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ABSTRACT 

Development of various-type feature-based artificial intelligence gatekeeper 

solution for the screening of coronary artery disease 

 

Hyung-Bok Park 

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Hyuk-Jae Chang) 

 

Introduction: The “primary tests” consisted of cardiovascular (CV) risk factors, chest X-

ray radiography (CXR), and electrocardiography (ECG) for screening of coronary artery 

disease (CAD) generally lead to further downstream tests, which are not readily accessible 

for primary physicians or cost-effective. Therefore, we aimed to develop the various-type 

feature-based artificial intelligence (AI) gatekeeper solutions for CAD prediction to 

improve the diagnostic accuracy of these “primary tests”. 

Methods: We analyzed four clinical trials of CONSERVE (NCT01810198), CREDENCE 

(NCT02173275), 3V FFR-FRIENDS (NCT01621438), and PARADIGM (NCT02803411). 

All four datasets (n=5,643) were used for machine-learning ridge-regression analysis to 

generate a risk factor-based CAD prediction model, and a serially followed up 

PARADIGM database (n=1,463) was used for Bayesian quantile regression (BQR) 

analysis to explore the comprehensive relationship between CV risk factors and coronary 

artery stenosis and its progression. Meanwhile, coronary artery calcium (CAC) score 

having patients’ dataset (n=559) was used for developing radiomic score-based machine 

learning model for prediction of ≥100 CAC score from CXR and the deep convolutional 

neural network (CNN) based ischemia detection in ECG. The integrated AI-gatekeeper 

solution model for CAD prediction was developed by extracting significant features from 
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those three different CAD prediction models. 

Results: (1) The CV risk factors-based CAD prediction model by ridge-regression method 

showed a good performance of AUC 0.75 (95% CI 0.69-0.81). In BQR analysis, the 90th 

percentiles of the DS of the three vessels and their maximum DS change were 41%–50% 

and 5.6%–7.3%, respectively. Typical anginal symptoms were associated with the highest 

quantile (90%) of DS in the LAD; diabetes was associated with higher quantiles (75% and 

90%) of DS in the LCx; dyslipidemia was associated with the highest quantile (90%) of 

DS in the RCA, and other symptoms showed some association with the LCx and RCA. 

High-density lipoprotein cholesterol showed a dynamic association with DS change in the 

per-patient analysis. (2) The radiomic score was the most prominent factor for CAC score 

≥100 prediction (Odds ratio = 2.33; 95% Confidence interval [CI] = 1.62-3.44; p < 0.001) 

compared to clinical information. The radiomic score-based machine learning model 

showed AUC 0.84; 95% CI = 0.79-0.87 in predicting CAC score ≥100. (3) The CNN-based 

ischemia detection ECG model showed a modest result of AUC 0.60 (95% CI 0.54-0.66) 

in the training cohort and AUC 0.60 (95% CI 0.50-0.69) in the validation cohort. However, 

when the clinical variables were added, the model performance significantly improved both 

in the training and validation cohort up to an AUC of 0.71 (95% CI 0.66-0.76) and 0.67 

(95% CI 0.59-0.69). (4) The final AUC of the integrated model for CAD prediction based 

on clinical risk factors, CXR, and ECG was AUC 0.77 (Sensitivity 73%, Specificity 69%) 

in the external validation. 

Conclusions: In this study, we developed the integrated various-type feature-based AI-

gatekeeper solution for CAD prediction using “primary tests” composed of CV risk factors, 

CXR, and ECG. This novel method may be widely applicable to clinical practice and 

improve the pre-test probability of coronary artery disease, particularly in the primary care 

setting. 

Key words : artificial intelligence, coronary artery disease, cardiovascular risk 

factors, chest X-ray radiography, electrocardiography
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Development of various-type feature-based artificial intelligence gatekeeper 

solution for the screening of coronary artery disease 

 

Hyung-Bok Park 

 

Department of Medicine 

The Graduate School, Yonsei University  

 

(Directed by Professor Hyuk-Jae Chang) 

 

 

I. INTRODUCTION 

Cardiovascular disease (CVD) is the primary cause of morbidity and mortality worldwide, 

with a global burden of 17 million deaths annually.1 Coronary artery disease (CAD) 

accounts for over 50% of deaths and continues to increase.2 Patients with chest pain or 

dyspnea, which are common symptoms that force them to visit the hospital, would be asked 

about clinical risk factors of CAD and tested by chest x-ray (CXR), electrocardiogram 

(ECG), and routine laboratory tests, including lipid profile. 

These so-called “primary tests” for screening CAD generally lead to further downstream 

functional tests such as treadmill test, stress echocardiography, and stress/rest myocardial 

single-photon emission computed tomography.3 However, the diagnostic yield for 

obstructive CAD through the confirmative test of invasive coronary angiography (ICA) 

hasn’t exceeded 50%.4 Given that more than half of the patients have been inevitably 

getting unnecessary ICAs, revealing non-obstructive CADs that do not require coronary 
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intervention, the cost of those unnecessary ICAs is approximately 2 billion dollars in the 

USA and 4.8 to 12 trillion won in Korea.3 To overcome these issues, non-invasive coronary 

computed tomography angiography (CCTA) has emerged as the gatekeeper for ICA, 

enhancing the diagnostic yield for obstructive CAD to up to 70%.5 However, CCTA also 

has the potential risk of radiation hazard and contrast medium use and overestimation of 

CAD severity or non-interpretable issues due to artifacts or poor image quality, typically 

requiring confirmatory ICA testing.6,7 Most of all, these downstream tests are not readily 

accessible for primary physicians nor are they cost-effective. 

Recently introduced artificial intelligence (AI) machine learning or deep learning 

technology provides a new opportunity to shed new light on “primary tests” to find creative, 

cost-effective solutions. We, therefore, using artificial intelligence methods, sought to 

improve the diagnostic accuracy of the “primary tests” such as clinical risk factors, 

including laboratory tests, CXR, and ECG. Our specific study aims are as follows: (1) to 

evaluate the comprehensive dynamic relationship between multiple cardiovascular (CV) 

risk factors and different stages of CAD by applying the Bayesian quantile regression 

model using a serially followed-up database in a vessel-specific manner. And then 

configure the clinical risk factor model using the complete database; (2) to develop the 

integrated framework combined machine learning and radiomic scores for identifying 

moderate-to-severe coronary artery calcium (CAC) using CXR; (3) to determine the 

ischemic changes in resting ECG applying deep convolutional neural network (CNN) 

method; (4) to develop the various-type feature-based integrated AI gatekeeper solution for 

CAD prediction.
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II. MATERIALS AND METHODS 

1. Study participants and pooled analysis of 4 clinical studies 

We analyzed the previously published three randomized controlled trials: CONSERVE 

(clinicaltrials.gov: NCT01810198),8 CREDENCE (clinicaltrials.gov: NCT02173275),9 and 

3V FFR-FRIENDS (clinicaltrials.gov: NCT01621438)10 which are open-label, 

international, multicenter trials as well as open-label, international, multicenter dynamic 

observational PARADIGM (clinicaltrials.gov: NCT02803411) registry.11 The Institutional 

Review Board of Yonsei University College of Medicine approved this study (IRB Number: 

Y-2017-0084). All procedures were performed by the ethical standards of the Declaration 

of Helsinki, revised in 2013. Due to the retrospective nature of this study design, sample 

size calculation was not needed, and the patient’s informed consent can be waived since 

the subject selection will be made from previously published anonymized data. 

 

2. AI-based clinical risk factor model for CAD prediction 

A. Study design of Bayesian quantile regression model using PARADIGM dataset 

We analyzed the data from PARADIGM registry designed to track coronary 

atherosclerosis in serially acquired coronary computed tomography angiography (CCTA). 

Between 2003 and 2015, 2,252 consecutive patients with suspected or known CAD who 

underwent serial CCTA at an interscan interval of ≥2 years were enrolled. After the 

exclusion of patients with non-interpretable scans at baseline or follow-up CCTA (n=492), 

documented CAD before baseline CCTA (n=227), and incomplete clinical information 

such as CV risk factors, symptom variables, and laboratory results at baseline or follow-up 

CCTA (n=70), 1,463 patients who underwent per-segment-based quantitative CCTA 

plaque analysis including lumen diameter stenosis (DS) were evaluated. 
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The baseline clinical characteristics and laboratory data were used as clinical variables 

and the per-segment-based quantitative CCTA findings were used for a set of outcomes. 

We performed a vessel-wise analysis with these data at all outcome-level settings using the 

Bayesian truncated quantile regression model. For the vessel-wise analysis, all 18 coronary 

segments were classified into the following three vessels: left anterior descending (LAD), 

left circumflex (LCx), and right coronary artery (RCA). The largest quantitative DS 

measurement in each vessel (LAD, LCx, or RCA) was regarded as the representative value 

for each vessel and the largest DS among the vessels was regarded as the representative 

value for each patient. Most often, the LAD was included (n=1,264) followed by the RCA 

(n=864) and the LCx (n=718). 

We tested the following two models: the DS model (Model 1) and DS change model 

(Model 2). Multiple CV risk factors including the symptom variables were used to predict 

quantile DS values for the three vessels and each patient in Model 1 and also used to predict 

quantile DS changes in Model 2. The quantile regression model for DS prediction (Model 

1) was defined as follows: 

DS of  LAD, LCx, RCA, and per-patient 

  = 𝛂 + 𝜷𝒊 ⋅ 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆𝒔

𝒊 𝟏

+ 𝜸𝒊 ⋅ 𝑺𝒚𝒎𝒑𝒕𝒐𝒎 𝑻𝒚𝒑𝒆𝒔𝒊

𝒊 𝟏

 + 𝜹𝒊 ⋅ 𝑳𝒂𝒃 𝑬𝒙𝒂𝒎𝒔𝒊

𝒊 𝟏

+ 𝝐𝛉  

 

(1) 

where 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆𝒔  were baseline CV risk factors including age, sex, body mass index 

(BMI), smoking, diabetes, hypertension, and dyslipidemia; 𝑺𝒚𝒎𝒑𝒕𝒐𝒎 𝑻𝒚𝒑𝒆𝒔𝒊  were 

categorical risk factors denoting the types of patients’ symptoms comprised “typical angina, 

atypical angina, non-cardiac pain, and others” with “asymptotic” as the reference category; 

𝑳𝒂𝒃 𝑬𝒙𝒂𝒎𝒔𝒊  were continuous variables from laboratory examinations including high-
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density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and 

triglycerides (TG); 𝝐𝛉 was the error term with its θth quantile equal to zero (in our study, 

θ were 10%, 25%, 50%, 75%, and 90%). 

Model 2 used the changes in DS values as the outcome variable, and the quantile 

regression model was specified as follows: 

DS change of  LAD, LCx, RCA, and per-patient 

  = 𝛂 + 𝜷𝒊 ⋅ 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆𝒔𝒊

𝒊 𝟏

+ 𝜸𝒊 ⋅ 𝑺𝒚𝒎𝒑𝒕𝒐𝒎 𝑻𝒚𝒑𝒆𝒔𝒊

𝒊 𝟏

 + 𝜹𝒊 ⋅ 𝑳𝒂𝒃 𝑬𝒙𝒂𝒎𝒔.𝒊
𝒊 𝟏

+ 𝝐𝛉  

 

(2) 

B. Study design of machine-learning ridge-regression model using the complete 

dataset (CONSERVE, CREDENCE, 3V FFR-FRIENDS, and PARADIGM) 

We used machine-learning ridge-regression model which is a logistic regression model 

with L-2 penalty to develop risk factors based CAD prediction model. A complete database 

combining CONSERVE, CREDENCE, 3V FFR-FRIENDS, and PARADIGM studies 

(n=5,643) was used for the training dataset after excluding patients with missing clinical 

variables (Table 1). An external validation dataset (n=249) was used from Bundang Seoul 

national university hospital (Table 2). Parameters from ridge-regression model were trained 

in the training dataset and pre-trained model was inferred to the validation dataset.  
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Table 1. Baseline characteristics of complete dataset for risk factor model 

  Patients (n=5,643) 

Age, years 59.63 ± 10.70 

Male 1095 (64.8%) 

Body mass index, kg/m2 25.03 ± 3.36 

Current smoker 866 (15.34%) 

Diabetes mellitus 733 (13.02%) 

Hypertension 2,993 (53.04%) 

Dyslipidemia 2,396 (42.46%) 

Laboratory data 

HDL cholesterol, mg/dL 49.94 ± 20.50 

LDL cholesterol, mg/dL 113.80 ± 35.15 

Triglycerides 139.34 ± 86.04 

Symptoms 

Asymptomatic 1332 (23.60%) 

Typical angina 820 (14.53%) 

Atypical angina 1974 (34.98%) 

Non-cardiac pain 1214 (21.51%) 

Others 385 (6.82%) 

Obstructive CAD DS ≥ 50% 851 (15.1%) 

Values are presented as means ± SDs or n (%) 

CAD, coronary artery disease; LDL, low-density lipoprotein; HDL, high-density 

lipoprotein
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Table 2. Baseline characteristics of validation dataset for risk factor model 

  Patients (n=249) 

Age, years 67.93 ± 10.99 

Male 158 (63.2%) 

Body mass index, kg/m2 25.37 ± 3.55 

Current smoker 57 (22.8%) 

Diabetes mellitus 82 (32.8%) 

Hypertension 152 (60.8%) 

Dyslipidemia 80 (32%) 

Laboratory data 

HDL cholesterol, mg/dL 51.41 ± 21.95 

LDL cholesterol, mg/dL 90.116 ± 30.63 

Triglycerides 114.56 ± 57.11 

Symptoms 

Asymptomatic 55 (22.0%) 

Typical angina 100 (40%) 

Atypical angina 62 (24.8%) 

Non-cardiac pain 33 (13.2%) 

Others 0 (0%) 

Obstructive CAD DS ≥ 50% 129 (51.6%) 

Values are presented as means ± SDs or n (%)  

Same abbreviation was used as in Table 1 

 



8 

 

3. Radiomics scoring based ≥100 calcium score prediction model from CXR 

A. Study populations 

We analyzed the combined data from two independent clinical studies, PARADIGM and 

CREDENCE. We included 652 patients who underwent CAC scanning at Severance 

Hospital, Seoul, South Korea, between January 1, 2010, and June 31, 2016. The inclusion 

criteria were as follows: (1) CXR examination performed within six months before or after 

the CAC scan and (2) availability of a posterior-anterior CXR view. We excluded 93 

patients who had poor CXR image quality and undesirable objects projected onto the 

cardiac contour over CXR, such as pacemaker, implantable cardioverter-defibrillator leads, 

or other foreign materials. A total of 559 patients (308 men and 251 women; mean age, 

62.4 ± 9.4 years; range, 38–88 years) were included in this study, and 391 patients were 

allocated to the training cohort and 168 patients to the independent validation cohort (7:3 

ratio). The study population flowchart is shown in Figure 1. 

 

Figure 1. Consort diagram for machine learning based radiomics scoring model 
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B. Overall scheme 

The input image was preprocessed, and radiomic features were extracted from the 

manually annotated cardiac contours. We performed feature selection in the training cohort 

through the least absolute shrinkage and selection operator (LASSO) regression, developed 

a radiomics score formula, and evaluated it in the validation cohort. For prediction 

modeling, the radiomic score-based machine learning model was trained and tested in 10-

fold cross-validation. The overall flow is presented in Figure 2. 

 

Figure 2. Flow chart of the overall scheme of this study. 

 

C. Dataset curation and image preprocessing 

Anonymized CXR images of 559 were obtained using the digital imaging and 

communications in medicine (DICOM) format and transferred to another standalone in-

house annotation program. Two experienced cardiologists (H.B.P and R.H) manually 

delineated the cardiac contour over the CXR images using an in-house program. Annotated 

cardiac contours were corrected using the B-spline curve method. The aorta was not 

included in the annotated cardiac area to prevent including calcification of the aortic arch 

or other noncardiac structures. An example of manual contour annotation is shown in 

Figure 3. CXR images were normalized by referring to DICOM header information, and 

the annotated masks and images were resized to 512 × 512 pixels using the bilinear 

interpolation method. 
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Figure 3. Example of region of interest on posteroanterior chest X -ray radiographs (CXR). 

(A) is an example of cardiac annotation by the expert. (B) is a cardiac segmented image. 

 

D. CAC score assessment 

The CAC score is typically assessed with a CAC scan. Figure 4 shows that calcification 

of main coronary arteries was observed in CXR compared to computed tomography (CT). 

The CAC score was also measured by two experienced cardiologists (H. B. P. and R. H. ) 

using a commercially available calcium scoring software (Vitrea fx 6.4, Vital Images) 

according to the protocol described by Agatston et al.12 The CAC score was calculated from 

the four main coronary arteries, including the left main (LM), left anterior descending 

(LAD), left circumflex (LCX), and right coronary artery (RCA), and an integrated score 

from all coronary lesions was used. CAC score was calculated by adding the scores of all 

coronary lesions, which were calculated by multiplying the area of the lesion by the density 

in Hounsfield units.12 CAC score was defined with four categories: absent (0 AU), mild (1 

to 99 AU), moderate (100 to 399 AU), and severe (≥400 AU).13,14 A cutoff value of 100 AU 

was used to predict moderate-to-severe CAC scores. We defined a binary label for the 

machine learning model with CAC score as follows: zero was <100 AU (low to mild risk) 

and one was ≥100 AU (moderate to high risk). 
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Figure 4. Representative chest X-ray radiographs (CXR) and computed tomography (CT) 

images of a patients with high coronary artery calcium (CAC) score. 

(A, B) An 80-year-old male with an overall CAC score of 2525. The left anterior 

descending (LAD) calcium score observed on calcium scan was 522 (C). (D, E) A 52-year-

old male with an overall CAC score of 1618. The right coronary artery (RCA) calcium 

score observed on calcium scan was 308 (F). 

 

E. Radiomics feature extraction 

We employed an open-source Python package, Pyradiomics,15 to extract the radiomic 

features. The steps of radiomics feature extraction are as follows: (1) image segmentation 

with an annotated mask, (2) discretization and preprocessing of segmented images, and (3) 

application of first-, second-, or high-order (texture) statistics.16 We extracted 455 

radiomics features from the segmented cardiac area on CXR. The radiomic features 

consisted of 18 first-order statistics features and 24 gray-level co-occurrence matrix 

(GLCM), 16 gray-level run-length matrix (GLRLM), 16 gray-level size zone matrix 

(GLSZM), 14 gray-level dependence matrix (GLDM), and 5 neighboring gray tone 
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difference matrix (NGTDM) features. We applied four wavelet filters to the image and 

extracted the same set of radiomic features from the wavelet response image. 

F. Radiomic score model 

LASSO regression was used to select significant features in the training cohort.17 The 

LASSO regression model was trained to classify moderate to severe CAC score (CAC 

score ≥100). A radiometric score was estimated with a linear combination of selected 

features weighted by their respective coefficients through LASSO. We compared two 

models: clinical information (CI) model and clinical information + radiomic score (CI-RS) 

model to evaluate the incremental value of radiomic score to the clinical information for 

CAC score prediction in the training cohort. For clinical information, age, gender, and BMI 

were used. We evaluated CI-RS model in the validation cohort to test reproducibility. The 

R software and “glmnet” package (R foundation for Statistical computing, Vienna, Austria, 

URL: http://www.R-project.org, 2016) were used for the LASSO logistics regression 

model analysis. 

G. Radiomic score-based machine learning model 

Linear regression is a statistical model, but it can be regarded as supervised machine 

learning because the parameters are learned by minimizing a loss of function from the given 

datasets. The random forest is an “ensemble learning” method consisting of aggregating a 

large number of decision trees. In most cases, random forest performs better than linear 

regression in binary classification task. Therefore, we developed a random forest based 

machine learning model for the prediction of CAC score ≥100. We tested two types of 

machine learning models: CI model and CI-RS model to evaluate the importance of 

radiomic score as an input of machine learning algorithm. The performance of prediction 

model was evaluated with 10-fold cross validation on the entire 559 patients. 
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4. AI-based ischemic change analysis in ECG 

A. Study population and design 

We analyzed the same database of Radiomics scoring-based CAC prediction model 

(n=559) from PARADIGM and CREDENCE datasets to generate an integrated AI 

gatekeeper solution combining clinical variables, CXR, and ECG. The ECG model for 

classifying coronary artery disease consisted of a combination of 1d CNN and Residual 

Unit. Because the data was partially synchronized, we used a total of 4 pairs which tied 12 

leads by three as input to the model. After going through the same model for each pair, we 

extracted representative features through a pooling process, and the final classification was 

performed by combining these inputs. We used the Adam optimizer to learn the model for 

50 epochs with a value of a learning rate of 0.0001, resulting in the performance of AUC 

0.62 on the training set and AUC 0.56 on the test set. We extracted a feature map of size 64 

× 4 from all data from the last convolutional layer of the corresponding model and 

combined three selected representative features with features from other modalities through 

principal component analysis to be used in a multimodal model. 

 

5. Integrated AI-gatekeeper solution modeling for CAD prediction 

We obtained the final probability from the clinical risk factor model, radiomics score from 

the CXR model, and three major features from the ECG model per each data. Using the 

obtained features as input, we constructed a simple single neural model to find the optimal 

weight between features and to learn to perform CAD prediction. At this time, the cost 

function used binary cross-entropy, and the model was updated using the Stochastic 

gradient descent optimizer. 
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6. Statistical analysis 

All statistical analyses were performed using R software with package “ctqr” (version 

4.1.0, R Foundation for Statistical Computing, Vienna, Austria). Continuous variables were 

compared using the t-test for variables with a normal distribution or the Mann-Whitney U 

test for variables with an abnormal or unknown distribution. Categorical variables were 

compared using the chi-square test or Fisher's exact test. The reported statistical 

significance levels were all two-sided, and p values less than 0.05 were considered 

statistically significant. R software was used to build and evaluate the prediction model. 

Prediction performance was evaluated using the area under the curve (AUC) values of the 

ROC curve in the training and validation cohorts. 
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Table 3. Baseline characteristics for Bayesian quantile regression model 

 Patients (n=1,463) 

Age, years 61.8± 9.1 

Male 1095 (64.8) 

Body mass index, kg/m2 25.6 ± 3.4 

Current smoker 320 (19.2) 

Diabetes mellitus 404 (24.1) 

Hypertension 993 (59.4) 

Dyslipidemia 772 (46.3) 

Laboratory data 

HDL cholesterol, mg/dL 49.6 ± 13.5 

LDL cholesterol, mg/dL 112.5 ± 35.4 

Triglycerides 145.5 ± 86.6 

Symptoms 

Asymptomatic 370 (22.2) 

Typical angina 109 (6.5) 

Atypical angina 1038 (62.2) 

Non-cardiac pain 133 (8.0) 

Others 139 (8.3) 

Values are presented as means ± SDs or n (%) 

Same abbreviation was used as in Table 1 
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III. RESULTS 

1. AI-based clinical risk factor model for CAD prediction 

A. Bayesian quantile regression model using PARADIGM dataset 

The baseline characteristics of the study population are presented in Table 3. The mean 

patient age was 62 years; 35.2% were women, 59.4% had hypertension, 46.3% had 

dyslipidemia, and 24.1% had diabetes mellitus. Most patients had atypical angina (62.2%) 

and typical anginal symptoms were observed in only 6.5% of the patients. The quantile 

estimates of 10%, 25%, 50%, 75%, and 90% for the three vessels and their per-patient 

values of the DS and DS changes are shown in Table 4. The mean measurements of the 

90th percentiles were 41%–50% and 5.6%–7.3% in DS and DS change, respectively. 

Figures 4–7 show the error bar charts of the coefficient estimates with 95% confidence 

intervals for the selected risk factors for which at least one estimate was statistically 

significant among the five quantiles (10%, 25%, 50%, 75%, and 90%), respectively for 

regression Models 1 and 2. The y-axes were log-scaled for clear visibility of the error bar 

charts. 

 

Table 4. The quantile estimates of 10%, 25%, 50%, 75%, and 90% for DS and DS change 

in the three vessels and per-patient 

 Quantiles 10% 25% 50% 75% 90% 

DS 

LAD 7.39 14.03 23.68 35.40 47.57 

LCx 5.02 11.50 20.15 30.90 41.33 

RCA 6.14 13.04 22.80 32.93 44.49 

Per-patient 10.03 17.43 27.80 39.74 50.22 

DS change 

LAD −2.18 −0.16 1.26 3.37 5.62 

LCx −2.01 −0.19 1.22 3.15 5.65 

RCA −1.57 0.14 1.64 3.84 7.02 

Per-patient −0.77 0.67 2.37 4.49 7.31 
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In the per-vessel analysis of DS, the typical anginal symptom was associated with the 

highest quantile (90%) of DS in the LAD; diabetes was associated with higher quantiles 

(75% and 90%) of DS in the LCx; dyslipidemia was associated with the highest quantile 

(90%) of DS in the RCA, whereas other symptoms showed some association with the LCx 

and RCA (Figure 5). Overall, the per-patient analysis of DS, age, and hypertension was 

positively associated with all DS quantiles; in contrast, HDL-C was negatively associated 

with most DS quantiles (Figure 6). 

 

Figure 5. Bayesian quantile regression models for three vessels (LAD, LCx, and RCA) 

regarding DS 

 

Figure 6. Bayesian quantile regression models for per-patient regarding DS 
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In the per-vessel analysis of DS change, HDL-C showed a clear and dynamic relationship 

with DS change in the LAD and RCA; hypertension also showed a dynamic relationship 

with DS change in the LCx and DS change severity (Figure 7). In the overall per-patient 

analysis of DS change, age, smoking, and hypertension showed a tendency to increase DS 

change, although no consistent associations were observed. However, unlike LDL-C, 

which showed no significant association with DS change, HDL-C showed a dynamic 

association with DS change which changed from positive to negative with DS severity 

(Figure 8). 

 

Figure 7. Bayesian quantile regression models for three vessels (LAD, LCX, and RCA) 

regarding DS change 

 

Figure 8. Bayesian quantile regression models for per-patient regarding DS change 
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B. Machine-learning ridge-regression model using complete dataset (CONSERVE, 

CREDENCE, 3V FFR-FRIENDS, and PARADIGM) 

The baseline characteristics of the study population are presented in Table 1. The mean 

patient age was 59.6 years; 44.1% were women, 53% had hypertension, 42.5% had 

dyslipidemia, and 13% had diabetes mellitus. Most patients had atypical angina (35%) and 

typical anginal symptoms were observed in only 14.5% of the patients. Table 5 shows 

estimates of ridge-regression model. Complete dataset combined 4 independent studies 

(CONSERVE, CREDENCE, 3V FFR-FRIENDS, and PARADIGM) was used for training. 

The trained model were inferred to the external validation dataset (n=249) and the AUC 

was 0.753 (95% CI 0.69-0.81). (Figure 9). 

 

Table 5. Estimates of ridge-regression model 

Risk Factor Criterion level Coefficient Estimates 

Sex  0.7978 
BMI  -0.0188 
Smoking  0.1587 
Diabetes  0.2029 
Hypertension  0.3015 
Dyslipidemia  0.4247 
Creatinine (>1.4) 0.4734 
HDL (logged)  -0.4747 
LDL  -0.0009 
Triglycerides (logged)  0.1695 
Typical angina  0.8218 
Atypical angina  -0.6226 
Non cardiac  -0.1462 
HbA1c level 1 (diabetes=1) & (7≤HbA1c<9) 0.3364 
HbA1c level 2 (diabetes=1) & (HbA1c≥9) 0.6029 
Age 0 (40,50) 0.4320 
Age 1 (50,60) 0.9517 
Age 2 (60,70) 1.3720 
Age 3 (70,) 1.9340 
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Figure 9. ROC curve of risk factor based ridge-regression model for CAD prediction 

 

2. Radiomics scoring based ≥100 calcium score prediction model from CXR 

A. Patient characteristics 

The baseline characteristics of the study population are shown in Table 4. Of the 559 

patients, 40.4% (n=226) had CAC scores ≥100 and 59.6% (n=333) had CAC scores <100. 

In addition, a more than 30-fold higher calcium score difference was observed in the CAC 

score ≥100 group (567.5 ± 662.5 vs. 16.4 ± 24.9, p < 0.001). There were no significant 

differences in sex and BMI between the two groups. The patients were divided into training 

and validation cohorts in a 7:3 ratio with all clinical characteristics being well matched, 

including similar calcium score differences between the CAC score ≥100 and CAC score 

<100 groups in each cohort (Table 6).
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Table 6. Baseline characteristics for radiomics scoring based machine learning model 

  
CAC score < 100 

(N = 333) 

CAC score ≥ 100 

(N = 226) 
p-value 

Clinical characteristics 

Age, years (±SD) 60.1 ± 9.06 65.9 ± 8.81 <0.001 

Male, n (%) 176 (52.9%) 132 (58.4%) 0.227 

BMI (kg/m2) 24.8 ± 3.05 24.8 ± 3.38 0.999 

Total cholesterol (ml/dL) 183 ± 37.0 173 ± 39.6 0.005 

HDL (ml/dL) 49.0 ± 11.6 47.5 ± 11.5 0.150 

SBP (mm Hg) 125 ± 14.4 127 ± 15.0 0.039 

DBP (mm Hg) 76.7 ± 9.67 76.9 ± 9.69 0.823 

Hypertension 162 (48.6%) 162 (71.7%) <0.001 

Hyperlipidemia 70 (21.0%) 74 (32.7%) 0.003 

Diabetes mellitus 59 (17.7%) 82 (36.3%) <0.001 

Smoking history 48 (14.4%) 36 (15.9%) 0.710 

CT Measurements 

CAC score 

(Agatston units) 
16.4 ± 24.9 567.5 ± 662.5 <0.001 

Values are mean ± SD, n (%). 

CAC, coronary artery calcium; BMI, body mass index; HDL, high-density lipoprotein; SBP, 

systolic blood pressure; DBP, diastolic blood pressure; DS, diameter stenosis. 
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B. Radiomic score model 

Based on the training cohort, 455 extracted radiomic features were reduced to 11 potential 

predictors using the LASSO regularization method (Figure 10). The optimal value of λ was 

obtained by performing 10-fold cross-validations to find the max AUC value and the max 

AUC + 1 standard error (SE) value.18 The radiomic score was calculated using the 

following formula: 

 

Radiomics score 

=  −0.4356 − 0.0204 × original_firstorder_InterquartileRange

− 0.1291 × original_firstorder_Skewness

+ 0.0737 × original_gldm_DependenceVariance

+ 0.3162 × original_gldm_LargeDependenceLowGrayLevelEmphasis

× 0.2282 × original_gldm_SmallDependenceLowGrayLevelEmphasis

+ 0.2390 × wavelet_LH_glcm_Idn

− 0.0243 × wavelet_LHglcm_MaximumProbability

+ 0.0176 × wavelet_HL_firstorder_10Percentile

− 0.2769 × wavelet_HL_glcm_ClusterShade

+ 0.0346 × wavelet_HH_gldm_DependenceVariance

− 0.1002 × wavelet_LL_glcm_Imc2 

 

The radiomics score in the training and validation cohorts was calculated using the 

formula and it was not significantly different between training and validation cohorts 

(-0.42 ± 0.68 vs. -0.47 ± 0.68, p = 0.465) (Table 7). 
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Figure 10. Radiomics feature selection using the least absolute shrinkage and selection 

operator (LASSO) regression model in the training cohort. 

Dotted vertical lines were drawn at the optimal values using the maximum criteria and the 

1 standard error (SE) of the maximum criteria (the 1-SE criteria). A λ value of 0.037 with 

log (λ) − 3.29 was chosen (the 1-SE criteria) according to 10-fold cross validation (CV), 

where optimal λ resulted in six nonzero coefficients. 
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Table 7. Patient characteristics in the training and validation cohorts of radiomics scoring based machine learning model 

 

 

Training cohort p-value Validation cohort p-value P between 

Training and 

Validation Set 
Total 

CAC score 
<100 

(N=233) 

CAC score 
≥100 

(N=158) 

 Total 
CAC score 
<100 

(N=100) 

CAC score 
≥100 

(N=68) 

 

Clinical characteristics      

Age, years (±SD) 62.6 ± 9.42 60.3 ± 9.03 66.1 ± 8.91 <0.001 61.9 ± 9.36 59.6 ± 9.15 65.3 ± 8.64 <0.001 0.412 

Male, n (%) 210 (53.7%) 122 (52.4%) 88 (55.7%) 0.585 98 (58.3%) 54 (54.0%) 44 (64.7%) 0.222 0.360 

BMI (kg/m2) 24.9 ± 3.28 24.9 ± 3.10 24.8 ± 3.55 0.865 24.5 ± 2.94 24.5 ± 2.93 24.6 ± 2.98 0.768 0.251 

Total cholesterol (ml/dL) 179 ± 38.1 183 ± 37.1 173 ± 38.8 0.012 178 ± 38.9 181 ±36.8 173 ± 41.6 0.194 0.808 

HDL (ml/dL) 48.2 ± 11.6 49.1 ± 11.5 46.9 ± 11.6 0.066 48.8 ± 11.6 48.7 ± 11.9 49.0 ± 11.3 0.860 0.574 

SBP (mm Hg) 126 ± 14.7 125 ± 14.5 128 ± 15.0 0.098 125 ± 14.7 124 ± 14.2 127 ± 15.3 0.215 0.434 

DBP (mm Hg) 76.5 ± 9.61 76.8 ± 9.50 76.1 ± 9.78 0.528 77.3 ± 9.82 76.5 ± 10.1 78.5 ± 9.33 0.171 0.384 

Hypertension 230 (58.8%) 115 (49.4%) 115 (72.8%) <0.001 94 (56.0%) 47 (47.0%) 47 (69.1%) 0.007 0.591 

Hyperlipidemia 100 (25.6%) 51 (21.9%) 49 (31.0%) 0.056 44 (26.2%) 19 (19.0%) 25 (36.8%) 0.017 0.963 

Diabetes mellitus 100 (25.6%) 44 (18.9%) 56 (35.4%) <0.001 41 (24.4%) 15 (15.0%) 26 (38.2%) 0.001 0.852 

Smoking history 56 (14.3%) 33 (14.2%) 23 (14.6%) 0.999 28 (16.7%) 15 (15.0%) 13 (19.1%) 0.623 0.560 

CT Measurements        

CAC score  227 ± 427 16.5 ± 25.1 537 ± 537 <0.001 268 ± 641 16.3 ± 24.6 638 ± 889 <0.001 0.449 

Radiomics score -0.42±0.68 -0.58±0.65 -0.18±0.65 <0.001 -0.47±0.68 -0.58±0.66 -0.31±0.69 0.012 0.465 
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C. Validation of radiomic score 

Table 8 shows the incremental value of radiomic score to clinical information to predict 

moderate to severe CAC score. Among the used clinical information, age was the only 

predictive factor in CI model and CI-RS model (CI model; odds ratio [OR] = 1.09; 95% 

confidence interval [CI] = 1.06 – 1.12; p <0.001, CI-RS model; OR = 1.08; 95% CI = 1.05 

– 1.11; p <0.001). However, the radiomics score was shown to be the most prominent factor 

for CAC score ≥100 prediction (CI-RS model; OR = 2.33; 95% CI = 1.62 – 3.44; p <0.001) 

and showed moderate correlation between radiomics score and CAC score (Spearman 

Correlation Coefficient 0.48, p <0.05). 

 

Table 8. Incremental value of radiomic score to clinical information 

CI Model, clinical information Model; CI-RF, clinical information + radiomic score; AUC, 

area under the curve; BMI, body mass index; CI, confidence interval. 

 

In the training cohorts, CI-RS model showed significantly higher AUC than CI model (CI 

model vs. CI-RS model: 0.69 vs. 0.73; p = 0.022). We further evaluated the performance 

of CI-RS model in the validation cohort and the performance of CI-RS was not significantly 

different between training and validation cohorts (training vs. validation: AUC 0.73, 95% 

CI 0.68 – 0.78 vs. AUC 0.72 95% CI 0.64 – 0.80). The model performance evaluation is 

 CI Model CI-RS Model 

AUC 0.690 (0.636-0.744)  0.729 (0.677-0.781) 0.022 

Variables Odds radios (95% CI) p value Odds radios (95% CI) p value 

Age 1.085 (1.057-1.115) <0.001 1.075 (1.046-1.106) <0.001 

Female 0.644 (0.411-1.000) 0.052 0.688 (0.433-1.086) 0.111 

BMI 1.040 (0.971-1.114) 0.263 1.017 (0.948-1.093) 0.638 

Radiomic score   2.330 (1.621-3.436) <0.001 
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summarized in Table 9. Figure 11 shows the performance comparison of CI model and CI-

RS model in the training and validation cohorts.  

 

Table 9. Validation of radiomic score 

AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value. 

 

Figure 11. The receiver operating characteristic (ROC) curves of the CI model and CI-RS 

model derived from training (A) and validation cohorts (B) 

 

D. Validation of radiomic score-based machine learning model 

A machine learning based CI-RS model showed superior performance than CI model for 

the prediction of CAC score ≥100 (CI model vs. CI-RS model: AUC 0.701 vs. AUC 0.831) 

 Training cohort Validation cohort 

AUC 0.729 (0.677-0.781) 0.717 (0.636-0.798) 

Sensitivity 0.614 0.735 

Specificity 0.751 0.720 

NPV 0.742 0.800 

PPV 0.626 0.641 
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in 10-fold cross validation (Figure 12). The sensitivity, specificity, negative predictive 

value, and positive predictive value of CI-RS model were superior to CI model at the best 

diagnostic decision point. Table 10 showed the 10-fold cross validation performance of CI 

model and CI-RS model. 

 

Figure 12. The receiver operating characteristic (ROC) curves of the CI model and CI-RS 

model derived from training (A) and validation cohorts (B) 

 

Table 10. Performance of coronary artery calcium score prediction model 

 CI Model CI-RS Model 

AUC 0.701 (0.63-0.73) 0.831 (0.79-0.87) 

Sensitivity 0.761 0.806 

Specificity 0.616 0.773 

NPV 0.801 0.860 

PPV 0.579 0.716 
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3. AI-based ischemic change analysis in ECG 

The CNN-based ischemia detection ECG model showed a modest result of AUC 0.60 (95% 

CI 0.54-0.66) in the training cohort and AUC 0.60 (95% CI 0.50-0.69) in the validation 

cohort. When the clinical variables were added to this model, the model performance 

significantly improved up to an AUC of 0.71 (95% CI 0.66-0.76) in the training cohort as 

well as validation cohort (AUC 0.67, 95% CI 0.59-0.69). 

 

4. Integrated AI-gatekeeper solution modeling for CAD prediction 

In the training cohort, the final AUC of the random forest of an integrated model for 

CAD prediction based on clinical risk factors, CXR, and ECG was 0.82 (95% CI 0.72-

0.91). However, relatively lower performance was shown in the validation cohort as 0.67 

(95% CI 0.54-0.80). The performance of the clinical risk factors and CXR combined model 

showed a random forest AUC of 0.81 (95% CI 0.70-0.90), indicating that there was no 

additive benefit of ECG in the final integrated model. When we differentiated the prediction 

endpoint from 50% DS to 75% DS in the same 559 patients with ten-fold-cross validation, 

the integrated model showed an AUC of 0.74, relatively lower performance than 50% DS. 

Lastly, in the external validation cohort (n=249), the final AUC of integrated AI-

gatekeeper solution for CAD prediction was AUC 0.77 (Sensitivity 73%, Specificity 69%). 

 

IV. DISCUSSION  

In the present study, we developed the various-type feature-based AI-gatekeeper solution 

for CAD prediction. First, we explored the comprehensive relationship between CV risk 

factors and baseline-graded subclinical to clinical coronary artery stenosis and its 

progression to identify significant risk factors for CAD screening using a serially followed-
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up database (PARADIGM; n=1,463). Based on this data, we then developed the general 

risk factor-based CAD prediction model using the complete database (CONSERVE, 

CREDENCE, 3V FFR-FRIENDS, and PARADIGM; n=5,643) and proved the reliability 

by external validation. This machine-learning based general risk factor model can be 

utilized as a web-based risk factor calculator. Second, we developed an integrated 

framework that combined machine learning and radiomic scores to predict moderate-to-

severe CAC scores (≥100) using the database with CAC score information (PARADIGM 

and CREDENCE; n=559) and proved the reliability of this model by external validation. 

Third, we used the CNN method to perform AI-based ischemic change analysis in resting 

12 leads ECGs. Although we could not show meaningful results, we identified the 

possibility of its additive benefit when combined with the clinical risk factor model. Finally, 

we configured the integrated AI model for CAD prediction based on clinical risk factors, 

CXR, and ECG and confirmed excellent performance of AUC 0.82. 

 

1. AI-based clinical risk factor model for CAD prediction 

We introduced the clinical utility of the Bayesian truncated quantile regression machine 

learning method to evaluate the comprehensive relationship between CV risk factors and 

different stages of CAD and its progression. HDL-C showed a consistent negative 

association with most DS levels and a dynamic relationship from positive to negative along 

with DS change severity, indicating that high HDL-C has a preventive effect on baseline 

CAD as well as CAD progression. Typical angina symptoms were only associated with a 

high quantile of stenosis in the LAD and not in the LCx or RCA. Likewise, diabetes was 

strongly associated with LCx, and dyslipidemia was associated with RCA. Other symptoms 

such as dyspnea, syncope, palpitation, dizziness, and epigastric pain showed a relationship 
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with stenosis in the LCx and RCA. Although it has been known by clinical experience that 

LAD lesions are associated with typical anginal symptoms owing to their considerable 

accountability in the entire coronary perfusion, no scientific evidence has been 

provided.19,20 In this study, we suggested the use of the BQR model. Similarly, it is known 

by experience that LCx or RCA lesions are more likely to be associated with vague 

symptoms than LAD lesions.19,21 This could also be demonstrated using the BQR model. 

In addition, HDL-C showed a dynamic interrelationship with graded coronary stenosis and 

stenosis progression, which was the most distinctive utility of the BQR model that could 

not be achieved in any other standard regression models. 

Since Koenker and Bassett first introduced quantile regression models, they have been 

used in various research areas, such as investment, economics, and engineering, due to their 

multiple advantages over standard regression analysis.22 Quantile regression has recently 

been regarded as an efficient analysis tool for income and wage studies in labor economics. 

The Bayesian Tobit quantile regression, an advanced version of the plain quantile 

regression model, has been utilized to estimate outage costs in the engineering field.23-25 

Although Wehby et al. firstly introduced the utility of the BQR model in the medical field 

by presenting the different risk factors for low and high birth weight,26 it is not widely 

adopted probably because its interpretation seems somewhat unintuitive since the concept 

of quantile is less familiar than means.27 However, with the increased interest in machine 

learning methods in medical research, quantile regression has recently attracted attention 

as a valuable data analysis tool in the medical research area.28 Although clinical models for 

estimating the pretest probability of CAD based on age, sex, and symptom typicality in 

patients with stable angina have been developed,29,30 recent studies raised the 

overestimation issue of these models, potentially due to the exclusion of other important 
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CV risk factors such as diabetes, dyslipidemia, hypertension, smoking, and obesity.31,32 

Novel imaging markers, including calcium score and multiple risk factor assessment using 

the machine learning method, have been evaluated to overcome this issue. However, most 

studies have shown modest performance for predicting obstructive CAD and are limited to 

a single outcome variable of 50% DS. 

This is the first to apply BQR analysis to the CV area, particularly in predicting CAD, and 

comprehensively explore the association between CV risk factors with symptom 

characteristics and different stages of CAD and its progression. We believe that this pilot 

study can provide a framework for the cost-efficient utilization of previously overlooked 

clinical information, thereby facilitating the development of a more accurate CAD pretest 

probability model. 

We then applied the machine-learning ridge-regression method to the complete database 

combining CONSERVE, CREDENCE, 3V FFR-FRIENDS, and PARADIGM studies, the 

most extensive database for machine-learning based risk factor model for CAD screening. 

We demonstrated excellent performance for CAD prediction with an AUC of 0.75 with 

external validation. This risk factor-based calculator could be utilized in primary physician 

care or even self-checkup. 

 

2. Radiomics scoring based ≥100 calcium score prediction model from CXR 

We also developed an integrated framework that combined machine learning and radiomic 

scores to identify the CAC score in CXR and experimentally validated the radiomics score 

as a predictive factor in CAC score prediction. We demonstrated the feasibility of a 

moderate-to-severe CAC score (≥100) prediction model using the proposed integrated 

framework. Radiomic features were extracted from the cardiac area, and a radiomic score 
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for predicting a CAC score of ≥100 was calculated. The model developed in the training 

cohort was subjected to a validation test. In the training cohort, our clinical variable-

adjusted model (radiomics score with basic clinical variables) demonstrated a good 

prediction performance with an AUC of 0.73. The present model also showed consistent 

performance, with an AUC of 0.72 in the validation cohort. 

Non-enhanced calcium scanning is a robust non-invasive tool for CAD screening as well 

as cardiovascular disease (CVD) risk assessment using a low radiation dose of 1mSv.33 

Numerous studies have demonstrated that CAC scores have superior risk stratification 

performance than traditional risk factor-based methods, showing higher net reclassification 

benefits, particularly in asymptomatic population 34-36. Moderate CAC scores of 100 to 400 

corresponded to 12.9 to 16.4% of 10-year event rate, and CAC scores >400 to >1000 

corresponded to 22.5 to 28.6% and 37% of 10-year event rate, respectively.33 Hence, a CAC 

score of ≥100 should require medical attention for aggressive statin therapy along with 

active CAD surveillance. In patients with stable chest pain, the CAC score also exhibited 

a clinical benefit in improving the pre-test probability for CAD.37-39 Haberl et al. 

demonstrated the high diagnostic accuracy of a CAC score cutoff value of 100 for the 

detection of obstructive CAD with a sensitivity of 95% and a specificity of 79%.37 

Furthermore, the CAC score proved to have a better detection rate of obstructive CAD 

compared with conventional stress tests such as exercise treadmill electrocardiography or 

technetium-stress single photon emission computed tomography.40-42 Although CAC scans 

can be performed using a low radiation dose, radiation hazards still exist, especially as they 

are cumulated by an ionizing radiation dose. Furthermore, recent technical advancements 

in coronary computed tomography angiography (CCTA), it can also be performed with 1 

to 2mSv,43 similar to a low-dose CAC scan, and recent studies have shown that statins 
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stabilize atherosclerotic plaques while calcium progression presents with an increased CAC 

score.44 Hence, the clinical utility of CAC scan is currently relatively diminishing, 

particularly in patients with stable chest pain, as CCTA has become the initial diagnostic 

modality of choice regardless of CVD risks.45,46 Furthermore, in asymptomatic patients, 

more than 11,000 population-based the Korea Initiatives on Coronary Artery Calcification 

(KOICA) registries have revealed that 55% of the study population had a CAC score of 

zero and 86% had a CAC score of less than 100.47 In terms of CAD screening, it can be 

pointed out that majority of population had an unnecessary CAC scan. Therefore, the new 

imaging modality replacing CAC scan, to detect moderate to severe calcification 

corresponding to CAC score ≥100 using a lower radiation dose, would be utilized as the 

gatekeeper of CCTA and to improve the pre-test probability of CAD. 

On the other hand, CXR is a rapid and cost-effective study widely performed from primary 

care clinics to tertiary hospitals with 0.14 mSv of a radiation dose,48 but it is more 

specialized in detecting lung problems and thus has limited clinical utility for the diagnosis 

of CAD.49-51 However, in the present study, we demonstrated that the combination of 

machine learning and radiomic scores can revitalize the use of CXR for CAD screening by 

predicting moderate-to-severe coronary calcification. This novel method can be easily 

applied to the asymptomatic population for CAD screening as well as to patients with stable 

chest pain as an effective gatekeeper for CCTA, and might be substituted for a CAC scan 

to reduce unnecessary radiation exposure. 

Recently emerged radiomics is a computer-aided technique for extracting a large number 

of subtle or visually unidentifiable features, such as intensities, textures, or wavelets, as 

quantified values from a digitalized medical image.52-54 In previous studies, radiomics 

features extracted from CT, ultrasound, positron emission tomography, and magnetic 
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resonance have shown good performance in differentiating tissue characteristics or for the 

prediction of disease progression, particularly in pre-cancerous lesions,52 and are actively 

being applied to simple chest radiography.55 The major clinical hurdle of deep neural 

networks is the ambiguity of the black box procedures; however, machine learning with 

radiomic features is more explainable and clinically applicable.56 Therefore, the 

combination of machine learning and radiomics can show a synergistic effect in revealing 

generally overlooked features. Recent studies have also demonstrated the clinical utility of 

radiomics from CXR combined with machine learning algorithms for identifying patients 

with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).57-59 Kamel et al. first 

demonstrated the feasibility of convolutional neural networks (CNNs) for the prediction of 

CAC scores from CXR. They demonstrated the presence of coronary calcification 

predicting zero or non-zero Agatston scores on posterior anterior CXR, showing an AUC 

of 0.73.60 In contrast, the present study introduced a novel machine learning-based 

radiomics feature analysis for moderate-to-severe CAC score prediction. To the best of our 

knowledge, this is the first study to use machine learning-based radiomics analysis applied 

to CXR for the detection of coronary calcification. The critical limitation of previous CNNs 

is that the algorithm takes an entire image as an input to the network, not focusing on the 

cardiac contour, and easily mistakenly detects undesired objects, such as cardiac devices, 

aortic calcifications, or other thoracic bones, as the coronary calcification.60 In addition, 

because of the ambiguity of the convolutional feature extraction operation, it was 

impossible to discern which CXR features were relevant for predicting the presence of a 

CAC score. Furthermore, it is well known fact that CAC score has clear differential 

distribution patterns according to age, gender, and BMI. Adjusting these basic clinical 

variables is essential for generating a CAC score prediction model.33 However, previous 
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studies by Kamel et al. did not reflect the impact of this basic information. In contrast, the 

present model targeted radiomic features from cardiac contouring in the CXR image and 

suggested the most relevant radiomics features to predict moderate to severe CAC scores.60 

Moreover, we adjusted the prediction model with basic clinical variables, but age was the 

only significant factor for moderate-to-severe CAC score prediction. 

Although our prediction model showed moderate accuracy, the performance could be 

improved when the volume of the training dataset increased and traditional CVD risk 

factors were adjusted. This novel approach for predicting a CAC score ≥100 using a CXR 

image might save substantial healthcare costs and reduce radiation dose by reducing 

unnecessary CAC scans and playing a role as the gatekeeper of CCTA by increasing the 

pre-test probability of CAD. This method can also be easily applied as a routine practice to 

patients who visit primary health care facilities, irrespective of whether they are 

symptomatic or asymptomatic. 

 

3. AI-based ischemic change analysis in ECG 

We did not provide the CNN-based ischemia detection model in resting 12 leads-ECG. It 

is well known that resting ECG presents no ischemic change such as ST 

elevation/depression or T-wave inversion until significant hemodynamic limitation; in 

other words, ischemia happens. That is why various stress tests were developed for 

detecting myocardial ischemia. Although we hypothesized that the deep learning image 

analysis method per se could identify that the human eye cannot define ischemic change of 

resting ECG, no significant results were not achieved. However, we found that the CNN 

ECG analysis model could provide additional benefits when combined with other 
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prediction models or integrated models. Further investigation and advancement might be 

needed to improve the CNN-based ischemia detection algorithm in ECG. 

 

4. Integrated AI-gatekeeper solution modeling for CAD prediction 

We finally developed the various-type feature-based integrated AI gatekeeper solution 

based on clinical risk factors, CXR, and ECG for CAD screening and demonstrated the 

excellent performance of AUC 0.82. To the best of our knowledge, this is the first integrated 

model for CAD prediction using so-called “primary tests”. This novel method may be 

widely applicable to clinical practice and improve the pre-test probability of coronary artery 

disease, particularly in a primary physician care setting. 

 

5. Study limitations 

This study has several limitations. In the BQR analysis, we only included 1,463 patients 

with complete clinical information. Most had LAD lesions, and the LCx and RCA lesions 

were only on 465 and 340 vessels, respectively. Thus, there was insufficient data for 

evaluating the LCx or RCA. Although we included significant CV risk factors for CAD, 

further specified and various CV risk factors should be included to enhance the 

performance of this model. However, in the ridge-regression analysis model using 

extensive complete datasets, we could get excellent performance for CAD prediction even 

based on clinical risk factors. Due to the lack of available CAC score data, there were 

insufficient datasets utilized in the training or validation process for developing Radiomics 

scoring-based CAC prediction or the CNN-based ECG analysis model. Among 5,643 

patients’ datasets, only 559 patients’ data were used to create these models, and this was 

the leading cause of low prediction performance, particularly in the ECG model. In 
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Radiomics scoring-based CAC prediction model, we manually delineated the cardiac 

contour to extract radiomics features; thus, an automatic segmentation algorithm is required 

to build a fully automated system to report the predicted CAC score. The development of 

a CNNs based segmentation algorithm for this process is required for future applications. 

An external validation was not performed; the study population in the present study was 

from two well-known multicenter CCTA trials including patients with stable chest pain; 

thus, patients from a single center would not meet the criteria for the qualified external 

validation cohort. Therefore, the study cohort was divided into training and validation 

cohorts, and the baseline characteristics were meticulously matched between cohorts to 

substitute for the external validation cohort. In future work, it will be necessary to establish 

a qualified external validation cohort for the external validation process. 

 

V. CONCLUSION 

In conclusion, we developed the integrated various-type feature-based AI-gatekeeper 

solution for CAD prediction using “primary tests” composed of CV risk factors, CXR, and 

ECG. This novel and innovative AI solution could turn common clinical data from primary 

tests into vital information by revealing previously unrecognized patterns, enhancing the 

diagnostic accuracy of CAD, and thereby reducing unnecessary downstream tests. This 

novel method might be readily applicable in clinical practice and contribute to reducing 

medical costs and radiation hazards, playing a role as the gatekeeper for CCTA and 

improving the pre-test probability of CAD, particularly in patients with stable chest pain. 
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ABSTRACT (IN KOREAN) 

관상동맥질환 선별을 위한 이종 특징 기반 'Al Gatekeeper' 솔루션 개발 

 

< 지도교수 장 혁 재 > 
 

연세대학교 대학원 의학과 
 

박 형 복 

 

서론: 현 임상현장에서는 관상동맥 질환 선별을 위해 일차 검사로 심혈관 

위험요소 문진, 흉부방사선 촬영, 심전도가 일반적으로 시행되며 이후 

추가적으로 고가의 정밀검사를 시행하고 있다. 그러나 추가 검사들의 경우 

일차 진료 현장에서는 즉시 시행하기 어렵고 비용 효과성이 떨어지는 

문제점이 있다. 이에 본 연구는 인공지능 기반의 이종 특징 기반 융합 

관상동맥 선별 솔루션을 개발하여 일차 진단 검사들의 정확도를 높이고자 

한다. 

방법: 본 연구는 CONSERVE (NCT01810198), CREDENCE (NCT02173275), 

3V FFR-FRIENDS (NCT01621438), PARADIGM (NCT02803411)의 4가지 

임상 연구 데이터를 분석하였다. 총 5,643명을 기계학습 기반 능형 회귀분석 

기법을 사용하여 위험인자 기반의 관상동맥질환 예측 모델을 계발하였고 

베이지안 분위회귀분석을 사용하여 연속적인 PARADIGM 데이터의 분석을 

통해 심혈관 위험인자와 관상동맥 협착 및 진행과의 포괄적인 상관성 분석을 

시도하였다. 또한 관상동맥 석회화 지수 정보를 가진 559명의 환자들을 

대상으로 라디오믹스 스코어 기반의 중등도 이상의 석회화 지수 (≥100) 예측 

모델 및 딥러닝 기반의 ECG에서 관상동맥질환 예측 모델을 계발하였다. 

결과: (1) 능형 회귀모델에서 위험인자 기반 관상동맥질환 예측은 AUC 0.75 

(95% CI 0.69-0.81)의 양호한 성능을 보여 주었고 베이지안 분위 
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회귀모델에서 세 혈관 DS의 90% 백분위는 41%–50% 이었고 DS 변화의 90% 

백분위는 5.6%–7.3%이었다. 전형적인 협심증 증상은 LAD의 90% 백분위와 

연관성을 보였고 당뇨는 LCx DS의 75% 혹은 90% 백분위와 연관성을 

보였으며 이상지질혈증은 RCA DS의 90% 백분위와 연관성이 관찰되었다. 

기타 증상은 LCx 및 RCA와 연관성이 관찰되었다. 고밀도지단백 

콜레스테롤의 경우 환자별 분석에서 역동적인 연관성을 보였다. (2) 라 

라디오믹스 스코어는 100 이상의 관상동맥 석회화 지수를 예측하는 가장 

중요한 인자였다 (Odds ratio = 2.33; 95% Confidence interval [CI] = 1.62-

3.44; p < 0.001). 또한 라디오믹스 기반 기계학습 모델은 AUC 0.84 (95% CI 

= 0.79-0.87)의 우수한 성능을 석회화 지수 100 이상을 예측하였다. (3) 

딥러닝 기반의 허혈성 변화 예측 심전도 모델은 트레이닝 코호트 (training 

cohort)와 검증 코호트 (validation cohort) 각각 AUC 0.60 (95% CI 0.54-

0.66) 및 AUC 0.60 (95% CI 0.50-0.69)의 중등도의 성능을 보여주었으나 

임상인자를 추가했을 때에는 트레이닝 코호트와 검증 코호트 각각 AUC of 

0.71 (95% CI 0.66-0.76) 및 0.67 (95% CI 0.59-0.69)로 성능 향상을 보였다. 

(4) 위험인자, 흉부방사성 영상, 심전도를 통합한 최종 모델의 성능은 

외부검증 (external validation)에서 AUC 0.77 (민감도 73%, 특이도 69%)로 

측정되었다. 

결론: 본 연구를 통해 일차 검사인 위험인자, 흉부방사성 영상, 심전도를 

이용하여 관상동맥질환 선별을 위한 이종 특징 기반 Al Gatekeeper 솔루션을 

계발하였다. 이는 특히 일차 진료 현장에서 널리 활용되어 관상동맥질환의 

검사 전 확률 (Pre-test probability)을 향상시킬 수 있을 것이다. 

                                                                         

핵심되는 말 : 인공지능, 관상동맥질환, 심혈관위험요소, 흉부방사선촬영,    

심전도 


