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ABSTRACT

Prediction Models for Severely Injured Occupants using
Machine Learning Analytics Based on Oversampling
Class Imbalanced Data

Joon Seok Kong
Department of Medicine
The Graduate School

Yonsei University

Injury prediction models improve trauma outcomes for motor vehicle occupants with
accurate decision-making and early transport to appropriate trauma centers. This study
aimed to investigate the injury severity prediction (ISP) capability of machine-learning

analytics based on five-different regional Level 1 trauma center-enrolled patients in Korea.

We studied car crash-related injury data from 1,417 patients enrolled in the Korea In-

Depth Accident Study database from January 2011 to April 2021. Severe ijury

viii



classification was defined as an Injury Severity Score > 15. Planar collisions were
considered by excluding rollovers which would compromise an accurate prediction.
Furthermore, dissimilarities of the collision partner component based on vehicle
segmentation were assumed for crash incompatibility. To handle class-imbalanced clinical
datasets, we used four data-sampling techniques (i.e., class-weighting, resampling,
synthetic minority oversampling, and adaptive synthetic sampling). Machine-learning
analytics based on logistic regression, extreme gradient boosting (XGBoost), and a

multilayer perceptron model were used for the evaluations.

Each model was executed using five-fold cross-validation to solve overfitting consistent
with the hyperparameters tuned to improve model performance. The area under the receiver
operating characteristic curve was 0.896. Additionally, the present ISP model showed an
under-triage rate of 6.1%. The Delta-V, age, and Principal Direction of Force (PDOF) were

significant predictors.

The results demonstrated that the data-balanced XGBoost model achieved a reliable
performance on injury severity classification of emergency department patients. This
finding considers ISP model selection, which affected prediction performance based on

overall predictor variables.

Keywords: Injury severity prediction, Machine learning, Motor vehicle occupants, Trauma center,
Injury severity, Delta-V, Under-triage, Class-imbalance, Oversampling technique, Korea In-Depth
Accident Study (KIDAS)



Chapter1

Introduction

1.1. Research background

In 2018, the World Health Organization reportedthat more than 1.35 million global deaths
were caused by road traffic injuries [1]. Furthermore, the report claimed that 20-50 million
patients sustained non-fatal injuries. Motor vehicle crashes (MVCs) are the single leading
cause of traumatic injury-related mortality and are a significant cause of sudden unnatural
death in the United States [2]. Although the overall incidence of road crashes has decreased

worldwide, the ratio of casualties does not correspond to this decrease.

Predicting the injury severity of motor vehicle occupants (MVOs) is crucial to saving
trauma patients. It has been reported that of patients with severe injuries are transferred to
trauma centers early, it leads to a 25% reduction in mortality [3]. During the pre-hospital
stage, accurate classification of crash-related injury severity is essential for decision-
making for patients and their transfers to appropriate facilities [4]. Paramedics refer to
various field triage recommendations to determine the injury classification of trauma

patients [5,6]. Despite long-standing clinical efforts, securing indicators (e.g., crash



velocity or crash deformations) in pre-hospital trauma triage for MVOs in critical rescue
circumstances has been problematic [7]. Although emergency medical services (EMS) are
expected to proceed with short notice, the actual “golden hour” of survival is not always
observed in traditional procedures [8]. Vehicular telematics services have recently been
leveraged to provide collision information to first responders, and their use is increasing in
high-income countries [6,9] to overcome these issues. However, the application of these

advanced technologies must be premised upon in-depth clinical research [10].

In terms of reducing fatalities, the unique characteristics of each country’s high-risk
crashes should be considered. In Korea, severe injuries from MVCs are aggregated in large
numbers among road users. In particular, car-to-car (C2C) crashes account for a significant
proportion of collisions leading to major traumatic injury risks. Many studies have shown
that crash incompatibility between two vehicles significantly affects injury severity [11-
18]. This indicates a considerable difference in vehicle design regarding mass, size,
geometry, and stiffness. Consequently, in contrast to single-vehicle crashes, vehicle
dissimilarity significantly affects severe injury in C2C crashes. However, most injury
severity prediction (ISP) studies have focused only on the overall collision materials [19-
21]. Individual crash types are significant in determining crash-related injury outcomes.
However, predictive estimations of injury severity focusing on C2C crashes have not been

explored.

A numerical model of ISP was provided using traditional statistics [19,21,22] in a previous

study. Early predictive models (e.g., logistic regression) have the advantage of intuitive and



interpretable structures [23]. Meanwhile, the predictive performance of these algorithms
depends on the sample size. Thus, it is difficult to expect good performance when there is
nsufficient clinical data [24]. However, the recent use of machine learning (ML) has
provided an alternative that might overcome these limitations [20,24,25]. In extant works,
ML models used to predict injury severity classification have reported better performance
than traditional statistical models [26]. However, there is no single optimal model for
predicting injury severity classifications for trauma-injured MVOs [25]. Thus, it is

necessary to determine the performance of various ISP models.



1.2. Purpose of the research

This study aims to provide ISP models using ML analytics for MVOs who have visited
Level 1 trauma centers in Korea. The study suggests that the noteworthy by address the
following as 1) a primary ISP model focused on C2C crashes, 2) handling imbalanced
injury severity classification based on data sampling techniques, 3) comparing the optimal
model by considering an under-triage from a medical point-of-view, and 4) providing the
feature importance of a single outperforming evaluation model. Thus, rather than simply
focusing on improving predictive performance, it is vital to represent a clinically reliable

model for medical workers in the real world.

The remainder of the paper is organized as follows: Chapter 2 describes the datasets and
detailed framework methodologies; Chapter 3 presents the results; Chapter 4 and 5 present
the discussion and limitations of this study; Finally, the Chapter 6 outlines the main

conclusions and presents the scope for future research.



Chapter 2

Materials and Methods

2.1. Korea In-Depth Accident Study (KIDAS) database

2.1.1. Hospital centered accidental injury data

The Korea In-Depth Accident Study (KIDAS)is a researchunit established by emergency
medical institutes in Korea to conduct researchby forming a consultative body with various
related organizations to prevent bodily injury and reduce the mortality of road traffic users.
This is to promote injury prevention that is differentiated from other countries according to
the unique road traffic environments and vehicular distributions in South Korea. Inaddition,
based on Haddon's matrix, various indicators are being collected from the perspective of
humans, vehicles, and the environmental index by crash stages (i.e., Pre-crash, In-crash,
and Post-crash) in real-world crashes. Centering on the Center for Automotive Medical
Science Institute (CAMS) established at Wonju Severance Christian Hospital, other
regional trauma centers in Korea are collecting in-depth data associated with road traffic

injuries (Figure 2.1).



Road Traffic Injuries (RTI)

Y e Direct investigation
Transport dispatch (ex. Insurance, Rescue, Police)

* Road traffic crash surveys
* Crash scene photography
* Event data recorder (EDR) 1

* Ground Emergency Medical Service (GEMS)
* Helicopter Emergency Medical Service (HEMS)
]

l Indirect investigation
Hospital care unit (ex. Tow truck, Auto-repair shop)

* Pre-hospital care report
+ Road traffic injury surveys
* Initial crash damage information

* Investigating survey on cause of crash
« In-hospital triage and trauma scorings

Figure 2.1. Regional investigations for motor vehicle crashes based on the KIDAS
database

The collected information consists of a large group of different types of information;
classification index, patients index, vehicle information, vehicular safety features, road-
environmental characteristics, accident and collision types, vehicular deformations,
prehospital information, medical records and trauma registry, Korean Standard
Classification of Disease (KCD?7), Abbreviated Injury Scale (AIS), Injury Severity Score
(ISS), and crash dynamics. These include a total of 290 indicators related to Korean road

traffic injuries to analyze and develop an injury prevention model.

2.1.2. Team-makers and action roles for data collections

The professionals involved with the investigation and management of road traffic injuries

are led by regional trauma centers and are subdivided into medical staff, crash investigators,



and reconstruction engineers. Initial information sharing is implemented by disseminating

preliminary investigation results from emergency room. Each division performs it duties

through a mutual information exchanged for traffic injury patients who have visited

regional trauma centers. All stakeholders participate in the overall process until every

record related to the incidents is collected to finalize the data recordings (Figure 2.2).

MVC patient visit to trauma centers

In-hospital investigations of initial information

% (Consent from the patients and/or their guardians)
G
‘E l
2
3
= Inquire the information on crashed vehicle
N (Crash sites and vehicular locations)
b .
5 On-scene Investigate
3 (Evidence-based crash photography,
é” crash trace measurements, and vehicle
8 damage distributions)
g
8 l
O
Assigning crash investigated reports
(Crash sketches and assuming checklist of crash information)
“ l
8
3
3 Crash reconstruction
5 (Reconstructing vehicular crash based
-~ on field investigated reports)
2}
E
O

Full-research members

Joint group conference on clinical epidemiology
(Qualitative discussions on field data among each regional trauma centers)

!

Data analysis and injury coding
(identifying cause of crashes, injury patterns and mechanisms)

}

Storage final decisioned data into cloud database

No

Joint investigations with related organizations
(Request for specific information and materials)

e

Re-investigation a.nd improv ements
(Cond g in-depth EDR i ion)

Figure 2.2. Flowchart for investigative procedures based on the emergency

department



2.1.3. Hospitalized Team-call investigation systems

In the pre-hospital stage, the medical staff collects the iitial information on the road
traffic collision from the patient or their guardians who have visited the emergency
department. Depending on necessity, the fire department requests quality on-site
photographic evidence of the crash scene. The information is disseminated to the crash
investigators through team calls. After the patient is given an in-hospital triage
classification, the final injury outcomes are recorded using the Emergency Medical Record

(EMR) system and trauma registry.

2.1.4. On-scene crash investigation protocols

Based on the survey report, the established information is used to complete a crash eport
before being entered into the database (Figure 2.3). After being notified of the situation by
the hospital medical staff, the crash investigators immediately attempt to record the crash
site information and the vehicular damage distribution (Figure 2.4). In addition, the Event
DataRecorder (EDR)is used to secure the vehicle's safety device and dynamic information

from the time of the crash (Figure 2.5).

In the field stage, the crashed vehicle’s crash location and momentum trajectory are
recorded as sketches by investigators. Moreover, an aerial drone scans the crash site and
surrounding the roads with scale-based measurements to improve the qualitative

information. High-precision 3-Diemensionalized road objects are generated through Pix4D



mappers (Pix4D) by point cloud photogrammetry (Figure 2.6-2.8). Through the calibration
of geolocated images during flight, detailed information such as the elevation difference of

the road and the inclination of the road curvature is measured (Figure 2.9).
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Figure 2.3. Initial stage investigation report forms collected at trauma centers



Figure 2.4. On-scene investigation of crash vehicles
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Figure 2.5. Crash vehicle data extraction using Event Data Recorder
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Figure 2.6. Real-world flight mapping sequence based on cloud-based photo scenes
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Figure 2.7. Generating geometric snapshots of real-world crash scene

Figure 2.8. 3-Diemensionalize d image rendering of crash scene
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2.1.5. Crash reconstruction for real-world crashes

Crashreconstruction promotes an intuitive understanding of the actual collision scene and
enables easy analysis of the dynamic behaviors of the crash vehicles. To ensure that the
reconstruction of a motor vehicle crashes is precise, it is necessary to optimize the on-scene
investigative information considering every detail Based on the in-depth crash
investigation report, the reconstruction is performed using the PC-Crash (DSD, Dr. Steffan
Datentechnik GmbH Linz, Austria) software. This allows simple vehicle dynamics and
kinematic responses to be reconstruct based on real world crashes. The collision optimizer
evaluated the accuracy of reconstructed data and show a trajectory error rate of less than
5% within the 95% confidence intervals (Figure 2.10). Through this, there is a higher
potential for injury to the occupants. Delta-V can be simply defined as the difference

between the initial speed before the collision and the lowest peak speeds after the collision.

| so0s | 6,916 | 3084 ‘2.246‘ 3,01 ‘

|
65 547 |
(A 02: 1.6%, MBI 95%) -
|

Figure 2.10. Collision optimizer to assess trajectory errors and confidence intervals
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According to Newton's law of motion, Delta-V can be calculated using the mass of the
two vehicles and their velocities before and after the collision. Based on the hypothesized

case for the frontal crashes of two vehicles, the equations may address simplified as follows.

Equation 2.1 is the formula for the law of conservation momentum, where m; and m, is
the mass of two vehicles, v, and v, is the initial velocity of the crash vehicle, v,"and v,"is

the velocities of after crash of the both vehicles, respectively.

my vy +myvy, =My +myv,’ 2.1

Equation 2.2 shows the coefficient of restitution (¢) calculation formula, and each of the

other variables is the same as in Equation 2.1.

vy’

(2.2)

V1—V2

Equation 2.3 is a combination of Equations 2.1 and 2.2, and using this equation, the post-
collision speed of the two vehicles can be obtained by applying the mass and initial

collision speed of the two vehicles.

15



oo (v1 — v2) (2.3)

However, the accuracy of these mathematical calculations may be insufficient depending
on the complexity of the collision (i.e., rollovers, multiple collisions) in real-world crashes.
Therefore, the calculations are performed using the Delta-V of the vector unit calculated in

the rigid body-based universal crash reconstruction software (Figure 2.11-2.12).

Figure 2.11. Correlation analysis of in-vehicle recording and crash reconstruction

16
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Figure 2.12.3D reconstructed crash s cene based on car-to-car crashes

2.1.6. In-depth data review and decision-making process

The comprehensive collection of information is reviewed by an expert meeting where the
decision to enter it into the final database is made. An in-depth reviewing process for
decision-making is held every week with participants including medical doctors, trauma
coordinators, crashinvestigators, reconstruction engineers, and related researchers. Experts
discuss their field crashanalysis (Figure 2.13-2.18) and injury outcomes (Figure 2.19-2.21)
with full consideration for the mechanism of injury in vehicular crashes. Incorrect input

and unclear information will be re-reviewedafter reinvestigating the related feature. Finally,

17



the preservation of the final documents is carried out, and the data are entered into the

database through the database management system.

Figure 2.14. Functional road photography of crash environme nt
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Figure 2.16. Vehicle interiors and passive safety device status investigation
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Figure 2.18. Opponent vehicle’s interior with the activated airbags

20
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Figure 2.19. Patient’s records and trauma scores in car-to-car crash
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Figure 2.20. Diagnostic imaging using Computed Tomography

of bodily injuries
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Figure 2.21. In-hospital surgical findings and injury surveillance

2.2. Data source

This retrospective study used the Korea In-Depth Accident Study (KIDAS) database from
the Center for Automotive Medical Science Institute (CAMS) at Yonsei University. The
data were collected using on-scene investigations of real-world crashes. We analyzed
patients from five different regional trauma centers in South Korea from January 2011 to

April 2020.

The dataset consisted of road traffic injury information related to the human, vehicle, and
crash components and is used to predict the severity of the MVOs’ injury. The patients age
wasrecorded for both male and female genders. The restraint system (passive safety device)

was assessed, and evidence of wear or fault was recorded. Furthermore, the Principal

23



Direction of Force (PDOF) was defined as the impact direction. This consists of frontal,
side (left and right), and rear-end impacts. Vehicle types were grouped into five categories;
sedan, sports utility vehicle, light truck, van, and heavy trailer. The collision partner was
defined by considering the two vehicle’s mass and size, and assessing them for crash
incompatibility. For instance, if the patient’s vehicle was heavier than the opponent's crash
vehicle, the collision partner would have only been a relatively small component of the
overall force sustained by the patient. Finally, the number of impacts between the two
vehicles in car-to-car crashes was categorized into single and two or more. Delta-V is a
change in velocity from pre-crashto in-crash relating to the vector dynamics of MVCs. The
Delta-V was obtained by crash reconstruction using PC-Crash software referring to on-
scene information documented by field investigators. This study was conducted following
approval from the research ethics committee of the Wonju Severance Christian Hospital at

Yonsei University (IRB Approval No.: CR319049).

2.3. Study population

Among the 3,928 occupants related to MV Cs, we used the data of 1,417 patients aged >
18 to predict severe injuries in C2C crashes (Figure 2.22). We grouped individual patients
based on the classification on severity of their injuries. In this study, simple planar crashes
were assessed to predict the results based on the complexity of MVCs. Rollovers were

excluded from the analysis.
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Figure 2.22. Flowchart of data selections of overall crash-related KIDAS dataset

2.4. Sample size estimation

In this study, the sample size required for the MVOs serious injury prediction model was

calculated using G-power 3.1 software (Heinrich-Heine- Universitdt, Diisseldorf). It was
calculated as the sample size (F test) for multiple logistic regression (deviation of R? from

zero), which is the most widely used statistical model.

We set the input parameters as 0.02 for effect size f-square, 0.05 for a error probability,

and 0.80 for Power (1-B error probability), and set seven predictors (ie., age, seat belts
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usage, the principal direction of force, vehicle type, collision partner, multiple impact, and
Delta-V) for the model. Based on the assumption above, the desired sample size is 725

patients. The 1,417 patients used in this study, therefore, more than adequate.

2.5. Injury severity classification

The Injury Severity Score (ISS) is a medical score used to assess trauma severity and was
established by the Association for Advanced Automotive Medicine [27]. The score
provides a primary anatomical diagnosis for trauma, considering the epidemiological
information needed to classify injury severity and determine treatment viability. An ISS
score ranges from 0 to 75 and is assigned according to the abbreviated injury scale, which
addresses six anatomical body regions: head and neck, face, thorax, abdomen, extremities,
and externals (See Table 2.1). The ISS is used extensively as a discriminant measure for
predicting severe injury in MVCs. AnISS of 1-8 is considered minor, 9-15 moderate, and
more than 15+ as severe to critical trauma. In this study, patients with an ISS of 15+ were

categorized as severely injured based on the criteria for injury classification.
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Table 2.1. An example of Injury Severity Score calculation

Region Description of Injury AIS Square top three
Head & Neck Scalp laceration 110602.1

Face Lt. medial orbital wall fracture 251231.2 4

Chest Rt. 4-9 rib fractures 450203.3 9
Abdomen Adrenal grand contusion 540212.1

Extremity Combined fracture at Lt. radius and ulna ~ 853171.3 9
External Multiple abrasion 910200.1

ISS 22

AIS, abbreviated injury scale; ISS, injury severity score

2.6. Study design

This study applied ML analytics through imbalanced clinical data processing to determine

the best-performing model according to a binary injury classification. The overall

methodological procedure is illustrated in Figure 2.23. We pre-processed the class-

imbalanced data using oversampling techniques to achieve results that reduced the defects

of the training dataset. All models were verified using k-fold cross-validation to avoid

overfitting problems. A detailed methodological description is described in the following

subsections.
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Figure 2.23. Prediction model analytics of M VC occupant injuries

2.7. Predictive parameters

The selection of parameters used in the prediction model requires in-depth consideration
of risk factors that affect the safety of occupants. The Centers for Disease Control and
Prevention (CDC) in the United States provided recommendations from an expert panel on
trauma-patient classification system guidelines for advanced automatic collision
notification [10]. We adopted indicators such as these and the extant national standards for
predicting injury severity. This study selected seven parameters (i.e., age, seat belts usage,
the principal direction of force (PDOF), vehicular type, collision number, crash partner,

and Delta-V) to predict the severity of the patient’s injuries in C2C crashes.
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2.8. Data sampling techniques for class-imbalance data

Effective predictive analytics requires a model that uses large-scale data consisting of
neutrally balanced constituents. However, we considered that the injury severity classes
based on the KIDAS dataset are generally imbalanced. These clinical datasets are
frequently imbalanced due to the sample count depending on the number of patients visiting
trauma centers with different degrees of injury severity [28]. This creates a strong bias for
the prediction model’s performance, which then causes severe errors in diagnosis. Since
the class imbalance problem occurs when the majority class has more data than the minority
class [29], this can then facilitate the calculation of the imbalance ratio (ratio of majority
class to minority class) [30]. The calculations of imbalance ratio can be simplified as

follows:

Imbalance Ratio (IR) = % (2.4)

min

When precisely balanced, the class imbalance ratio is 1:1, however, a larger ratio implies
a higher imbalanced dataset. This study considered the severity of the imbalanced clinical
dataset as mildly imbalanced for a ratio between 1.9 and 9 and extremely imbalance for a
ratio higher than 9 [31,32]. The approach to handling an imbalanced class dataset is to

select a data sampling techniques that will balance the class. Class weighting, resampling,
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the synthetic minority oversampling technique (SMOTE), and adaptive synthetic sampling

(ADASYN) were used in the present study.

Class weighting is not an oversampling methodology. However, it could be used to assign
weights to each class to calculate the model’s objective function. Resampling is a method
of sampling minorities by replacing as many units as the number of majorities [33]. Despite
the advantage of balancing classes, the technique increases the likelihood of overfitting as
it replicates random records from the minority class. SMOTE and ADASYN were used to
avoid overfitting by generating a newly synthesized minority class in a relatively wider
region [34,35]. This can effectively change the sparse distribution of minority-class
samples. SMOTE randomly generates synthetic minority instances that contain nearby
instances of the minority class. ADASYN is a similar idea that assigns a weighted
distribution for different minority class samples according to the density of majority class

samples around the nearest neighbor’s boundary.

Overall, the imbalanced data oversampling and predictive model development was
performed using the Python programming language (version 3.8.2, Python Software
Foundation, Wilmington, DE, USA), and the libraries used included scikit-learn 0.24.1,

Imblearn 0.7.0, TensorFlow 2.3.1, and XGBoost 1.4.0 (version SNAPSHOT) in Table 2.2.
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Table 2.2. Hyperparameters used in the prediction model

Logistic Regression Multilayer Perceptron Extreme Gradient Boosting
Penalty: 11 Number of hidden layers: 2 Booster: ghtree
Solver: Ibfgs Activation function: ReLU Max depth: 10
Dropout: 0.3 Min child weight: 2
Loss function: Binary Gamma: 1
Crossentropy Colsample bytree: 0.8
Optimizer: Adam Colsample bylevel: 0.9
Epochs: 100 Number of estimators: 100

Batch size: 32

2.9. Classification models

This study used three ML classification techniques to develop a model to predict injury
severity in MVCs. LR was the most widely used in prediction analysis; it is a classification
algorithm used to assign observations to discrete response variables. The algorithm
transforms the output using the logistic sigmoid function to return a probability value. MLP
is a deep learning (DL) model suitable for handling heterogeneous variables in any order.
The MLP is a stacked linear model wherein the activation function is generalized similarly
to the LR model [36]. XGBoost is a decision tree ML model with a boot-strapping
framework [35]. XGBoost processes sequential tree buildings in parallel. This method can
prevent overfitting and improve calculation speed. Among the tree-based models, the
performance of this method is excellent, and the importance of its features is still to be

determined.
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2.10. Model training and testing

The dataset was divided into 80% for training and 20% for testing. In the case of the LR
and XGBoost models, five-fold cross-validation was applied in training, and a grid search
was used for hyperparameter tuning. Though many k-fold may be used for validation,
others were conducted similarly using short-scaled datasets [28]. In the case of the MLP
model, the number of hidden layers was limited to two. The optimal values of the

hyperparameters were tuned for each model.

2.11. Performance evaluation

In this study, we evaluated the presented ISP models for their internal validity in binary
injury severity. We evaluated the proposed ML models using F-measures (F1 score) which
were computed based on the harmonic average of precision and recall. Also, accuracy was
calculated for performance comparison with other previous studies. These are defined in

the following equations.

32



TP+TN

Accuracy=————
TP+TN+FP+FN

Precision =
TP+FP

TP
TP+FN

Recall =

PrecisionxXRecall

2XTP

F1 score = 2 X

Precision+Recall  2XTP+FP+FN

2.5)

(2.6)

2.7)

2.8)

where true positive (TP), the number of actual events of severely injured patients is

classified as severe injury, true negative (TN), the number of events of non-severe injured

patients counted as non-severe injury; false positive (FP), the number of non-severe injured

patients detected as severely injured, and false negative (FN), the number of events of

severely injured presents as non-severely injury, respectively (Table 2.3).

Table 2.3. Model intra-validation associated with the prediction model and
traumatic clinical data abbre viation

Actual Positive

(Severe Injury)

Predicted Positive

(Severe Injury)

Predicted Negative

False Negative (FN)

(Non-severe Injury)

(Under-triage)

Actual Negative
(Non-severe Injury)

False Positive (FP)
(Over-triage)

True Negative (TN)
(Reject)
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However, standard errors of false alarms represent misleading predictions, such as over-
triage (false positive ratio) and under-triage (false negative ratio) classification. Therefore,
this study considered an under-triage level before evaluating the predictive performance in

clinical assessments.

Using the receiver operating characteristics curve (ROC) value, we conducted a
performance evaluation for a primary classifier based on ML analytics. The curve plots the
true positive rate (TPR) against the false negative rate (FPR), illustrating the predictive
performance of a binary classifier. The TPR also represents an equal calculating equation

as recall (or sensitivity), and FPR as (1-specificty).

The AUC values ranged from 0.5 to 1. Hosmer and Lemeshow defined the evaluation of
AUC as a “no discrimination” outcome when the AUC was 0.5; it is an acceptabk
discrimination outcome when 0.7 < AUC < 0.8, and an excellent discrimination outcome
occurs when 0.8 < AUC < 0.9. Furthermore, an outstanding discrimination outcome occurs
when the AUC > 0.9. Finally, as the AUC approaches 1.0, the response can be interpreted

as a complete predictive power outcome [23].
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Chapter3

Results

3.1. Data sampling techniques for class imbalance clinical outcomes

Scatterplots of primary continuous data (age and Delta-V) were used by each sampling
technique to configure the data distribution of binary injury severities (Figure 3.1). Since
the oversampling was conducted only on severely injured data, the plots show an increased
focus on Resample, SMOTE, and ADASYN datasets compared to the imbalance
distribution. However, the class-weighted datasets are demonstrated to be equal to the raw
data due to the assignment of weights to each class in the initial data. The degree of spread
and central tendency of the sampling data was similar in cases of imbalance and
oversampled datasets. The Delta-V distribution showed a significant spread in severe
injuries, whereas the central tendency of non-severe patients was focused on the low—

middle range.
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3.2. Baseline characteristics of crash data distributions enrolledin
regional trauma centers

The descriptive data were summarized as a sample for predicting severely injured C2C
crash occupants (Table 3.1). According to the classification of injury severity, the data
distribution led to performance outcomes nearly five times higher in the non-severe group
(n= 1,181, 83.3%) than in the severe group (n =236, 16.7%). Among the patients with the
majority and minority classes, the imbalance ratio showed nearly 5:1, which is a mildly
imbalanced dataset(1.9-t0-9.0). Since the datasethas not satisfied an extremely imbalanced
ratio (>9), it is more likely to be appropriate for predicting the majority of classes in the
clinical data. Also, the dataindicated that young occupants were more engaged with MV Cs

than older groups.

The proportion of restrained occupants at the time of the MVC was larger. The PDOF was
the largest in cases of frontal (e.g., head-on) impacts. In terms of vehicle type, the sedan
met with the highest number of crashes, followed by sport-utility vehicles (SUVs)and light
trucks. In this study, we classified the relative sizes of the counterparts into three categories.
The impact incidence with vehicles similar to or larger than the counterpart vehicle was
higher. Regarding the number of collisions, the probability of multiple impacts was lower
than 10% in all MVCs. The Delta-V accounted for nearly 70% at the low and medium
ranges (0-30 km/h). We developed a model to predict the severity of damage to patients

based on age and Delta-V distribution.
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Table 3.1. Demographic data of MVCs related to trauma

. _— Frequenc Ratio
Variables Descriptions (n:2,417;/ (100%)
. ) Severe injury 236 16.7
Dependent variables ISS (binary) Non-severe injury 1181 833
54 years under 907 64.0
Age 55-64 years 312 22.0
65 years over 198 14.0
Fastened 930 65.6
Seat belts usage Unfastened 487 344
Frontal impact 881 62.2
PDOF Side impact 336 23.7
Rear-end impact 200 141
Sedan 820 57.9
SUVv 230 16.2
Vehicle type Light truck 212 15.0
) Van 122 8.6
Independent variables Heavily trailers 33 2.3
Smaller 114 8.0
Collision partner Similar 931 65.7
Larger 372 26.3
o Yes 118 8.3
Multiple impact No 1209 917
0-10 kmvh 470 332
11-19 km/h 275 19.4
20-29 knmvh 243 17.1
Delta-V 30-39 kmvh 177 125
40-49 kmvh 97 6.8
50 km/h over 155 10.9

ISS, injury severity score; PDOF, principal direction of force; SUV, sports utility vehicle
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3.3. Confusion matrices for triage controls on injury severity
classifications

This study assessed 15 models to predict severe injury based on the oversampling
techniques of class-imbalanced MV C data. The confusion matrix of the present model was
analyzed using five-fold cross-validation (Table 3.2). The sampling data (Resample,
SMOTE, and ADASYN) oversampled nearly twice as high as the raw and weighted dataset.
In addition, the Resampling and SMOTE oversampled more sampling numbers than

ADASYN. However, the number of samples used for ML in each dataset was identical.

A crucial role of classification problems in ML predictions may be visualized as a
confusion matrix that shows the classification model being confused with the prediction
model. The number of correct (positive) and incorrect (negative) predictions of binary
classifiers (severe or non-severe injury) is summarized with count values and broken down
by each class. However, a significant error of false reporting represents misleading
predictions as over-triage (false positive ratio) or under-triage (false negative ratio) in
clinical outcomes. The false-negative rate (severe injury) should be considered within the
lowest peak for an accurate model to avoid under-triage in MVOs classifications. This
study found the best-performing model with lower bounds of the under-triage-rated model
in imbalanced data (MLP =2.5%). However, the oversampled data-enhanced prediction of

severely injured patients included a good under-triage tolerance of <10%.
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Table 3.2. A comparison of the confusion matrix used to predictinjury severity classification

Dataset Classifier N Balance Confusion matrix
Positive Negative TP(TPR) FN(FNR)  FP (FPR) TN (TNR)
LR 284 6 (2.1) 278 (97.9) 5(1.8) 47 (16.5) 1(0.4) 231 (81.3)
Imbalanced Raw MLP 284  163(57.4)  121(42.6) 40 (14.1) 7(2.5) 123 (43.3) 114 (40.1)
XGB 284 11 (3.9) 273 (96.1) 3(1.1) 42 (14.8) 8(2.8) 231 (81.3)
LR 284 89 (31.3) 195 (68.7) 26 (9.2) 20 (7.0) 63 (22.2) 175 (61.6)
Weighted Wii';s]tsé g MLP 284  122(43.0)  162(57.0) 40 (14.1) 13 (4.6) 82 (28.9) 149 (52.5)
XGB 284 5(1.8) 279 (98.2) 3(1.1) 42 (14.8) 2(0.7) 237 (83.5)
LR 473 218(46.1)  255(53.9)  132(27.9) 106 (22.4) 86 (18.2) 149 (31.5)
Resamp led MLP 473 237(50.1)  236(49.9) 162 (34.2) 93 (19.7) 75 (15.9) 143 (30.2)
XGB 473 274(57.9)  199(42.1) 203 (42.9) 45 (9.5) 71 (15.0) 154 (32.6)
LR 473 241(51.0)  232(49.0) 161 (34.0) 77 (16.3) 80 (16.9) 155 (32.8)
Over-sampled ~ SMOTE MLP 473 314(66.4)  159(33.6) 205 (43.3) 20 (4.2) 109 (23.0) 139 (29.4)
XGB 473 272(57.5)  201(425) 221 (46.7) 29 (6.1) 51 (10.8) 172 (36.4)
LR 459  231(50.3)  228(49.7) 156 (34.0) 70 (15.3) 75 (16.3) 158 (34.4)
ADASYN MLP 459  236(51.4)  223(48.6)  165(35.9) 62 (13.5) 71 (15.5) 161 (35.1)
XGB 459  238(51.9)  221(48.1) 182(39.7) 28 (6.1) 56 (12.2) 193 (42.0)

SMOTE, synthetic minority oversampling technique; ADASYN, adaptive synthetic sampling; LR, logistic regression; MLP, multilayer
perceptron; XGB, extreme gradient boosting; TP, true positive; TRP, true positive ratio; FN, false negative; FNR, false negative ratio;
FP, false positive; FPR, false positive ratio; TN, true negative; TNR, true negative ratio
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3.4. Evaluating predictive performances on injury severity prediction
classifiers

Table 3.3 shows the classification performance of injury severity results obtained from
the confusion matrices for each sampled classifier in Table 3.2. Thanks to these matrices,
it has been determined how injury severities were predicted correctly by referring to Table
2.3. It is clear that with the proposed method, the least incorrect injury severity estimation
is made. According to the performance findings, the outperformed classifier of the
SMOTE-XGBoost model achieved the accuracy, precision, recall, and F1 measures as
83.1%, 81.3%, 88.4%, and 84.7%, respectively. From the obtained results, we can observe
that SMOTE and ADASYN perform similarly, although the outperformed classifiers are

machine learning models (especially in XGBoost) based on the SMOTE sampled dataset.

The calculation of the performance parameter (accuracy, precision, recall, and F1 score)
for the outperformed model SMOTE (LR, MLP, and XGB) of Table 3.3 have been obtained

using the metrics columns in Table 3.2.
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Table 3.3. Predictive performance of severely injured MVOs based on sampling te chniques

Dataset Classifier Accuracy Precision Recall F1 score AUC

LR 0.831 0.833 0.096 0.172 0.768

Imbalanced Raw MLP 0.542 0.245 0.851 0.381 0.685
XGB 0.824 0.273 0.067 0.107 0.756

LR 0.708 0.292 0.565 0.385 0.737

Weighted WS:;;; ; MLP 0.665 0328 0.755 0.457 0.711
XGB 0.845 0.600 0.067 0.120 0.806

LR 0.594 0.606 0.555 0.579 0.627

Resampled MLP 0.645 0.684 0.635 0.659 0.658

XGB 0.755 0.741 0.819 0.778 0.755

LR 0.668 0.668 0.676 0.672 0.735

Oversampled SMOTE MLP 0.727 0.653 0.911 0.761 0.795
XGB 0.831 0.813 0.884 0.847 0.896

LR 0.684 0.675 0.690 0.683 0.748

ADASYN MLP 0.710 0.699 0.727 0.713 0.792

XGB 0.817 0.765 0.867 0.813 0.878

SMOTE, synthetic minority oversampling technique; ADASYN, adaptive synthetic sampling; LR, logistic regression; MLP, multilayer
perceptron; XGB, extreme gradient boosting; AUC, area under the curve
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For instance, if we analyze the same oversampled SMOTE dataset of LR from the
confusion matrix parameters as given in Table 4, TP = 161, FN = 77, FP =80, and TN =
155. Thus, the accuracy = (161+155)/(161+155+80+70) =0.668, precision = 161/(161+80)
=0.668, recall = 161/(161+77) = 0.676, and the F1 score = (2x161)/((2x161)+80+77) =

0.672.

The matrix parameters for the SMOTE-based MLP classifier are presented as TP = 205,
FN = 20, FP = 109, and TN = 139. This may be calculated as accuracy =

(205+139)/(205+139+109+20) = 0.727, precision = 205/(205+109) = 0.653, recall =

205/(205+20) =0.911, and the F1 score = (2x205)/((2x205)+109+20) = 0.761, respectively.
The outperformed parameter calculation is presented using the SMOTE dataset for the
XGBoost classifier given as TP = 221, FN =29, FP= 51, and TN = 172. In this case, the
accuracy=(221+172)/(221+172+29+51) = 0.831, precision =221/(221+51) =0.813, recall
= 221/(221+29) = 0.884, and the F1 score = (2x221)/((2x221)+51+29) = 0.847. Other

classifiers may also be calculated by referring to equation 2.5-2.8.

In the case of predicting severely injured occupants, the SMOTE-XGBoost model also
yielded excellent discrimination in C2C crashes (AUC = 0.896). The comparison of
prediction performance also canbe visualized from the graphic plot illustrations using the
ROC curve (Figure 3.2). This visualizes the success rate for the classifier as quantified by
calculating the curves. A higher value of evaluation metrics represents the outperforming

of predictions.
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3.5. Rankings of features important to outperforming SMOTE-
XGBoost

This study suggests which indicators are essential in ensuring the best performance model
(SMOTE-XGBoost) when predicting a patient’s injury classification (Table 3.4). The
Delta-V featured exclusive importance compared with other variables. Furthermore, the
age distribution and PDOF showed nearly equal secondary importance. Though collision
partners had relatively lower ranks in C2C crashes, the result has shown an advantage of

importance compared to vehicle types.

Table 3.4. Features importance ranking of outperformed classifier

Parameters Importance scores Importance ratios Features Rank
Delta-V 0.275 1.00 1
Age 0.176 0.64 2
PDOF 0.171 0.62 3
Seat belts usage 0.107 0.39 4
Multiple collision 0.107 0.39 4
Collision partner 0.085 0.31 5
Vehicle type 0.079 0.29 6

PDOF, principal direction of force
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Chapter 4

Discussion

This study provided an ISP model using clinical data of MVOs who visited Level-1
trauma centers from January 2011 to April 2021 in South Korea. The primary outcome
measurements were conducted as binary variables considering an overall ISS of 15 or
greater, referring to the indicators used to evaluate trauma triage performance as
recommended by the American College of Surgeon-Committee on Trauma (ACS-COT)
within a limited protocol. The parameters used for prediction referred to the field triage
recommendations of the CDC Expert Panel [6] and parameters of vehicle incompatibility
of C2C crashes [11,12,15], including age, seat belts usage (fastened or unfastened), PDOF
(frontal, side, and rear), vehicle type (sedan, SUV, light truck, van, heavy trailers), collision
partner (smaller, similar, and larger-sized vehicle), multiple impacts (single or multiple),

and Delta-V (kph unit).

The main findings showed that the ISP model of C2C crash-related occupants had an AUC
of 0.896. This indicates the potential for improving predictive performance when
considering sampling methods for imbalanced clinical data. Moreover, these results

showed that the triage performance of the ML model was higher than that of traditional
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statistical models (see Table 3.2).

This study confirmed that prediction performance improved through the data sampling
technique before developing the ISP model. Most MVOs visiting trauma centers were
classified as non-severely injured, resulting in a clinical data class imbalance. Previous
studies have reported that data imbalances cause prediction model bias and affect prediction
performance [25,37-39]. Thus, several studies using the National Automotive Sampling
System/Crashworthiness Data System (NASS-CDS) have leveraged population-weighted
samples to address data bias [19,40,41]. However, a database lacking a data-weighting
system has difficulty handling data under similar conditions. In contrast, data sampling
techniques have recently been embraced as methodological approaches to addressing class
imbalance problems. Some researchers have pointed out that data balancing should be
considered to predict reliable injury outcomes [39,42-45]. This study showedsimilar results,
with the best performance found using SMOTE-based oversampling data [25,37]. Using
crash-related data, SMOTE provided an excellent prediction probability for MVO binary
injuriecs. Meanwhile, undersampling or hybrid sampling approaches paired with different

sampling techniques were not considered owing to the small sample-sized data.

Meanwhile, several studies suggest that the prediction models based on machine
intelligence have improved performance [25,40,43,46-48]. Compared with statistical
methodologies, the latest machine learning and deep learning techniques enhance the
predictive performance. In the previous study, various classifiers were used to compare the

prediction performance of each model. These include a decision tree [48,49], k-nearest
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neighbor [24], support vector machine (SVM) [50,51], tree-based model [52], neural
networks [53], Naive Bayesian classifier [54], and gradient boosting [55]. Yet, some of the
latest methods have received the attention that implies that they are superior to the
conventional prediction models in the case of MVOs-related injury classification. A deep
learning model, multilayer perceptron (MLP), yielded the highest accuracy as well as area
under the curve (AUC) rate comparedto the k-nearestneighbor, NBC, DTC, support vector
machine, and logistic regression models [47]. On the other hand, the eXtreme Gradient
Boosting (XGBoost) model outperformed compared to such models; K-nearest neighbor
(KNN), linear SVM, radial basis function SVM (RBF SVM), Gaussian process classifier
(GP), Decision tree (DT), random forest (RF), multilayer perceptron (MLP), AdaBoost,
naive Bayes (NB), and quadratic discriminant analysis (QDA) [55]. However, no study has
been conducted comparing the suggested models. Therefore, the present work is evaluating

the performance of three ML models.

The results indicated that both the MLP and XGBoost models exhibited excellent
discrimination for binary injury classification. In particular, the XGBoost model yielded
the best predictions based on SMOTE oversampling in minority class data. The gap
differences in predictive performance between XGBoost and MLP existed because most
data used in the model consisted of categorical variables [56]. Because the factors affecting
road traffic injuries in real-world crashes were immensely complicated, there was a
tendency to categorize the data to estimate injury outcomes. For instance, it was intuitive

to categorize the wearing of seatbelts (belted or unbelted) rather than using quantitative
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kinematics for belt loading of MVOs to estimate injury severity. XGBoost is a gradient
tree-based ML classifier with no issues encoding data with most of these categorical
variables. However, predictive models based on continuous variables could expect
improved MLP prediction probabilitics. The implication of these findings pointed to the
potential to support the selection decisions of ISP models based on different data

characteristics and conditions.

In contrast to ML, statistical models have been reported to have weak ISP performance
owing to their fixed assumptions [25]. ML models are flexible when capturing valuable
information from nonlinear complex and heterogeneous data because they do not include
pre-assured relationships between variables [4548,57,58]. Furthermore, these
methodological approaches have produced a better model fit than statistical methods [24].
Jamal et al. [58] suggested that various ML models (e.g., random forest and decision tree),
including XGBoost, outperformed traditional statistical models, yielding results similar to
our study. Nevertheless, regression models can classify injury severity by intuitively
providing clear theoretical interpretations [59]. In previous studies, statistical models
achieved acceptable discriminative predictive power using large-scale data [19,21,60,61].
However, the sample size used affected the performance of traditional statistical methods.
It was difficult to expect the probability of prediction power using insufficient data
acquisition at the national or regional levels. Sampling-based ML models provided

effective approaches for an ISP using relatively small datasets.

Several studies proposed outperforming methods for ISP engaged with MV Os comparing
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various machine intelligence in binary classification (Table 3.5). Most of all, they have
different data collection periods for analysis in various databases. Also, there was a
difference in the imbalance ratio according to the injury severity classification in eachstudy.
Although the machine learning models had superior predictive performance in related
studies [46, 48], others gave better results in traditional statistical techniques [40, 61]. It is
assumed that this may influence the performance of the model’s performance depending
on the parameter selection in predicting the binary class of injury outcome. In particular,
Delen et al [48] showed the bestpredictive performance in SVM; however, the under-triage
results were missing, so they could not support clinical insights in the real-world. Therefore,
this study confirmed that the logistic regression performed better than previous models
(Random forest, Adaboost, Naive Bayes, Support Vector Machine, k-nearest neighbor,
Ridge Regression, Bernoulli Naive Descent, Stochastic Gradient Descent) detecting errors
in trauma classification from medical point of view [40,61]. Thus, comparing the presented
methodologies in the previous studies, the XGBoost model outperformed all of others
especially considering the under-triage rate in medical terms. However, additional studies
are required to apply techniques based on the optimal parameters when considering

complex crash injury mechanisms.
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Table 3.5. Performance comparison between the proposed models and previous studies

Data (year) Crash e Performance Under- .
. . Class break-down (%0) Data Classification . - Major ranked
Studies Crashdata injury - . evaluation triage
Variables targets Imbalance Ratio sampling Models (%) (%) features
* NASS-CDS . - Accuracy: 88.3
KUGS:tTICe)r& (2002-2011) General /Sﬁl\éir-ié:]/]:r;yir%\lﬂls)(N IA) Population- I(‘FS\;: AB. NB Sensitivity: 67.5 8.5 «N/A
[40] * N=16,398 MVOs | N/A weighted SUM kNN) ' Specificity: 889 '
7 ' AUC: N/A
* NASS-GES o i - Accuracy: 90.4 * Restraint use
Delen et al (2011-2012) General /Tg\r/]vllz\\l/zll 2‘;532\\//2?%/ ((2719%)) Under- (SA\\/I\II\?\I DT Sensitivity: 88.5 N/A * Manner of
[48] * N=27,214 MVOs [ Tag “/ sampling LR) e Specificity: 92.0 collision
*29 - AUC:92.8 * Ejection
* MTCF . - Precision: 87.9
Al Mamlook (2010-2017) Elderly * Severeinjury (12.4) Light-GMB Recall: 81.4 * Age
etal = / Non-severe injury (87.6) SMOTE (RF,DT, LR, T N/A * Traffic volume
[46] * N=106,274 MVOs 4.7 NB) F1score: 83.7 « Car age
8 - AUC: 87.5 g
. * NASS-CDS . .
Candefjord * Severeinjury (5.7) . LR * Ejection
etal .(51912?'%2195) Sﬂe\r}ggal / Non-severe injury (94.3) EVZ?urlﬁetéon_ (RR, BNB, AUC: 86.0 3000 * Entrapment
[61] Y *1:16.5 g SGD, ANN) P e Beltuse
. Accuracy: 83.1
(|2<(IJ?/1A—§OZO) c2C * Severe injury (16.7) (SC'\\//I\(I)TE XGB Precision: 81.3 e Delta-V
Our study « N=1,417 MVOs .lleorz)-severe injury (83.3) Resample, (LR, MLP) E;:call: 8884}1 , 6.1 :?I%EOF
.7 :5. ADASYN) score: 84.
AUC:89.6

NASS-CDS, national automotive sampling system-crashworthiness data system; NASS-GES, national automotive sampling system-
general estimates system; MTCF, Michigan traffic crash facts; MVO, motor vehicle occupants; KIDAS, Korea in-depth accident study;
C2C, car-to-car crashes; SMOTE, synthetic minority oversampling technique; CW, class-weighted, ADASYN, adaptive synthetic
sampling; LR, logistic regression, RF, random forest; AB, AdaBoost; NB, Naive Bayes; SVM, support vectormachine; kNN, k-nearest
neighbor; ANN; artificial neural networks; DT, decision trees; Light-GMB, light gradient boosting machine; RR, ridge regression; BNB,
Bernoulli Naive Bayes; SGD, stochastic gradient descent; XGB, extreme gradient boosting; MLP, multilayered perceptron
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Many ISP models have been developed to consider all crash types [19-21,61]. However,
factors affecting severe MVO injuries differed depending on various crash scenarios.
Unlike fixed-material collisions, vehicle incompatibilities (e.g., passenger cars versus
SUVs) in C2C crashes have contributed to injury severity outcomes [16,62-64]. These
vehicle body structure mismatches increased the risk of mjury severity to MVOs with
disadvantageous self-protective capacities due to the vehicle differences, such as mass,
weight, geometry, and stiffness, based on Newtonian mechanics [11,14-16,51,54,65]. Zeng
et al. (2016) reported that vans and trucks had stronger self-protection and aggressivity than
passenger vehicles [16]. However, no further research has been conducted that reflects
these characteristics in real-world C2C crashes. This study suggested an ISP model with
collision partners that considers the crash incompatibility of two-vehicle scenarios. The
collision partner was confirmed as a highly discriminant feature of the best model
compared to vehicle type. However, it was interpreted that these low features pointed to
the distribution of vehicles with high rigidity (e.g., heavy trailers), which had msufficient
numbers compared with other vehicles. Thus, large-scale data might result in enhanced

feature rankings for collision partners.

The application of telematics-based services (such as AACN) that can classify the injury
severity of real-time crash victims through post-crash analysis is expected to be most
effective for a consistent golden hour [22]. It cantransmit information to the control system
through an algorithm built into the crash vehicle. Also, the dispatcher may detect the crash

location automatically (i.e., GPS) and provide predicted triage to the EMS provider in real-
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time. Thus, patients may arrive at the trauma center quickly by minimizing the delay time
compared to existing in-person responses. Therefore,advanced ISP models may potentially

assist diagnosis effectively in hospital arrival time and for public use in preventing road

traffic fatalities in the future.
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Chapter 5

Limitation

The study has severallimitations. The main problem was that ML models were considered
a black box, making it difficult to understand the relationships between crash inputs and
mjury outcomes. Meanwhile, an LR model interprets as a simple linear form. Clinically,
this difference might cause problems depending on whether the structure of the model is
interpretable. Therefore, ML models should be discussed in more detail before their
practical application to real-world injury control, prevention, and treatment. Furthermore,
compared with earlier studies, the number of data used to predict MVO injury severity was
short-scaled. We used data focused on field investigations at five different regional trauma
centers. In Korea, public databases (i.e., police investigations and transport-related
government institutions) have not been authorized for use with ISP models. Hence,
improving ISP model reliability through improved data collection was crucial. Since many
hospitalized datasets have difficulties for public availability, nationalized scaled data
collecting efforts collaborating from government and joint institutes are required to prevent

road traffic injuries.

Additionally, it was necessary to consider the scalability of the predictor variables
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affecting severe juries in C2C crashes. Although this study applied recommended
variable MVC factors for CDC field triage guidelines and expert panels, advanced
considerations of the characteristics of C2C crashes were limited to counterpart objects.
Therefore, more detailed aspects of vehicle incompatibility (e.g., mass ratio or/and energy
absorption) between two-vehicle collisions are required. However, major indicators of ISP
models (e.g.,ejections and entrapments) were not considered owing to a lack of prepared

investigation data.
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Chapter 6

Conclusion

The main goal of this study was to propose an ML-based model for predicting severe
injuries of C2C crash-related patients who visited Level-1 trauma centers in Korea. We
evaluated the probability of the predictive performance of several ISP models (ie.,
XGBoost, MLP, and LR) using a confusion matrix and F-measures. Based on the results, it
was confirmed that the SMOTE-XGBoost model outperformed the other models. This
demonstrated the importance of selecting an optimized ISP model while considering the
variable MV C conditions. Furthermore, we confirmed that the sampling technique for class
imbalanced datasets increased the prediction power. Nonetheless, it was essential to
provide an interpretable algorithm for practical use in the real world through the expansion
of MVO data collection. The primary features of our model were like those from a previous
work. This study contributed to the literature by considering C2C-crash vehicle

incompatibilities.

In a future study, external validation should be undertaken to improve the validity of the
currentmodel. Validating against different local or broad international databases is required

to achieve model reliability. Additional research adopting state-of-the-art techniques (e.g.,
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hybrid and ensemble models) using equivalent datasets should be performed. Moreover, an
interpretable ISP model classifier is critical. In contrast to statistical algorithms, structural
uncertainty due to the black-box phenomenon of ML models is a vital concern for medical
applications. Therefore, transforming explainable artificial intelligence approaches into
ML models i clinical practiceis challenging. The results indicate the potential for EMS
providers to improve dispatches to and field triage of MVOs while preventing emergency

department overcrowding with non-severely injured patients.
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