for the vision transformer. We applied our proposed framework based on VT U-Net v.2
to the prostate target volume segmentation, followed by extensively validating its performance in
segmentation accuracy against the other five competing deep neural networks through four-fold
cross-validation using CT images.

Abstract: U-Net, based on a deep convolutional network (CNN), has been clinically used to auto-
segment normal organs, while still being limited to the planning target volume (PTV) segmentation.
This work aims to address the problems in two aspects: 1) apply one of the newest network architec-
tures such as vision transformers other than the CNN-based networks, and 2) find an appropriate
combination of network hyper-parameters with reference to recently proposed nnU-Net (“no-new-
Net”). VT U-Net was adopted for auto-segmenting the whole pelvis prostate PTV as it consisted of
fully transformer architecture. The upgraded version (v.2) applied the nnU-Net-like hyper-parameter
optimizations, which did not fully cover the transformer-oriented hyper-parameters. Thus, we tried
to find a suitable combination of two key hyper-parameters (patch size and embedded dimension)
for 140 CT scans throughout 4-fold cross validation. The VT U-Net v.2 with hyper-parameter tuning
yielded the highest dice similarity coefficient (DSC) of 82.5 and the lowest 95% Haussdorff distance
(HD95) of 3.5 on average among the seven recently proposed deep learning networks. Importantly,
the nnU-Net with hyper-parameter optimization achieved competitive performance, although this
was based on the convolution layers. The network hyper-parameter tuning was demonstrated to be
necessary even for the newly developed architecture of vision transformers.

Keywords: transformer; hyper-parameter selection; planning target volume; auto-segmentation;
prostate cancer; VT U-Net v.2

1. Introduction

Segmentation of tumors and normal organs is a crucial procedure in radiotherapy (RT)
treatment planning because it shows the amount of radiation delivered to the target volume
and the organs delineated in the optimized plan. However, this segmentation is often time-
consuming and labor-intensive, and requires a steep learning curve to reach the expert level.

Cancers 2023, 15, 5507. https://doi.org/10.3390/cancers15235507 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15235507
https://doi.org/10.3390/cancers15235507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-1825-815X
https://orcid.org/0000-0002-9435-7750
https://orcid.org/0000-0002-4652-8682
https://doi.org/10.3390/cancers15235507
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15235507?type=check_update&version=1


Cancers 2023, 15, 5507 2 of 15

Furthermore, despite several automated methods proposed over the past few decades, their
segmentation accuracy has been inconsistent, primarily due to their reliance on a limited
number of patient cases [1–4]. Fortunately, the advent of deep neural networks empowered
by advanced computing technology, particularly graphical processing units (GPUs), has
opened up new possibilities for medical image segmentation [5]. This utilization of deep
neural networks has led to a learning-based approach, in which algorithmic development
and assessment are performed using a significant amount of data with a division of training
and testing phases [6]. Additionally, convolutional neural networks (CNNs) incorporate
convolution operators into deep neural networks, thus enabling 2D or 3D images to be
directly applied for training the networks [7,8].

U-Net has succeeded in various CNN applications, particularly in medical image
processing, using the convolutional layers and the skip connections between the encoder
and decoder [9]. Among these applications, the normal organ segmentations in RT have
been the most active area of research and development [10,11], which have resulted in the
current availability of several software options for auto-segmentation. However, CNN-
based frameworks have yet to be widely expanded to tumor segmentation as they mainly
focus on segmenting normal organs in most cases [12]. One of the reasons for this limitation
is the inherent challenges and variations in tumor segmentation. Unlike normal organs,
tumors in medical images lack clear gradients or typical characteristics regarding shape,
size, or location. Another reason is the shortcomings of CNN-based architectures, including
the difficulty in optimizing network hyper-parameters and the excessive dependence
on local imaging information. For example, there are hyper-parameters such as image
size, learning rate, the depth of the network, and the kernel size of CNN that need to
be determined by users, which can affect the segmentation accuracy. Additionally, the
convolutional layers of CNN in the encoders and decoders extract and propagate the image
features using a small kernel matrix, typically 3 × 3, which limits the exploration of the
global spatial information of the images.

Several studies have addressed the drawbacks of CNN-based models for medical
image segmentation. Although several U-Net variants have been developed to enhance
segmentation accuracy, several studies by Isensee et al. in 2018 and 2021 showed that a
well-trained U-Net was still the most effective approach for achieving greater segmentation
accuracy [13,14]. Furthermore, their studies confirmed that the qualified segmentation
accuracy was attained by completing the well-trained U-Net by the hyper-parameter opti-
mization on nnU-Net (“no-new-Net”). Meanwhile, a new type of network architecture, the
transformer, has been actively developed in the context of deep learning. Transformers ex-
tract global and remote semantic information, crucial for dense prediction tasks, especially
for 3D medical image segmentation [15,16]. Unlike CNNs, transformers suppress irrele-
vant areas of the input image and highlight salient features useful for a specific task [17].
The combination of CNN and transformer has been studied in the encoders of 2D and
3D networks, such as TransUNet and Unetr [18,19]. In TransUNet, CNN feature maps
were fed into the encoder of the transformer. Contrarily in Unetr, the features extracted
from the transformer entered CNN layers. Recently, fully transformers with U-Net shapes
have been introduced in 2D or 3D image-based networks: Swin-Unet [16], nnFormer (al-
most fully) [20], and VT U-Net [21]. These fully transformers have the characteristics of a
hierarchically shifted window in the U-shaped networks.

This study aims to enhance the precision of auto-segmentation of the whole pelvis
target volume for prostate cancer patients, which contains extensive lymph nodes and
lacks a clear gradient in image intensity. To achieve this goal, the study focused on using
a new network architecture called a vision transformer, which can overcome the defects
of CNN-based networks. Furthermore, the study aims to identify the suitable network
hyper-parameters that may impact the PTV segmentation accuracy. The VT U-Net v.2
was selected for the whole pelvis planning target volume (PTV) segmentation for prostate
cancer patients as it was featured in (1) a U-shaped transformer network architecture
consisting of fully self-attention blocks and (2) a function of semi-hyper-parameter selection
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for the transformer based on nnU-Net. Since the VT U-Net v.2 partially accounted for
some network hyper-parameters necessary for the vision transformer, the proposed study
exploited additional hyper-parameter tuning and a newly defined loss function to address
this limitation.

Our main contributions of this work were as follows:

• We propose one of the initial auto-segmentation models for the PTV target volume of
the prostate, as the previous investigators have predominantly focused on studying
organs-at-risk (OARs) and extended it to gross tumor volume/clinical target volume
(GTV/CTV) to some extent.

• We demonstrated that the proposed model outperforms the latest state-of-the-art
(SOTA) models in the PTV auto-segmentation, including nnU-net and recently pro-
posed hybrid- and fully-vision transformers.

We validated the effectiveness of fine-tuning the important network hyper-parameters in
the new network architecture, vision transformer, for enhancing the PTV segmentation accuracy.

2. Materials and Methods
2.1. Transformer VT U-Net

This work adopted the fully vision transformer for prostate target volume auto-
segmentation, specifically the VT U-Net featuring self-attention without convolution layers
in a U-shaped encoder and decoder, as seen in Figure 1a. Self-attention is a crucial compo-
nent of the transformer, enabling the representation of the degree of impact as a correlation
by shifting a single sequence to different sequences, thus handling the global receptive field
intrinsically [22–25]. Furthermore, instead of updating the convolution filters as typically
performed in a CNN [26], the self-attention mechanism updates three matrices in parallel,
namely query (Q), key (K), and value (V) vectors.
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and head numbers) in VT U-Net v.2.

Among the hyper-parameters required for the vision transformer, the embedded di-
mension is the number of channel dimensions for linearly projecting input data into the first
feature map. The patch size represents the size of volumetric data for partitioning during
training. The batch size is an additional dimension fixed across the epoch, representing the
number of input data. The window size means the size of the data operated in self-attention,
while the head number referrs to the number of self-attention units. As shown with a blue
line in Figure 1b, the embedded dimension was uniformly split by the head number, thus
determining the sizes of Q, K, and V vectors feeding into the self-attention mechanism. The
attention map (RN×N) showed how much attention was given to the entire image area to
identify which features contributed the most, with N representing the cube of the window
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size. To set the head numbers, we based it on the embedded dimension of the pre-trained
Swin-transformer model [27,28], with [3, 6, 12, 24] set to 96, [4, 8, 16, 32] set to 128, and
[6, 12, 24, 48] set to 192.

2.2. Hyper-Parameter Selections for Network Architecture of VT U-Net

The new vision transformer network architecture with self-attention can help address
the issue of relying on local geometric imaging information during network training.
However, optimal network performance can only be guaranteed by carefully selecting
network hyper-parameters and properly considering architectural details. The nnU-Net
demonstrates the importance of hyper-parameter optimization over the development of
the novel network architecture. The basic concept of nnU-Net is to ensure computational
efficiency by reflecting the GPU memory budget through their statistics, which helps
determine essential network hyper-parameters such as the patch size of input images,
batch size, and the number of convolution layers. Additionally, nnU-Net applies the post-
processing to mainly remove noisy elements and proposes a novel concept of defining the
loss function, called deep supervision, serving as an overall objective function across the
output layers of different resolutions.

While VT U-Net v.1 does not prioritize hyper-parameter optimizations, it emphasizes
the new network architecture. VT U-Net v.2 was an upgraded version incorporating
an adaptive hyper-parameter optimizer embedded in nnU-Net, rather than revising the
network architectures. Table 1 summarizes the features of VT U-Net v.1 and VT U-Net v.2,
compared to nnU-Net. VT U-Net v.2 adopted useful features from nnU-Net to improve the
performance, mainly oriented to GPU memory efficiency, which did not pay much attention
to optimizing the hyper-parameters that potentially affect the network architecture. It is
worth noting that nnU-Net was based on convolution layers and did not cover up the hyper-
parameters associated with the vision transformers. Likewise, VT U-Net v.2, referring to
nnU-Net, did not fully encompass the necessary network hyper-parameters for the vision
transformers, such as embedded dimension, head numbers, and window size, as outlined
in Table 1. Additionally, it did not provide specific guidelines for the patch size and the
number of layers.

Table 1. Functions regarding network hyper-parameter selection. “o” denotes the automatic imple-
mentation of the function, while the semi-automatic in “4”. “—” indicates not applicable in the
model, while “×” is the disuse despite the benefit of the function.

nnU-Net VT U-Net v.1 VT U-Net v.2 Modified VT U-Net v.2
(Proposed)

Pre- and post-processing and loss
Oversampling 1 o × o o

Post-processing 2 o × o o
Deep supervision o × × o

Hyper-parameter & architecture
Batch size o × o o
Patch size o × × o

Embedded dimension — × × o

Head number — × × 4
(adaptive to embedded dimension)

Window size — × × ×

Architecture o × 4 o
(same as nnU-Net)

Oversampling 1: sampling patches centering a voxel chosen randomly in the target volume with ratio. Post-
processing 2: removing all but the largest connected foreground region.

The same approach as nnU-Net was employed in this study to determine the number of
layers based on the depth of the network, and a window size of 7, consistent with previous
transformer-based networks, was set. Based on the pre-trained models, the embedded
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dimension and head numbers were adjusted accordingly. The embedded dimension and
patch size play a vital role in determining the dimensional specifications of the first feature
input into the network. Of the two, the patch size is crucial since it directly influences the
trade-off between global and local information processing in the network. Larger patch
sizes capture more global context for recognizing larger-scale patterns and structures in the
image, while smaller ones catch more local fine-grained details. Therefore, the first feature
extracted from various patch sizes included other contextual information that may affect
the performance of the transformer. Also, the VT U-Net v.2 did not have deep supervision
in defining the loss function. To address this, the modified VT U-Net v.2 added an auxiliary
segmentation output to depthwise layers by applying a 1 × 1 × 1 convolution to enable
this deep supervision to alleviate the vanishing gradient issue by effectively utilizing the
multi-level loss fusion [29–32]. Figure 2 illustrates the proposed network architecture,
including pre-processing the given input images, post-processing the generated output,
the structure of the deep supervision, and the hyper-parameter selection. Table 1 outlines
the differences between VT U-Net v.2 and our proposed framework, mainly regarding
hyper-parameter selections.
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of the whole pelvis prostate planning target volume (PTV): (a) adaptive workflow in pre-processing,
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Figure 3 elaborates the competence of the proposed framework compared to the
characteristics of several other transformer-based networks, such as Swin-Unetr, nnFormer,
VT U-Net v.1, and VT U-Net v.2, and some specific features of nnU-Net. As stated above,
the proposed network, called modified VT U-Net v.2, was based upon the VT U-Net v.2,
and included deep supervision in defining the loss function and intensified the degree of
care for hyper-parameters. The proposed network differed from nnFormer and Swin-Unetr
in terms of the network architecture (fully transformer vs. a combination of transformer
and convolution layers) and usage of the pre-trained model. Furthermore, the proposed
network selected the higher embedded dimension than those in the other investigated
networks for tumor segmentation. Finally, while VT U-Net v.2 partially used an adaptive
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optimizer oriented from nnU-Net, the proposed network handled it more comprehensively,
as shown in Table 1.
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2.3. Patient Cohorts and Data Pre-Processing

This study protocol was approved by the ethics committee/institutional review board
(IRB) of the Yonsei University Severance Hospital, Korea (4-2022-0894), which waived
the need for informed patient consent to the use of patient images. The patient cohort
consisted of 160 cancer patients who received RT from 2019 to 2020 after being diagnosed
with prostate cancer spread in the whole pelvis [33,34], which one radiation oncologist
retrospectively observed. All data used in this work were acquired from a single institution,
and the target volume was delineated by an experienced radiation oncologist from Yonsei
Cancer Center. All patients were treated by intensity-modulated radiation therapy (IMRT)
with a conventional linear accelerator (LINAC) and TomoTherapy. Of the 160 patient scans,
20 scans containing barium-contrast bladder and metal-inserted spine were excluded from
this study. The remaining 140 scans were divided into 4 sets for 4-fold cross-validation.
Each fold consisted of 105 cases for training and 35 for validating and testing (10 for
validating and 25 for testing the trained network).

All PTV CT patients were volumetric datasets in three dimensions, with a median
shape of 512 × 512 × 250 and median spacing (0.9766, 0.9766, 2). These datasets were
resampled to the same target spacing (2, 2, 2) and embedded into a 256 × 256 × 256 3D
volumetric space [35]. After normalizing and window leveling [−200, 250] [36–39], to
enhance the contrast and texture of soft tissue, the foreground of input voxels was selected
from the background by an intersection with mask voxels images using MATLAB R2022a.
To increase the amount of data for training the network, we augmented the CT images (used
for training phases) by rotating them randomly from −0.5 to 0.5 in horizontal, vertical,
and axial directions, contrast transforming them randomly from 0.75 to 1.25, and adding
noise randomly with a variance that ranged from 0 to 0.1. These data augmentations used
BatchGenerators Library provided by the Division of Medical Image Computing of the
German Cancer Research Center (DKFZ).

2.4. Implementation and Evaluation

The modified VT U-Net v.2 networks were implemented on a personal workstation
with dual accelerated GPU (NVIDIA 3090, A6000, Santa Clara, CA, USA), using Python 3.8
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(http://www.python.org (accessed on 3 May 2022)) and PyTorch 1.11.1 (http://www.
pytorch.org (accessed on 21 May 2022)). The original CT images of 512 × 512 × N voxels
had an intensity corresponding to the Hounsfield unit (HU), where N ranged from 61 to 375.
During training in the transformer network, the input images were normalized to a range
from 0 to 1 [40]. The network was trained using the AdamW optimizer (an open-source
Pytorch library) and a modified loss function that combined cross entropy and dice loss
under deep supervision. The training ran 1300 epochs, each containing 250 iterations and
early stopping. The learning scheduler used PolyLR with a learning rate of 1 × 10−4,
determined empirically (https://github.com/himashi92/VT-UNet/blob/main/VTUNet/
vtunet/training/learning_rate (accessed on 21 May 2022)). Table 2 specifies the network
hyper-parameters used in common for both CNN-based and transformer-based networks.

The fully transformer and hybrid networks required the determination of additional
hyper-parameters, including the patch size, network architecture, and hyper-parameters,
as detailed in Table 3. The hyper-parameters for the existing networks were selected as
the values recommended in the published manuscripts. However, the process of hyper-
parameters tuning, explained in the subsequent section, led to the selection of the embedded
dimension (128) and patch size (128 × 128 × 128) for the modified VT U-Net v.2. The
number of heads was adaptively chosen for considering the embedded dimension and the
pre-trained model. Meanwhile, the window size followed the Swin-Unetr and VT U-Nets
settings and was not optimized.

The proposed transformer architecture, which underwent additional hyper-parameter
adaptation on the VT U-Net v.2, was compared to several other networks, including the
conventional 3D U-Net [41], nnU-Net, Swin-Unetr, nnFormer, VT U-Net v.1, and VT U-Net
v.2. The segmentation accuracy of the proposed network was assessed using the dice
similarity coefficient (DSC) and 95% Hausdorff distance (HD95) compared to the other
networks. The HD95 was calculated using the 95th percentile of the lengths to minimize a
small subset of outliers [19,42].

Table 2. Hyper-parameters of convolutional neural network (CNN), hybrid, and transformer-
based networks.

Network Learning Rate Optimizer Loss Function Epoch

3D U-Net [42] 1 × 10−4 Adam Dice + BCE 300
nnU-Net [13,14] 1 × 10−2 SGD Dice + CE + DS 150 (×250)
Swin-Unetr [12] 1 × 10−4 AdamW Dice + CE 400–1000
nnFormer [20] 1 × 10−2 SGD Dice + CE + DS 1300 (×250)

VT U-Net v.1 [21] 1 × 10−4 Adam Dice + BCE 400–500
VT U-Net v.2 [22] 1 × 10−4 AdamW Dice + CE 1300 (×250)

Proposed 1 × 10−4 AdamW Dice + CE + DS 1300 (×250)

Table 3. Transformer hyper-parameters of hybrid (CNN and transformer) and transformer-
based methods.

Network Embedded Dimension Patch Size Number of Blocks Window Size Number of Heads Parameters

Swin-Unetr [12] 48 96 × 96 × 96 [2, 2, 2, 2] [7, 7, 7, 7] [3, 6, 12, 24] 62.8 M
nnFormer [20] 96 128 × 128 × 128 [2, 2, 2, 2] [4, 4, 8, 4] [3, 6, 12, 24] 37.7 M

VT U-Net v.1 [21] 96 128 × 128 × 128 [2, 2, 2, 1] [7, 7, 7, 7] [3, 6, 12, 24] 20.8 M
VT U-Net v.2 [22] 96 128 × 128 × 128 [2, 2, 2, 1] [7, 7, 7, 7] [3, 6, 12, 24] 30.6 M

Proposed 128 128 × 128 × 128 [2, 2, 2, 1] [7, 7, 7, 7] [4, 8, 16, 32] 36.7 M

3. Results
3.1. Quantitative Analysis for PTV Auto-Segmentation

Figure 4 reveals the training and validating loss and accuracy for all investigated
networks in this study. By illustrating the pattern of losses and DSCs (accuracy) in training
and validating phases over the number of epochs, it showed that training and validating of
the investigated convolution-based and transformer-based networks were appropriately

http://www.python.org
http://www.pytorch.org
http://www.pytorch.org
https://github.com/himashi92/VT-UNet/blob/main/VTUNet/vtunet/training/learning_rate
https://github.com/himashi92/VT-UNet/blob/main/VTUNet/vtunet/training/learning_rate
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implemented. Table 4 shows the quantitative analysis of the segmentation accuracy of the
networks used for the whole pelvis PTV segmentation for prostate cancer patients. On
average, the modified VT U-Net v.2 outperformed the other networks in terms of DSC and
HD95 across the four-fold cross-validation. The unmodified VT U-Net v.2 was expected to
perform similarly to its modification in each fold. However, some slight differences arose
due to additional hyper-parameter adjustment (patch size and embedded dimension) and
the adoption of deep supervision in the loss function. Swin-Unetr, which combined CNN
and transformer, showed competitive performance against the proposed network. It is
worth noting that VT U-Net v.1, which consisted of the fully transformer network architec-
ture, resulted in poor segmentation accuracy. Meanwhile, nnU-Net occasionally displayed
comparable performance to the proposed network, despite being based on convolutional
blocks. Consequentially, it implied that the suitable hyper-parameter selection for the
specific network architecture would be important, as did the type of network architecture
for auto-segmentation.

Table 4. Segmentation results of CNN, hybrid, and transformer architectures on the PTV dataset.
↑ means higher is better. The best results are bolded while the second best are underlined, and
experimental results of baselines were acquired from 3D U-Net. All experiments were run as 4-fold
cross-validation. “↓” means lower is better.

Method
Dice Similarity Coefficient (DSC) ↑ 95% Hausdorff Distance (HD95) ↓

Fold1 Fold2 Fold3 Fold4 Mean Fold1 Fold2 Fold3 Fold4 Mean

3D U-Net 80.96 77.98 76.46 76.75 78.0 *** 3.23 4.19 5.55 4.45 4.4 ***

nnU-Net 83.95 82.02 79.25 82.44 81.9 * 2.70 3.60 5.14 2.94 3.6

Swin-Unetr 82.68 81.87 79.47 83.06 81.8 * 3.00 3.65 4.97 2.75 3.6

nnFormer 83.31 81.31 79.85 82.39 81.7 ** 2.80 3.78 5.13 3.12 3.7 *

VT U-Net v.1 80.21 76.65 75.08 76.25 77.0 *** 3.35 4.34 5.44 3.93 4.3 ***

VT U-Net v.2 84.12 82.30 79.82 82.61 82.2 ** 2.72 3.60 5.04 3.01 3.6

Proposed 84.20 82.65 80.13 82.82 82.5 2.49 3.52 4.98 3.01 3.5

*: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001.

Table 5 presents the statistical analysis of the proposed network compared to other
networks for the 25 testing cases in each fold and the total 100 cases in the combined
fold 1 to 4, represented by the p-value. In all folds combined, the differences between
the proposed network and other networks were statistically significant (p < 0.05) in most
cases for DSC and HD95, except for HD95 against nnU-Net, Swin-Unetr, and VT U-Net v.2.
In the fold-specific comparison, the nnU-Net and VT U-Net v.2 were highly competitive
with the proposed network. VT U-Net v.2, the origin of the proposed network, showed
comparable results, possibly due to the relatively small sample size. Meanwhile, the
nnU-Net demonstrated the effectiveness of the hyper-parameter optimization in statistical
analysis and the averaged outcomes. In a single testing case, Figure 5 illustrates the
segmented contours of the whole pelvis prostate PTV from the modified VT U-Net v.2 and
nnU-Net, along with the ground truth. It turned out that the two networks had similar
performance, while the difference was found in the transition area from the lymphatic
nodes to the prostate tumor bed, as highlighted by the dotted yellow.
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Table 5. Statistical analysis of CNN, hybrid, and transformer architectures. The p-value of the models
<0.05 indicates that the performance difference is statistically significant.

Method
DSC HD95

Fold1 Fold2 Fold3 Fold4 All folds Fold1 Fold2 Fold3 Fold4 All Folds

3D U-Net <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.004 <0.001 <0.001

nnU-Net 0.410 0.126 0.255 0.206 0.040 0.070 0.473 0.122 0.479 0.080

Swin-Unetr 0.022 0.020 0.030 0.339 0.020 0.007 0.123 0.091 0.392 0.210

nnFormer 0.046 0.013 0.389 0.122 0.010 0.028 0.116 0.468 0.181 0.020

VT U-Net v.1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.050 <0.001 <0.001

VT U-Net v.2 0.331 0.051 0.117 0.106 0.010 0.426 0.448 0.170 0.480 0.090
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row: original images, bottom row: enlarged view).

3.2. Hyper-Parameter Tuning

In investigating the impact of hyper-parameter selection, the patch size varied from
96 × 96 × 96 through 128 × 128 × 128 to 160 × 160 × 160 on the modified VT U-Net
v.2. The embedded dimension was also carefully chosen with options 96, 128, and 192,
which corresponded to the setting of the pre-trained networks. In addition, as stated in
the preceding section, we adaptively tuned the head numbers regarding the embedded
dimension, and the window size was seven, as in the previous transformer-based networks.

Table 6 presents the DSCs and HD95s for various combinations of patch size and
embedded dimension, which were computed over four different folds. Although there
were some exceptional cases, the proposed network achieved the largest DSC and the
lowest HD95 when the patch size was 128 × 128 × 128, and the embedded dimension
was 128. It was also found to have a trend that a combination of the large patch size
(160 × 160 × 160) of the input for the network and the smaller embedded dimension (96
or 128) or vice versa yielded greater segmentation accuracy. When averaging DSCs and
HD95s for the testing cases belonging to folds 1 through 4, the selected combination of
patch size of 128 for three dimensions and the embedded dimension of 128 seemed more
explicit against the other possible combinations shown in Figure 6. Moreover, there was
a slight indication that the patch size of 128 was a stronger constraint for enhancing the
segmentation accuracy relative to the embedded dimension. Table 7 lists the p-values
following the statistical analysis between the selected combination and the others. In
most cases, the selected combination had statistically significant differences against the
combinations in a consistently exceptional case for the DSC and HD95 criterion. In the
statistical analysis, however, it was difficult to discern which network hyper-parameter
affected the segmentation accuracy the most.
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Table 6. Hyper-parameter selection in the proposed network (the modified VT U-Net v.2). DSC and
HD95 were measured 4-fold.

Hyper-Parameter DSC ↑ HD95 ↓
Patch Size Embedded Dimension Fold1 Fold2 Fold3 Fold4 Fold1 Fold2 Fold3 Fold4

96 96 83.57 82.09 79.57 82.33 2.72 3.78 5.02 3.12

96 128 83.78 82.34 79.35 82.25 2.52 3.60 4.98 3.12

96 192 84.36 82.05 79.52 81.98 2.68 4.03 5.02 3.22

128 96 83.72 82.32 79.77 82.39 2.73 3.70 5.05 3.07

128 128 84.20 82.65 80.13 82.82 2.49 3.52 4.98 3.01

128 192 83.96 81.89 80.45 82.23 2.63 3.78 4.94 3.44

160 96 84.16 81.87 79.37 81.87 2.78 3.59 5.07 3.26

160 128 83.65 82.14 79.65 82.11 2.64 3.80 5.02 3.19

160 192 84.03 81.54 79.85 81.88 2.61 3.78 4.96 3.25

↑ means higher is better, while ↓ means lower is better. The best results are bolded while the second best
are underlined.
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Figure 6. Hyper-parameter selection in the proposed network (the modified VT U-Net v.2). (a) DSC
and (b) HD95 across nine combinations of the embedded dimension (head numbers) and patch
size.4. Discussion.

Table 7. Statistical analysis (p-value) of hyper-parameter selection in the proposed network. The
p-value of the models <0.05 indicates that the performance difference is statistically significant.

Hyper-Parameter DSC HD95

Patch Size Embedded Dimension Fold1 Fold2 Fold3 Fold4 All Folds Fold1 Fold2 Fold3 Fold4 All Folds

96 96 0.111 0.018 0.061 0.043 0.001 0.021 0.157 0.149 0.190 0.006

96 128 0.185 0.144 0.043 0.069 0.005 0.087 0.108 0.475 0.405 0.079

96 192 0.365 0.087 0.072 0.005 0.009 0.179 0.199 0.380 0.081 0.026

128 96 0.101 0.124 0.021 0.046 0.004 0.026 0.236 0.222 0.166 0.019

128 192 0.193 0.118 0.089 0.020 0.059 0.089 0.145 0.301 0.021 0.018

160 96 0.451 0.154 0.008 0.001 <0.001 0.058 0.176 0.076 0.005 <0.001

160 128 0.137 0.066 0.127 0.007 0.002 0.228 0.080 0.389 0.007 0.006

160 192 0.347 0.023 0.173 <0.001 0.001 0.294 0.036 0.172 0.003 0.020

The p-value < 0.05 are bolded.

This work was motivated by a hypothesis that the limited application of CNN to
auto-segmentation of PTV may be associated with the inherent characteristics of CNN-
based networks. Specifically, these networks propagated local imaging features throughout
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the depth of layers, which could limit their ability to capture global imaging information.
Therefore, the vision transformer has attempted the architectural transformation as an
alternative, which can bring in more global imaging information by shifting the regional
patches to the original patch during network training. Out of several variants in transformer
architecture, the VT U-Net v.1 with fully transformer layers was chosen as a candidate for
auto-segmenting the whole pelvis PTV to investigate the effectiveness of the architectural
transformation. Additionally, it was well known that the other approach regarding the
hyper-parameter selection was introduced under the name of nnU-Net. This approach
aimed to identify the suitable combinations of hyper-parameters by considering the GPU
computational efficiency and the capacity based on their statistics, along with the slightly
different loss definition called deep supervision. Although the updated VT U-Net (v.2)
embraced some critical features of nnU-Net, especially in computational efficiency, it
may require further modifications to take transformer-oriented hyper-parameters into
account. Thus, this work did not adopt the given hyper-parameters, but instead adjusted
vital parameters such as the patch size and embedded dimension (associated with head
numbers) to find a suitable combination that can enhance the segmentation accuracy.

As a result of the extensive investigations and comparisons against the existing net-
works, the modified VT U-Net v.2 yielded the highest average DSC and lowest average
HD95 quantitatively, from the four-fold cross-validations, followed by VT U-Net v.2, nnU-
Net, Swin-Unetr, nnFormer, VT U-Net v.1, and 3D U-Net. Concerning the statistical analysis,
the VT U-Net v.2 and nnU-Net turned out to be the most competitive models. Unexpectedly,
VT U-Net v.1 resulted in poor accuracy despite the fully transformer architecture applied,
which might have been derived from two reasons. First, the nnU-Net, well-customized to
the CNN-based framework, did not lose its competitiveness in the PTV auto-segmentation
relative to the transformer-based architecture. The auto-segmentation results showed
remarkable differences between VT U-Net v.1 and v.2 even though they shared the same
network architecture, which implied that considering the network hyper-parameters should
be significant. We found that there were two key parameters that highly affected the PTV
segmentation accuracy, the patch size and embedded dimension. Hence, we trained the
proposed network while varying those two important network hyper-parameters under
nine different conditions. It involved 36 training sessions for the 4-fold cross-validation,
each lasting 4.2 days. From our observation, the variation of two influential network
hyper-parameters, patch size and embedded dimension, led to non-negligible differences
in the segmentation accuracy, as seen in quantitative results and statistical analysis of
Tables 6 and 7. Importantly, the VT U-Net v.2 chose the embedded dimension to be 96
as a default, while the embedded dimension of 128 turned out to attain greater PTV
segmentation accuracy. Along with them, the patch size of 128 × 128 × 128 yielded the
best results.

The dataset used in this work consisted of 140 CT scans with a prior on the whole
pelvis prostate PTV given. Although the number of CT scans was sufficiently large for
the network training and evaluation, the proposed network was assessed using only a
single case, which did not fully generalize the selected network hyper-parameters to be
optimal for other clinical sites. However, it is well known that the planning CT images
used for radiotherapy had similar image sizes (512 × 512 with 100–200 slices) and image
resolutions (0.97~1 mm in x- and y-axis and 2~3 mm in z-axis). Considering the fact that the
hyper-parameters focused on in this work were highly involved in the resolution and size
of input image, the hyper-parameter posed in this work would work out properly for the
other datasets unless the PTV size were too much small. Another point for discussion is the
resolution of hyper-parameters considered in this work, such as the embedded dimensions
of 96, 128, and 192 and patch sizes of 96, 128, and 160. The values were chosen based
on the specifications of the pre-trained models used, as the VT U-Net was based on the
pre-trained model. There could be slightly different combinations of those parameters
with denser sampling. Considering the network architecture consisting of down- and
up-sampling, the possible values are somewhat constrained to 64, 96, 128, 160, and 192,
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etc., in the given hardware. The results found in this work might still be validated in
this sense. Finally, the hyper-parameter tuning studied in this work could only partially
comprehend some network hyper-parameters in the transformer. As shown in Table 3,
the head sizes were adaptively changed from [3, 6, 12, 24] for each layer to the enlarged
extent depending on the embedded dimension, [4, 8, 16, 32] for the embedded dimension
of 128. The window size was fixed to seven for each layer as most existing transformers
selected the value. The previous work, nnFormer, attempted to adopt a variable window
size across the network layers [4, 4, 8, 4] instead of the fixed number seven. Still, it did not
provide improved accuracy when applied to the proposed network (DSC of 81.9 and HD95
of 3.6). This work focused on the hyper-parameters associated with the size of the first
features entering the vision transformer. In the long run, further extensive investigations
are required to determine the optimal parameter selections regarding network architectures.
Although there may be a long journey in the hyper-parameter optimizer for the new
network architecture, vision transformer, the primary findings and insights discussed
in this work are a major milestone in emphasizing the hyper-parameter setting for PTV
auto-segmentation using the transformer-based networks.

4. Conclusions

This work proposed a fully transformer-based network to auto-segment the whole
pelvis PTV for prostate cancer patients with appropriate hyper-parameter selection. It
successfully demonstrated that the network transformation from the CNN-based to the
transformer-based approach and the choice of essential hyper-parameters oriented to the
transformer are important to enhance the segmentation accuracy. Additionally, our proposed
network with 128 embedded layers and 128 × 128 × 128 patch size led to a promising
performance compared to other investigated networks (CNN, hybrid, and transformer-
based networks), with an average DSC of 82.5 and HD95 of 3.5 for 4-fold cross-validation.
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