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ABSTRACT 

 

 

Effects of ultraviolet and alendronate 

treatment on the osseointegration and 

mucosal attachment of dental implants 
 

 

 

Tae Hyung Kim 

 

 

Department of Dentistry 

The Graduate School, Yonsei University 

(Directed by Professor Hong Seok Moon, D.D.S., M.S.D., Ph.D.) 

 

 

The purpose of this study is to evaluate the effects of ultraviolet (UV) treatment and 

alendronate immersion on the osseointegration of dental implants and mucosal attachment 

of dental implant abutments using a mongrel dog model. Forty-eight sandblasted, large-

grit, acid-etched (SLA) titanium dental implants and 48 machined surface healing 

abutments, and four male mongrel dogs were prepared. Implants and healing abutments 
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were divided into four groups (n=12 per group). The control group did not undergo 

additional surface treatments. The UV group was treated with UV for 15 minutes, and the 

AN group was soaked in 10-3 M alendronate for 24 hours. The ANUV group was treated 

with alendronate, followed by UV irradiation. All implants were placed on the mandible of 

mongrel dogs, and the animals were sacrificed at 4 and 8 weeks post-operatively. The bone-

to-implant contact (BIC), bone density (BD), and connective tissue attachment (CTA) were 

measured. UV treatment of the SLA implants significantly increased the BIC of the cortical 

bone. However, the alendronate immersion did not significantly increase BIC or bone 

density, and there was no synergic effect with the UV treatment. Furthermore, UV treatment 

and alendronate immersion of machined healing abutments did not significantly increase 

the CTA. These results revealed that UV treatment on SLA implants can promote the 

osseointegration of implants, but alendronate immersion is not effective, and mucosal 

attachment to abutments is not enhanced by UV treatment and alendronate immersion. 

 

 

 

 

 

 

 

Keywords: alendronate, connective tissue attachment, dental implant, dental implant 

abutment, osseointegration, ultraviolet   
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treatment on the osseointegration and 

mucosal attachment of dental implants 
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(Directed by Professor Hong Seok Moon, D.D.S., M.S.D., Ph.D.) 

 

 

Ⅰ. INTRODUCTION 
 

 

Dental implants are one of the most useful treatment options for fully and partially 

edentulous patients. Initial osseointegration of dental implants is essential for treatment 

success. The rate and quality of the initial osseointegration are intimately related to the 

surface characteristics of the implants. In particular, the composition, hydrophilicity, and 

roughness of the implant surfaces are important factors in the implant-tissue interaction and 

osseointegration.1 Therefore, various surface treatment methods have been introduced and 

developed over the past few years to improve the osseointegration of dental implants. 
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Currently, the SLA(sandblasted, large-grit, acid-etched) treatment is one of the most 

widely used surface treatment methods for dental implants. Sandblasting, acid-etching, or 

a combination of both, has been utilized to enhance the microroughness of dental implants. 

SLA surfaces have been demonstrated to promote bone apposition histologically,2 and 

SLA-treated implants have a high removal torque value according to biomechanical 

testing.3 Previously, a retrospective analysis revealed a high 10-year survival and success 

rate.4  

When titanium is exposed to air, hydrophilicity gradually diminishes by hydrocarbons 

due to its own characteristics.5 Previous studies have reported that the degree of 

osseointegration of implants with hydrophobic surfaces was lower than that of hydrophilic 

surfaces.6 Therefore, various methods to increase hydrophilicity by increasing the surface 

energy of implants have been studied to improve the osseointegration of implants. These 

include activation using plasma of argon,7 alkali treatment,8 and ultraviolet (UV) 

irradiation.9-11 

As mentioned, UV irradiation is one way to increase the hydrophilicity of titanium 

implants. According to a study that applied a push-in test to evaluate the strength of 

osseointegration, UV treatment of acid-etched miniature titanium implants markedly 

enhanced osseointegration at 2 weeks after implant placement in a rat model.9 Another 

study assessed UV treatment-dependent effects on anodized titanium implants in a rabbit 

model and reported that the bone-to-implant contact (BIC) and the amount of bone in the 

thread area were significantly higher in the UV-treated group at 4 weeks after implantation, 
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but were not significantly different between the groups at 12 weeks after implantation.10 

An in vivo experiment that assessed the UV treatment-dependent effects on implant 

osseointegration using a minipig model also reported that there were no statistically 

significant differences in the implant stability quotient (ISQ) values at 12 weeks after 

implantation or the BIC measurement at 24 weeks after implantation.11 Taken together, 

these findings indicate that UV treatment may not affect the degree of final implant 

osseointegration but may have a beneficial effect on osseointegration in the initial phase of 

implantation. 

Furthermore, attempts have been made to use bioactive factors, such as bone 

morphogenetic proteins,12,13 fibroblast growth factor-fibronectin fusion protein,14 and Arg-

Gly-Asp (RGD)-peptide-modified polymers15 for implant surface treatments. There have 

also been attempts to use bisphosphonates for this purpose. Bisphosphonates are bioactive 

agents that inhibit bone resorption and ectopic calcification, and are commonly used for 

the treatment of osteoporosis, Paget’s disease, and primary hyperparathyroidism.16 An 

earlier study that assessed the use of alendronate in dentistry reported that local application 

of alendronate on peri-implant defects increased the early bone formation rate in a mongrel 

dog model.17 A later study on beagle dogs reported that the BIC percentage was 

significantly higher in the bisphosphonate-treated titanium implant group than in the non-

bisphosphonate-treated group at 12 weeks after implantation.18 In addition, a rat study 

compared four different surface treatments on hydroxyapatite-coated titanium implants and 

reported that, at 3 months after implantation, the bone-implant interface was significantly 
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higher in all three groups treated with bisphosphonate compared with that in the non-

bisphosphate treated group. Of the three bisphosphonate-treated groups, the highest value 

was found in the zoledronic acid group, followed by the ibandronate group, and the 

pamidronate group.19 This series of animal studies indicated that alendronate treatment of 

implant surfaces may effectively enhance osseointegration. 

The soft tissue barrier, which functions as a protective seal between the oral environment 

and the underlying peri-implant bone, is another important component for successful 

implant treatment. This soft tissue barrier is composed of two layers, namely, the epithelial 

attachment and underlying connective tissue attachment (CTA) layers.20-24 These 

attachments are known to be important for the maintenance of osseointegration of 

implants.22 Thus, studies on mucosal attachment to the abutment have also been reported. 

A study that examined the mucosal attachment of different abutment materials reported 

that titanium and ceramic abutments formed epithelial and connective tissue attachments 

that were 2 mm and 1-1.5 mm high, respectively, whereas gold abutment did not form 

proper attachments and led to bone resorption.20 Another study reported that the soft tissues 

remained stable for 2–5 months with titanium and zirconium abutments, whereas with 

gold/platinum-alloy abutments, the barrier epithelium shifted apically and marginal bone 

resorption occurred,21 indicating that mucosal attachment can vary depending on the 

surface properties of the abutment materials. 

Various surface treatment methods have been studied to improve mucosal attachment. 

An in vitro experiment showed that fibronectin coating of smooth (machined), plasma-
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sprayed, and hydroxyapatite-coated titanium surfaces enhanced gingival fibroblast 

attachment by 2-3 folds and that laminin coating also enhanced gingival epithelial cell 

binding.25 Another study reported that cleaning by plasma of argon may enhance cell 

adhesion to titanium abutments, even at the early stage of soft tissue healing.26 There was 

also s study that demonstrated an increased human gingival fibroblast differentiation and 

adhesion by UV treatment of titanium surfaces.27 However, it was difficult to find in vivo 

studies that investigated the effects of different abutment surface treatments for enhancing 

mucosal attachment.  

This study aimed to examine the effects of UV-alendronate combined treatment of SLA 

surface-treated implants on the osseointegration of implants and mucosal attachment of 

implant abutments from two different perspectives using a mongrel dog model. The null 

hypothesis is that, at both 4 weeks and 8 weeks after implant placement, there would be no 

difference in osseointegration or mucosal attachment between the control and UV-treated 

and/or alendronate-immersed groups.  
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Ⅱ. MATERIALS AND METHODS 

 

1. Experimental animals, housing, and husbandry 

Four male mongrel dogs (aged 24 months, weighing approximately 30 kg) were used in 

the present study. Experimental animals were housed at room temperature (20 °C) with 

humidity of around 50%. 

On the day of surgery, medetomidine (0.1 mg/kg, Tomidin, Provet Veterinary Products, 

Istanbul, Turkey) was injected intramuscularly to sedate each dog. Subsequently, 

alfaxalone (2.2 mg/kg, Alfaxan; Careside, Seongnam, Korea) was intravenously injected 

for general anesthesia. Inhalation anesthesia was maintained with 2–2.5% isoflurane, and 

an electrocardiogram was used for monitoring. For local anesthesia at the surgical site, 2% 

lidocaine with 1:80,000 epinephrine (2% lidocaine hydrochloride injection; Huons Co., Ltd, 

Seongnam, Korea) was injected. 

Antibiotic administration was performed according to the protocol as follows. On the 

day of surgery, antibiotics (30 mg/kg intramuscular cefazolin sodium, Yuhan, Seoul, Korea) 

and anti‐inflammatory and analgesic medications (0.5 mg/kg IV; Ketorolac, Hana Pharm., 

Gyeonggi‐do, Korea) were administered for one day. Then, for the following week, 

antibiotics (13.75 mg/kg; amoxicillin-clavulanate, Boryung Pharmaceutical, Gyeonggi‐do, 

Korea) and an anti-inflammatory and analgesic medication (0.1 mg/kg; meloxicam, 

Boehringer Ingelheim, Bogota D.C., Colombia) were orally administered. Sutures were 

removed 1 week after surgery. Following tooth extraction, the dogs were maintained on a 
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soft diet until they were sacrificed. 

 

2. Ethical considerations 

All experimental procedures were reviewed and approved by the Institutional Animal 

Care and Use Committee (Yonsei Medical Center, Seoul, Korea; Approval No. 2018-

0034). The housing protocol suggested by the Association for Assessment and 

Accreditation of Laboratory Animal Care International guidelines was followed. 

 

3. Experimental procedures 

3.1 Surface treatments 

Forty-eight SLA surface-treated dental implants (SuperLine 3.6 × 8.0 mm, Dentium, 

Suwon, Korea) and 48 machined-surface healing abutments (HAB453050E 4.5 × 3.0 mm, 

Dentium) were prepared. To minimize the influence of the occlusion force, a healing 

abutment was used instead of the final prosthesis. This is because uncontrolled excessive 

occlusal force during the healing period can result in fibrous encapsulation of the implants 

rather than osseointegration.28 The implants and healing abutments were divided into four 

groups (n=12 for each group), as follows: 

 

• CON group: SLA implants and machined healing abutments without any additional 

surface treatments. 

• UV group: Implants and healing abutments were treated with UV for 15 min using a UV-
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light emitting device (TheraBeam SuperOsseo, Uchio Inc., Tokyo, Japan) 

before implant placement. The UV was delivered as a mixture of spectra via 

a single UV lamp at wavelengths of 360 nm and 250 nm.29 

• AN group: Implants and healing abutments were soaked in 10-3 M alendronate (Cayman 

Chemical, Ann Arbor, MI, USA) for 24 h. 

• ANUV group: Implants and healing abutments were treated with alendronate, followed 

by UV irradiation, with each method adhering to the protocol described 

above. 

 

3.2 Surgical procedures 

Under general and local anesthesia, eight teeth, from the second premolar to the first molar 

of the mandible were extracted. Following tooth extraction and curettage, the sockets were 

liberally irrigated with saline and sutured with 3-0 synthetic resorbable materials (Vicryl; 

Ethicon, Somerville, NJ). After 3 months of healing, implants were placed under the same 

surgical conditions as those used for tooth extraction. A researcher who was blinded to the 

groups performed the surgery. Another researcher prepared the four groups of implants 

with different surface treatments. The implant surgery was performed as follows. An 

incision was made on the crest of the ridge to create full-thickness buccal and lingual flaps, 

and the exposed bone was flattened using a ridge contouring bur. In each adult dog, six 

implants were inserted into the mandible on each side, totaling 12 implants (Figures 1 and 

2). Cavities for implant placement were formed with a 2.2-mm guide drill and enlarged 
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with a 2.85-mm final drill. 

To prevent overheating during drilling, the site was continuously irrigated with sterile 

saline. After implant placement, the flaps were sutured with a 3-0 synthetic resorbable 

material (Vicryl) using the vertical mattress suture technique. The order of the implants 

placed in each dog is shown in Table 1. In consideration of the difference in bone quality 

and the effect of the opposite teeth between the premolar and molar areas, the four groups 

of implants were evenly distributed.  

 

  

Figure 1. The implantation sites of 12 mandibular implants in a mongrel dog 

The sites for implant insertion are labeled R1, R2, R3, R4, R5, and R6 from the 

anterior part of the right mandibular molars to the ipsilateral posterior part of the 

molars, and L1, L2, L3, L4, L5, and L6 from the anterior part of the left mandibular 

molars to the ipsilateral posterior part of the molars. 
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Figure 2. Clinical photograph illustrating the implants placed in the mandible 

of a mongrel dog 



11 

 

Table 1. Sites of insertion for the four groups of implants 

 R6 R5 R4 R3 R2 R1 L1 L2 L3 L4 L5 L6 

Dog#1 UV CON UV AN ANUV CON CON UV AN ANUV CON UV 

Dog#2 AN UV AN ANUV CON UV UV AN ANUV CON UV AN 

Dog#3 ANUV AN ANUV CON UV AN AN ANUV CON UV AN ANUV 

Dog#4 CON ANUV CON UV AN ANUV ANUV CON UV AN ANUV CON 

 

CON, control group; UV, UV-treated group; AN, alendronate-immersed group; ANUV, 

alendronate soaking and UV treated group. 

 
Four weeks after implant placement, two mongrel dogs (Dog#2 and Dog#4) were 

sacrificed for block bone sectioning, which included the insertion site. The samples were 

fixed in 10% formalin. The dogs were sacrificed as follows. Zolazepam (5 mg/kg; Zoletil, 

Virbac, Carros, France) was injected intramuscularly to induce sedation, and the animal 

was moved from the housing room to the preparation room. Then, a catheter was inserted 

into the cephalic vein, and alfaxalone (3 mg/kg; Alfaxan, Jurox Pty Ltd, Rutherford, NSW, 

Australia), medetomidine HCl (0.75 mg/kg; Tomidin, Provet, Istanbul, Turkey), 

acepromazine maleate (0.6 mg/kg; Sedaject, Samu Median, Seoul, Korea), and tramadol 

HCl (5 mg/kg; Trodon injection, Ajupharm, Seoul, Korea) were injected intravenously. 

Next, the animals were euthanized by cardiac arrest induced using an intravenous injection 

of potassium chloride (3 g/20 mL; Potassium Chloride-40 injection, Daihan, Seoul, Korea). 

At 8 weeks after implant placement, the remaining two dogs (Dog#1 and Dog#3) were also 

sacrificed in the same manner for block bone sectioning. 
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4. Sample size 

The sample size was determined by referring to the previous study.12 In this study, the 

implants were divided into four groups according to the surface treatment methods and a 

total of 24 implants were used, six in each group. According to the previous study, 12 

implants were set up per mongrel dog, and two dogs were needed accordingly. However, 

in this study, 48 implants and four mongrel dogs were used to analyze the difference 

between the 4-week and 8-week healing periods. This corresponds to a sample size 

calculation using the degree of freedom.30,31 

 

5. Histological analysis 

For histological analysis, resin blocks were prepared using the following process: First, 

the specimens were fixed in buffered neutral formalin (Sigma Aldrich, St. Louis, Missouri, 

USA) solution for 2 weeks and dehydrated with increasing concentrations of ethanol. For 

resin infiltration, the dehydrated tissue specimens were placed in a mixture of ethanol and 

Technovit 7200 resin (Heraeus Kulzer, Wehrheim, Germany), with an increasing ratio of 

resin. The infiltrated tissue specimens were embedded in an embedding mold. The 

specimens were inserted into a UV embedding system (KULZER EXAKT 520, Heraeus 

Kulzer, Norderstedt, Germany) and cured for 1 day. 

The desired sections of the cured specimens were sectioned using a diamond cutting 

system (EXAKT 300 CP, EXAKT Advanced Technologies, Norderstedt, Germany) and 

attached to slides using an adhesive press system. The final slides were ground to a 
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thickness of 40±5 μm using an EXAKT grinding system (KULZER EXAKT 400CS, 

EXAKT Advanced Technologies, Norderstedt, Germany). Of these, the two most central 

sections of the implant were selected. One section was stained with hematoxylin and eosin 

and the other was stained with Goldner’s trichrome to visualize the CTA to the healing 

abutment. Histological examination was performed using a light microscope (DMR; Leica, 

Nussloch, Germany), and quantitative analysis was performed using computer software 

(CaseViewer version 2.1, 3DHisTech, Budapest, 

Hungary; ImageJ, National Institutes of Health, 

Bethesda, Maryland, USA). Considering previous 

studies, the osseointegration of implants was 

evaluated by measuring the BIC (%)2,11,12,15,32 and 

bone density (BD, %).12,32,33 The BIC and BD 

were measured separately in the cortical bone and 

cancellous bone areas (Figure 3). The mucosal 

attachment was also evaluated by measuring the 

CTA (μm).20,21,34 The measurements were defined 

as follows: 

(1) BIC (%): The percentage of the bone-to-implant contact length with respect to the 

implant surface length (Figure 4).  

(2) BD (%): The percentage of the bone area to the total area within a 500 μm-wide zone 

lateral to the implant between the uppermost thread and bottommost thread in the cortical 

Figure 3. Bone segmentation for 

histomorphometry 
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bone and cancellous bone areas (Figure 4). 

(3) CTA (μm): The length from the apical end of the junctional epithelium to the fixture-

abutment connection, that is, the length of the connective tissue attached to the healing 

abutment (Figure 5). 

 

 

  

Figure 4. Measurement of the bone-to-implant contact and bone density 

(a) BIC (%) is the percentage of the bone-to-implant contact length (yellow lines) 

with respect to the implant surface length (yellow and red lines). (b) BD (%) is the 

percentage of the bone area (grey area) to the total area within a 500 μm-wide zone 

lateral to the implant. Only the two threads of the implant are shown for simplicity. 



15 

 

 

The failed implants were planned to be excluded from the analysis. The following 

conditions were considered implant failures35: (1) horizontal and/or vertical mobility, (2) 

uncontrolled progressive bone loss, (3) uncontrolled exudate, or (4) more than 50% bone 

loss around the implant. In addition, when measuring the CTA, areas with a deep or shallow 

implant placement depth on the crestal bone level were excluded from the measurement. 

In other words, CTA was measured only in the area where the implant was placed with an 

equicrestal position.  

Figure 5. Connective tissue attachment measurement 



16 

 

6. Statistical analysis 

Data were analyzed using statistical software (SPSS Statistics version 25.0; IBM Corp., 

Armonk, NY, USA). One-way analysis of variance followed by a post-hoc least significant 

difference test was used to identify the effects of UV treatment, alendronate, and the 

different healing periods. The level of significance was set at α=0.05.  
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Ⅲ. Results 

 

1. Histology 

Low-magnification histological images showing the entire implant parts were examined. 

These images were representative images of each group. Overall, there were no large 

differences in bone density between the CON, UV, AN, and ANUV groups (Figure 6). 

 

 

Figure 6. Low-magnification histologic photomicrographs, taken at 4 and 8 weeks 

CON, control group; UV, UV-treated group; AN, alendronate-immersed group; ANUV, 

alendronate soaking, and UV treated group (Goldner’s trichrome). 
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The higher-magnification histological images also did not reveal notable differences in 

bone density between the groups. However, a greater bone and implant surface contact was 

observed in the cortical bone area in the UV and ANUV groups. In contrast, no notable 

differences were found in the cancellous bone area between the groups (Figure 7).  
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Figure 7. High-magnification histologic photomicrographs, taken at 4 

and 8 weeks 

These are high-magnification histologic photomicrographs of the region that 

are representative of each group. The bone tissue is stained blue and orange. 

CON, control group; UV, UV-treated group; AN, alendronate-immersed 

group; ANUV, alendronate soaking and UV treated group (Goldner’s 

trichrome). 
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2. Histomorphometrical evaluation 

Since there were no failed implants, all implants were used for measurement without 

exclusion. However, due to problems with implant placement depth, one sample from each 

of the groups at 4 weeks and the ANUV group at 8 weeks was excluded, and a smaller 

number of samples were used for the analysis of CTA. In the cortical bone, BIC was 

significantly increased in the UV treatment group compared with that in the CON and AN 

groups at 4 weeks (CON [78.69±8.48%] vs. UV [88.37±5.20%], p=.047; UV 

[88.37±5.20%] vs. AN [76.69±8.22%], p=.019) and 8 weeks (CON [82.96±7.02%] vs. UV 

[91.99±6.21%], p=.028; UV [91.99±6.21%] vs. AN [82.64±7.47%], p=.024) (Table 2). In 

contrast, alendronate-only treatment and UV-alendronate combined treatment did not 

significantly increase the BIC. In cancellous bone, none of the treatments had any effects, 

and no significant difference was found with respect to the healing periods (Figure 8).  
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Table 2. Descriptive statistics of the BIC and BD values by groups and healing periods  

 
Period/Group 

BIC (%) BD (%) 

C
o

rt
ic

a
l 

4 weeks Mean ± SD Min Med Max Mean ± SD Min Med Max 

CON 78.7 ± 8.5 62.7 81.8 86.1 80.5 ± 10.2 67.5 82.4 93.4 

UV 88.4 ± 5.2 81.8 90.4 92.9 75.2 ± 6.8 69.1 71.9 85.2 

AN 76.7 ± 8.2 64.1 75.9 89.4 72.0 ± 8.4 58.5 75.1 80.6 

ANUV 85.3 ± 9.2 70.1 86.0 97.4 78.4 ± 7.2 70.2 77.9 91.4 

8 weeks Mean ± SD Min Med Max Mean ± SD Min Med Max 

CON 83.0 ± 7.0 74.4 82.1 92.2 80.7 ± 6.7 71.6 83.4 86.8 

UV 92.0 ± 6.2 81.0 93.5 99.2 81.1 ± 3.9 73.6 81.7 84.5 

AN 82.6 ± 7.5 75.0 81.7 93.4 82.0 ± 9.5 70.7 84.4 94.1 

ANUV 90.3 ± 5.6 81.2 93.1 94.7 80.3 ± 12.0 66.2 81.9 95.2 

C
a

n
ce

ll
o

u
s 

4 weeks Mean ± SD Min Med Max Mean ± SD Min Med Max 

CON 57.5 ± 15.9 41.7 53.3 79.2 34.1 ± 13.8 19.4 30.1 57.6 

UV 66.4 ± 7.6 58.2 65.7 75.5 35.4 ± 17.8 14.5 32.3 64.9 

AN 67.6 ± 14.2 45.9 68.1 82.9 36.9 ± 7.6 28.0 36.3 48.8 

ANUV 63.0 ± 16.1 36.0 65.8 79.4 33.7 ± 7.6 25.2 33.4 46.2 

8 weeks Mean ± SD Min Med Max Mean ± SD Min Med Max 

CON 58.4 ± 15.0 40.8 58.8 75.7 30.3 ± 9.0 16.7 30.4 43.1 

UV 66.5 ± 15.4 38.5 67.7 82.0 29.8 ± 6.9 21.9 30.4 37.6 

AN 57.4 ± 17.5 32.9 58.2 81.5 25.5 ± 9.6 17.1 22.3 42.0 

ANUV 48.5 ± 25.5 16.8 48.0 79.2 26.1 ± 7.7 16.8 23.6 37.6 
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Abbreviations: BIC, bone-to-implant contact; BD, bone density; SD, standard deviation; 

Min, minimum; Med, median; Max, maximum. Data are expressed as mean ± standard 

deviations and rounded to the first decimal place. 

 

 

  

Figure 8. The bone to implant contact (BIC, %) at 4 weeks and 8 weeks of healing 

The BIC was evaluated in the cortical (a) and cancellous (b) bone areas. CON, control 

group; UV, UV-treated group; AN, alendronate-immersed group; ANUV, alendronate 

soaking and UV treated group. *P<0.05. 
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With respect to BD, none of the treatments showed a significant increase. In the AN group, 

BD of the cancellous bone was significantly lower after 8 weeks of healing than after 4 

weeks of healing (4 weeks [36.94±7.56%] vs. 8 weeks [25.47% ±9.61%], p=.044) (Table 

2, Figure 9). No significant differences in the CTA were found between the groups, and 

although the values generally increased with an increasing healing period, the differences 

were not statistically significant (Table 3, Figure 10).  

 

 

  

Figure 9. Bone density (%) at 4 and 8 weeks of healing 

CON, control group; UV, UV-treated group; AN, alendronate-immersed 

group; ANUV, alendronate soaking and UV treated group. *P<0.05. 
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Table 3. Descriptive statistics of the CTA values by groups and healing periods 

 CTA (μm) 

Period/ 

Group 

4 weeks 8 weeks 

Mean ± SD Min Med Max Mean ± SD Min Med Max 

CON 2274.3 ± 1375.7 343.7 2297.9 4099.6 2811.0 ± 615.0 1862.4 2822.7 3679.2 

UV 2704.3 ± 1544.9 253.4 2957.7 4023.7 2200.9 ± 1140.0 718.5 2229.4 3461.0 

AN 2411.8 ± 1207.3 624.9 2442.3 3669.1 2866.0 ± 722.1 1772.3 3108.1 3665.0 

ANUV 2476.4 ± 1175.3 794.6 2805.6 3845.8 2180.2 ± 704.9 1486.2 1978.7 3345.4 

 

Abbreviations: CTA, connective tissue attachment; SD, standard deviation; Min, minimum; 

Med, median; Max, maximum. Data are expressed as mean ± standard deviations and 

rounded to the first decimal place.  

 

  

Figure 10. The connective tissue attachment (μm) at 4 and 8 weeks of healing 

CON, control group; UV, UV-treated group; AN, alendronate-immersed group; 

ANUV, alendronate soaking and UV treated group. 
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IV. Discussion 

 

In the cortical bone, UV treatment significantly increased the BIC. These UV effects were 

reported in previous studies. The UV irradiation photochemical modification of the oxide 

layer on the surface of titanium dental implants and the titanium dioxide surface, increases 

hydrophilicity, enhances osteogenic differentiation, and promotes hard tissue 

integration.36,37 This is because UV irradiation removes hydrocarbons on the titanium 

dioxide surface to create a hydrophilic environment.38 An in vivo experiment also reported 

the beneficial effects of UV treatment of SLA-treated implants on bone seal around the 

marginal-to-transcortical area, which led to better bone coverage.32 

In contrast, none of the treatment options had a significant effect on the BIC in the 

cancellous bone area. The osseointegration of dental implants can be described as two 

different osteogenesis phenomena.39 Distance osteogenesis is an appositional bone growth 

that occurs from the existing peri-implant bone toward the implant surface. Contact 

osteogenesis is de novo bone formation that occurs from the implant surface toward the 

bone, which is influenced by the surface designs and characteristics of the implants. The 

increase in BIC by UV treatment is related to contact osteogenesis. An important aspect of 

contact osteogenesis is the recruitment of osteogenic cells and their migration to the implant 

surface. In other words, osteoconduction is an important factor for contact osteogenesis. 

However, since the bone density of the cancellous bone is very low, osteoconduction occurs 
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less in the cancellous bone than in the cortical bone. This may be the reason why UV 

treatment in the cancellous bone did not provide a significant effect. Despite the lack of 

effects in the cancellous bone, an increased BIC in the cortical bone by UV treatment has 

clinical significance because the cortical bone plays an important role in the primary 

stability of implants.40 In particular, this may be more important for short implants, or 

immediate implant placement that is unfavorable to primary stability.41,42 

Based on a previous cell-level study, the method of soaking implants in 10-3M alendronate 

for 24 hours was used in this study.27 However, this treatment did not show a statistically 

significant effect on the increase in bone formation in terms of BIC and bone density. Our 

results are consistent with the findings of some previous studies that reported that local 

zoledronate applications were ineffective in enhancing the bone adhesion of implants.43,44 

In contrast, several other studies have reported that the use of local alendronate improved 

implant osseointegration, but the treatment concentration of alendronate and the loading 

method of alendronate on the surface of the implant was different.19,20,45,46 The reported 

methods include a Ca-P-coating method, in which alendronate is loaded onto the surfaces,19 

the creation of a crosslinked fibrinogen binding layer,45 and soaking SLA implants in 

alendronate without pretreatment.46 The bisphosphonate treatment concentrations were 

also different, at 10-6 M alendronate 46 and 10-2 M alendronate.18 Of these, the method of 

soaking SLA implants in alendronate did not show any significant effects even though a 

higher alendronate concentration (10-3 M) was used in the present study. This indicates that 

there is a need for further research to identify adequate methods for alendronate loading on 
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implant surfaces and the most effective alendronate treatment concentration. 

SLA implants were used as a control group in the present study because SLA is the current 

surface treatment of choice. However, some previous studies have used stainless steel 

screws etched with concentrated HF with an immobilized fibrinogen layer as a control 

instead of an SLA surface, and compared them to screws with immobilized bisphosphonate 

on the fibrinogen layer to assess the effects of bisphosphonate.33,45 Therefore, different 

results may arise depending on the type of implant surface used as a control. In the present 

study, the SLA surface, which already has sufficient osseointegration capacity, was used 

as a control, and the implants were inserted into the bones with sufficient healing, which 

may explain why no effects were found with the use of bisphosphonate. A previous study 

examined the effects of hydroxyapatite coating and alendronate soaking of titanium-

machined-polished implants on peri-implant defect regeneration with the implants inserted 

immediately after extraction. The authors found that alendronate treatment was effective in 

increasing the early bone formation rate.17 This result suggests that the use of 

bisphosphonate to improve osseointegration of implants may be more valuable in poor 

bone conditions such as bone defects than in ideal conditions. 

It is well recognized that systemically administered bisphosphonate-based drugs, such as 

alendronate, may have side effects including bisphosphonate-related osteonecrosis of the 

jaw (BRONJ or MRONJ).47-49 Moreover, it has been reported that BRONJ prevalence 

increases with increasing dosages of bisphosphonate-based drugs.50,51 Hence, if the dose of 

the drug used is reduced, the side effect can also be reduced. Local injection can limit the 
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drug to a small amount and target the amount to the surroundings of the implant. 

Furthermore, when alendronate is applied indirectly by soaking the implant in alendronate, 

as in this study, a smaller amount of the drug will act locally. Therefore, the side effect will 

also be lowered. A previous study in a rat model reported that local bisphosphonate 

treatment is less likely to induce osteonecrosis of the jaw than systemic treatment.52 

Additionally, the bisphosphonate treatment duration is an important factor in BRONJ 

development. The longer the bisphosphonate administration period, the higher risk of 

BRONJ.51,53 Since alendronate was applied locally on a one-time basis, the possibility of 

complication is considered very low in this study. More research on the long-term effects 

of various local application methods of alendronate is necessary. 

There was no synergistic effect in bone formation from the use of alendronate and UV. 

These results were different from those of Kim et al. In their study, a synergy effect was 

detected in the rabbit model.46 However, in the study of Kim et al., the treatment order of 

alendronate and UV was not specified. In most previous studies that examined the effect of 

UV treatment, UV treatment was performed at the chairside before implant placement.54,55 

Interestingly, even after UV irradiation, titanium aging occurs, which changes the titanium 

surface from hydrophilic to hydrophobic due to the progressive accumulation of 

hydrocarbons under ambient conditions.56 In another study, it was reported that the effect 

of UV treatment only lasted a few minutes in ambient air at room temperature.57 In the 

present study, alendronate soaking was required for 24 hours, thus, alendronate treatment 

was performed first. This is in line with previous studies. Subsequently, UV treatment was 
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performed immediately before implant placement at the chairside. However, this order may 

have influenced the results of the group treated by both alendronate and UV. This is because 

alendronate, an organic compound, can be destroyed by the radical reaction of UV 

irradiation.58 Therefore, the effects of alendronate soaking and UV treatment seem 

incompatible. However, a previous study at the cell level reported that prior UV treatment 

was helpful in loading more alendronate to the implant surface.27 Another study also 

reported that the surface characteristics produced by UV irradiation were maintained for 

28 days when the titanium discs were stored in distilled H2O after UV treatment.56 This 

result suggests that the effect of UV treatment may be maintained even after alendronate 

soaking. Therefore, a follow-up study at the in vivo level is needed to see if there is a 

synergistic effect when the implant is immersed in alendronate after UV treatment first by 

changing the surface treatment order. 

In this study, no remarkable effects on mucosal attachment to the healing abutment 

(machined surface) were found following UV and alendronate treatments. An in vitro study 

reported that increasing the hydrophilicity of titanium dioxide-coated surface with UV 

treatment (wavelength 368 nm, 3.8 W, 24 h) markedly increased the initial response of 

human fibroblasts.59 Conversely, another study found that UV treatment (wavelength 254 

nm, 36 W, 15 min) of the titanium surface increased wettability, but did not significantly 

increase human gingival fibroblast attachment.60 Importantly, in that study, UV treatment 

was administered for 15 min, and the authors stated that there is a need to find an optimal 

UV treatment time to ensure a biological response. In the present study, 15 min of a mixed 
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spectrum of 360 and 250 nm wavelengths was used for UV treatment. Since consensus is 

lacking, there is a need to identify the optimal UV treatment conditions using animal and 

cellular experimental models. 

Moreover, the effects of UV and alendronate treatment on bone healing were assessed at 

4 weeks and 8 weeks after implantation. The length of these periods was thought to be long 

enough for soft tissue healing. Indeed, one study examined the early healing of implants 

placed into fresh extraction sockets at 1, 2, 4, and 8 weeks after implantation and found an 

absence of inflammation, complete maturation of the epithelium, and the presence of dense 

and connective tissues at 4 and 8 weeks.34 In the future, more research studies to investigate 

early soft tissue healing are warranted. 

Regarding the effects of alendronate on mucosal attachment, a previous in vitro study 

reported that both alendronate treatment and UV-alendronate combined treatment of the 

machined surface showed no effects on fibroblasts.27 In the present study, we examined the 

effects of different surface treatments in mongrel dogs, and we did not find an increased 

mucosal attachment of the machined-surface abutment using alendronate treatment.  

This study has several limitation. First, the central section of the implant was selected 

after sectioning of the tissue specimen to measure bone formation and mucosal attachment, 

but the procedure did not reflect both the three-dimensional bone volume and mucosal 

attachment around the implants. Second, the healing period was predetermined at 4 and 8 

weeks, based on previous studies that observed implant osseointegration in dog models for 

various purposes.7,18,61,62 However, as mentioned before, a period of 4 to 8 weeks after 
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implant placement may be long enough for soft tissue healing in a dog model.34 Hence, in 

this present study, the initial soft tissue healing effect according to the surface treatment of 

the abutment may have been masked. Since the number of samples in each group was also 

small, the results of this study should be interpreted with caution.  
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V. Conclusion 

 

UV treatment of implants significantly increased the BIC in the cortical bone area. 

However, UV treatment did not affect the cancellous bone area and there was no significant 

increase in bone density. Alendronate treatment did not enhance the BIC or bone density, 

and there was no synergistic effect when combined with UV irradiation. Furthermore, UV 

and/or alendronate treatment did not significantly increase the CTA. 

Despite the limitations of an animal study with a limited number of implants, our 

observations led to the following conclusions. Concerning the BIC, UV treatment enhanced 

the osseointegration of implants. However, these effects were limited to the cortical bone 

area, and no significant effect was found in the cancellous bone area. Alendronate treatment 

did not have any significant effect on the enhancement of osseointegration. Further research 

is necessary to determine the effective methods for loading alendronate on implant surfaces. 

When implants were treated with alendronate, followed by UV irradiation, there was no 

synergistic effect on osseointegration. Moreover, alendronate and UV treatments did not 

significantly improve tissue healing in terms of mucosal attachment. Further research 

studies to examine their effects of soft tissue healing under various UV treatment conditions 

and healing periods are necessary. 

The null hypothesis of this study was rejected in terms of osseointegration because bone 

formation improvement in UV-treated groups was observed in vivo. However, there was 
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no difference in mucosal attachment in any of the groups, so the null hypothesis was not 

rejected for mucosal attachment. 
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ABSTRACT (Korean) 

 

자외선 조사 및 알렌드로네이트 침지를 이용한 표면처리가 

치과 임플란트의 골유착과 점막부착에 미치는 영향 

 

김 태 형 

 

연세대학교 대학원 치의학과 (지도교수 문 홍 석) 

 

본 연구의 목적은 자외선(ultraviolet, UV)조사와 알렌드로네이트 

(alendronate) 침지를 이용한 표면처리가 치과 임플란트의 골유착과 치과 

임플란트 지대주의 점막부착에 미치는 영향을 알아보는 것이다. 이를 위해, 

48개의 SLA(sandblasted, large-grit, acid-etched) 티타늄 임플란트와 

48개의 machined surface 치유 지대주 그리고 4마리의 잡견이 이용되었다. 

임플란트와 치유지대주는 표면처리 방법에 따라 각각 네 가지 그룹으로 

분류하였다(각 그룹당 n=12). 대조군은 어떠한 표면처리도 하지 않았다. UV 

그룹은 15분간 자외선 조사를 시행하였으며, AN 그룹은 10-3 M 
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알렌드로네이트에 24시간동안 침지 시켰다. ANUV 그룹은 알렌드로네이트 

침지 후 자외선조사를 시행하였다. 모든 임플란트는 잡견의 하악골에 

식립되었으며, 실험동물은 술 후 4주와 8주에 희생되었다. 이후 골과 

임플란트 접촉(bone to implant contact, BIC), 골밀도(bone density, BD) 

그리고 결합조직부착(connective tissue attachment, CTA)을 측정하였다. 

실험결과, 자외선 조사는 피질골부위에서 SLA임플란트의 BIC을 유의미하게 

증가시켰다. 하지만 알렌드로네이트 침지는 BIC와 골밀도를 유의미하게 

증가시키지 못하였으며, 자외선 조사와 시너지효과도 없었다. 또한 자외선 

조사 및 알렌드로네이트 침지 모두 machined surface 치유 지대주의 

결합조직 부착을 유의미하게 증가시키지 못하였다. 이상의 결과에 따라 SLA 

티타늄 임플란트에 대한 자외선 조사는 임플란트의 골유착을 촉진하지만 

알렌드로네이트 침지는 효과가 없으며, 지대주에 대한 자외선 조사와 

알렌드로네이트 침지 또한 점막부착에 별다른 효과가 없다고 결론지을 수 

있다. 

 

 

 

 

핵심 되는 말: 알렌드로네이트, 결합조직부착, 치과 임플란트, 치과 임플란트 지대주, 

골유착, 자외선 


