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ABSTRACT 

 

Prediction Models for Severely Injured Occupants using 

Machine Learning Analytics Based on Oversampling 

Class Imbalanced Data 

 

Joon Seok Kong 

Department of Medicine 

The Graduate School 

Yonsei University 

 

Injury prediction models improve trauma outcomes for motor vehicle occupants with 

accurate decision-making and early transport to appropriate trauma centers. This study 

aimed to investigate the injury severity prediction (ISP) capability of machine-learning 

analytics based on five-different regional Level 1 trauma center-enrolled patients in Korea.  

We studied car crash-related injury data from 1,417 patients enrolled in the Korea In-

Depth Accident Study database from January 2011 to April 2021. Severe injury 
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classification was defined as an Injury Severity Score ≥ 15. Planar collisions were 

considered by excluding rollovers which would compromise an accurate prediction. 

Furthermore, dissimilarities of the collision partner component based on vehicle 

segmentation were assumed for crash incompatibility. To handle class-imbalanced clinical 

datasets, we used four data-sampling techniques (i.e., class-weighting, resampling, 

synthetic minority oversampling, and adaptive synthetic sampling). Machine-learning 

analytics based on logistic regression, extreme gradient boosting (XGBoost), and a 

multilayer perceptron model were used for the evaluations.  

Each model was executed using five-fold cross-validation to solve overfitting consistent 

with the hyperparameters tuned to improve model performance. The area under the receiver 

operating characteristic curve was 0.896. Additionally, the present ISP model showed an 

under-triage rate of 6.1%. The Delta-V, age, and Principal Direction of Force (PDOF) were 

significant predictors.  

The results demonstrated that the data-balanced XGBoost model achieved a reliable 

performance on injury severity classification of emergency department patients. This 

finding considers ISP model selection, which affected prediction performance based on 

overall predictor variables. 

 

Keywords: Injury severity prediction, Machine learning, Motor vehicle occupants, Trauma center, 

Injury severity, Delta-V, Under-triage, Class-imbalance, Oversampling technique, Korea In-Depth 

Accident Study (KIDAS) 
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Chapter 1 

Introduction 

 

1.1. Research background 

In 2018, the World Health Organization reported that more than 1.35 million global deaths 

were caused by road traffic injuries [1]. Furthermore, the report claimed that 20-50 million 

patients sustained non-fatal injuries. Motor vehicle crashes (MVCs) are the single leading 

cause of traumatic injury-related mortality and are a significant cause of sudden unnatural 

death in the United States [2]. Although the overall incidence of road crashes has decreased 

worldwide, the ratio of casualties does not correspond to this decrease. 

Predicting the injury severity of motor vehicle occupants (MVOs) is crucial to saving 

trauma patients. It has been reported that of patients with severe injuries are transferred to 

trauma centers early, it leads to a 25% reduction in mortality [3]. During the pre-hospital 

stage, accurate classification of crash-related injury severity is essential for decision- 

making for patients and their transfers to appropriate facilities [4]. Paramedics refer to 

various field triage recommendations to determine the injury classification of trauma 

patients [5,6]. Despite long-standing clinical efforts, securing indicators (e.g., crash 
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velocity or crash deformations) in pre-hospital trauma triage for MVOs in critical rescue 

circumstances has been problematic [7]. Although emergency medical services (EMS) are 

expected to proceed with short notice, the actual “golden hour” of survival is not always 

observed in traditional procedures [8]. Vehicular telematics services have recently been 

leveraged to provide collision information to first responders, and their use is increasing in 

high-income countries [6,9] to overcome these issues. However, the application of these 

advanced technologies must be premised upon in-depth clinical research [10]. 

In terms of reducing fatalities, the unique characteristics of each country’s high-risk 

crashes should be considered. In Korea, severe injuries from MVCs are aggregated in large 

numbers among road users. In particular, car-to-car (C2C) crashes account for a significant 

proportion of collisions leading to major traumatic injury risks. Many studies have shown 

that crash incompatibility between two vehicles significantly affects injury severity [11-

18]. This indicates a considerable difference in vehicle design regarding mass, size, 

geometry, and stiffness. Consequently, in contrast to single-vehicle crashes, vehicle 

dissimilarity significantly affects severe injury in C2C crashes. However, most injury 

severity prediction (ISP) studies have focused only on the overall collision materials [19-

21]. Individual crash types are significant in determining crash-related injury outcomes. 

However, predictive estimations of injury severity focusing on C2C crashes have not been 

explored. 

A numerical model of ISP was provided using traditional statistics [19,21,22] in a previous 

study. Early predictive models (e.g., logistic regression) have the advantage of intuitive and 
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interpretable structures [23]. Meanwhile, the predictive performance of these algorithms 

depends on the sample size. Thus, it is difficult to expect good performance when there is 

insufficient clinical data [24]. However, the recent use of machine learning (ML) has 

provided an alternative that might overcome these limitations [20,24,25]. In extant works, 

ML models used to predict injury severity classification have reported better performance 

than traditional statistical models [26]. However, there is no single optimal model for 

predicting injury severity classifications for trauma-injured MVOs [25]. Thus, it is 

necessary to determine the performance of various ISP models. 
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1.2. Purpose of the research 

This study aims to provide ISP models using ML analytics for MVOs who have visited 

Level 1 trauma centers in Korea. The study suggests that the noteworthy by address the 

following as 1) a primary ISP model focused on C2C crashes, 2) handling imbalanced 

injury severity classification based on data sampling techniques, 3) comparing the optimal 

model by considering an under-triage from a medical point-of-view, and 4) providing the 

feature importance of a single outperforming evaluation model. Thus, rather than simply 

focusing on improving predictive performance, it is vital to represent a clinically reliable 

model for medical workers in the real world. 

The remainder of the paper is organized as follows: Chapter 2 describes the datasets and 

detailed framework methodologies; Chapter 3 presents the results; Chapter 4 and 5 present 

the discussion and limitations of this study; Finally, the Chapter 6 outlines the main 

conclusions and presents the scope for future research. 
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Chapter 2 

Materials and Methods 

 

2.1. Korea In-Depth Accident Study (KIDAS) database 

2.1.1. Hospital centered accidental injury data 

The Korea In-Depth Accident Study (KIDAS) is a research unit established by emergency 

medical institutes in Korea to conduct research by forming a consultative body with various 

related organizations to prevent bodily injury and reduce the mortality of road traffic users. 

This is to promote injury prevention that is differentiated from other countries according to 

the unique road traffic environments and vehicular distributions in South Korea. In addition, 

based on Haddon's matrix, various indicators are being collected from the perspective of 

humans, vehicles, and the environmental index by crash stages (i.e., Pre-crash, In-crash, 

and Post-crash) in real-world crashes. Centering on the Center for Automotive Medical 

Science Institute (CAMS) established at Wonju Severance Christian Hospital, other 

regional trauma centers in Korea are collecting in-depth data associated with road traffic 

injuries (Figure 2.1). 
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Figure 2.1. Regional investigations for motor vehicle crashes based on the KIDAS 

database 

 

The collected information consists of a large group of different types of information; 

classification index, patients index, vehicle information, vehicular safety features, road-

environmental characteristics, accident and collision types, vehicular deformations, 

prehospital information, medical records and trauma registry, Korean Standard 

Classification of Disease (KCD7), Abbreviated Injury Scale (AIS), Injury Severity Score 

(ISS), and crash dynamics. These include a total of 290 indicators related to Korean road 

traffic injuries to analyze and develop an injury prevention model. 

 

2.1.2. Team-makers and action roles for data collections 

The professionals involved with the investigation and management of road traffic injuries 

are led by regional trauma centers and are subdivided into medical staff, crash investigators, 
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and reconstruction engineers. Initial information sharing is implemented by disseminating 

preliminary investigation results from emergency room. Each division performs it duties 

through a mutual information exchanged for traffic injury patients who have visited 

regional trauma centers. All stakeholders participate in the overall process until every 

record related to the incidents is collected to finalize the data recordings (Figure 2.2). 

 

Figure 2.2. Flowchart for investigative procedures based on the emergency 

department 
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2.1.3. Hospitalized Team-call investigation systems 

In the pre-hospital stage, the medical staff collects the initial information on the road 

traffic collision from the patient or their guardians who have visited the emergency 

department. Depending on necessity, the fire department requests quality on-site 

photographic evidence of the crash scene. The information is disseminated to the crash 

investigators through team calls. After the patient is given an in-hospital triage 

classification, the final injury outcomes are recorded using the Emergency Medical Record 

(EMR) system and trauma registry. 

 

2.1.4. On-scene crash investigation protocols 

Based on the survey report, the established information is used to complete a crash eport 

before being entered into the database (Figure 2.3). After being notified of the situation by 

the hospital medical staff, the crash investigators immediately attempt to record the crash 

site information and the vehicular damage distribution (Figure 2.4). In addition, the Event 

Data Recorder (EDR) is used to secure the vehicle's safety device and dynamic information 

from the time of the crash (Figure 2.5).  

In the field stage, the crashed vehicle’s crash location and momentum trajectory are 

recorded as sketches by investigators. Moreover, an aerial drone scans the crash site and 

surrounding the roads with scale-based measurements to improve the qualitative 

information. High-precision 3-Diemensionalized road objects are generated through Pix4D 



9 
 

mappers (Pix4D) by point cloud photogrammetry (Figure 2.6-2.8). Through the calibration 

of geolocated images during flight, detailed information such as the elevation difference of 

the road and the inclination of the road curvature is measured (Figure 2.9).  

 

 

 

Figure 2.3. Initial stage investigation report forms collected at trauma centers 
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Figure 2.4. On-scene investigation of crash vehicles 

 

 

Figure 2.5. Crash vehicle data extraction using Event Data Recorder  
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Figure 2.6. Real-world flight mapping sequence based on cloud-based photo scenes 
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Figure 2.7. Generating geometric snapshots of real-world crash scene 

 

 

Figure 2.8. 3-Diemensionalized image rendering of crash scene 
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Figure 2.9. Perspective view shots of crash scene rendering using Pix4D 
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2.1.5. Crash reconstruction for real-world crashes 

Crash reconstruction promotes an intuitive understanding of the actual collision scene and 

enables easy analysis of the dynamic behaviors of the crash vehicles. To ensure that the 

reconstruction of a motor vehicle crashes is precise, it is necessary to optimize the on-scene 

investigative information considering every detail. Based on the in-depth crash 

investigation report, the reconstruction is performed using the PC-Crash (DSD, Dr. Steffan 

Datentechnik GmbH Linz, Austria) software. This allows simple vehicle dynamics and 

kinematic responses to be reconstruct based on real world crashes. The collision optimizer 

evaluated the accuracy of reconstructed data and show a trajectory error rate of less than 

5% within the 95% confidence intervals (Figure 2.10). Through this, there is a higher 

potential for injury to the occupants. Delta-V can be simply defined as the difference 

between the initial speed before the collision and the lowest peak speeds after the collision. 

 

 

Figure 2.10. Collision optimizer to assess trajectory errors and confidence intervals 
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According to Newton's law of motion, Delta-V can be calculated using the mass of the 

two vehicles and their velocities before and after the collision. Based on the hypothesized 

case for the frontal crashes of two vehicles, the equations may address simplified as follows. 

Equation 2.1 is the formula for the law of conservation momentum, where m1 and m2 is 

the mass of two vehicles, v1 and v2 is the initial velocity of the crash vehicle, v1' and v2' is 

the velocities of after crash of the both vehicles, respectively. 

 

𝑚1 𝑣1 + 𝑚2𝑣2 = 𝑚1𝑣1
′ + 𝑚2𝑣2′   (2.1) 

 

Equation 2.2 shows the coefficient of restitution (e) calculation formula, and each of the 

other variables is the same as in Equation 2.1. 

 

e =
𝑣2

′ −𝑣1′

𝑣1−𝑣2
    (2.2) 

 

Equation 2.3 is a combination of Equations 2.1 and 2.2, and using this equation, the post-

collision speed of the two vehicles can be obtained by applying the mass and initial 

collision speed of the two vehicles. 
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𝑣2
′ = 𝑣2 +

𝑚1(1+𝑒)

𝑚1+𝑚2
(𝑣1 − 𝑣2)   (2.3) 

 

However, the accuracy of these mathematical calculations may be insufficient depending 

on the complexity of the collision (i.e., rollovers, multiple collisions) in real-world crashes. 

Therefore, the calculations are performed using the Delta-V of the vector unit calculated in 

the rigid body-based universal crash reconstruction software (Figure 2.11-2.12). 

 

Figure 2.11. Correlation analysis of in-vehicle recording and crash reconstruction 
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Figure 2.12. 3D reconstructed crash scene based on car-to-car crashes 

 

2.1.6. In-depth data review and decision-making process 

The comprehensive collection of information is reviewed by an expert meeting where the 

decision to enter it into the final database is made. An in-depth reviewing process for 

decision-making is held every week with participants including medical doctors, trauma 

coordinators, crash investigators, reconstruction engineers, and related researchers. Experts 

discuss their field crash analysis (Figure 2.13-2.18) and injury outcomes (Figure 2.19-2.21) 

with full consideration for the mechanism of injury in vehicular crashes. Incorrect input 

and unclear information will be re-reviewed after reinvestigating the related feature. Finally, 
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the preservation of the final documents is carried out, and the data are entered into the 

database through the database management system. 

 

Figure 2.13. A crash scene with the pre-hospital care units 

  

Figure 2.14. Functional road photography of crash environment 
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Figure 2.15. Vehicle exterior deformation in frontal crashes  

 

 

 
 

Figure 2.16. Vehicle interiors and passive safety device status investigation 
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Figure 2.17. Opponent vehicle’s exterior deformations 

 

 

Figure 2.18. Opponent vehicle’s interior with the activated airbags  
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Figure 2.19. Patient’s records and trauma scores in car-to-car crash 
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Injury regions Computed tomography of bodily injuries  

Head 

(Skull fracture) 

 
 

Brain 

(T-SAH, 

Cerebral contusion) 

 
 

Facial 

(Maxilla fracture, 

Multiple orbit fracture, 

Injury of optic nerve and 

pathways, Lt. nasal bone, 

Facial laceration) 

  

Abdomen 

(Mesentery laceration, 

Colon laceration, 

Omentum laceration, L-

spine fracture, Disk 

herniation on L4) 

 
 

Figure 2.20. Diagnostic imaging using Computed Tomography 
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Figure 2.21. In-hospital surgical findings and injury surveillance 

 

2.2. Data source 

This retrospective study used the Korea In-Depth Accident Study (KIDAS) database from 

the Center for Automotive Medical Science Institute (CAMS) at Yonsei University. The 

data were collected using on-scene investigations of real-world crashes. We analyzed 

patients from five different regional trauma centers in South Korea from January 2011 to 

April 2020.  

The dataset consisted of road traffic injury information related to the human, vehicle, and 

crash components and is used to predict the severity of the MVOs’ injury. The patients age 

was recorded for both male and female genders. The restraint system (passive safety device) 

was assessed, and evidence of wear or fault was recorded. Furthermore, the Principal 
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Direction of Force (PDOF) was defined as the impact direction. This consists of frontal, 

side (left and right), and rear-end impacts. Vehicle types were grouped into five categories; 

sedan, sports utility vehicle, light truck, van, and heavy trailer. The collision partner was 

defined by considering the two vehicle’s mass and size, and assessing them for crash 

incompatibility. For instance, if the patient’s vehicle was heavier than the opponent's crash 

vehicle, the collision partner would have only been a relatively small component of the 

overall force sustained by the patient. Finally, the number of impacts between the two 

vehicles in car-to-car crashes was categorized into single and two or more. Delta-V is a 

change in velocity from pre-crash to in-crash relating to the vector dynamics of MVCs. The 

Delta-V was obtained by crash reconstruction using PC-Crash software referring to on-

scene information documented by field investigators. This study was conducted following 

approval from the research ethics committee of the Wonju Severance Christian Hospital at 

Yonsei University (IRB Approval No.: CR319049). 

 

2.3. Study population 

Among the 3,928 occupants related to MVCs, we used the data of 1,417 patients aged ≥ 

18 to predict severe injuries in C2C crashes (Figure 2.22). We grouped individual patients 

based on the classification on severity of their injuries. In this study, simple planar crashes 

were assessed to predict the results based on the complexity of MVCs. Rollovers were 

excluded from the analysis. 
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Figure 2.22. Flowchart of data selections of overall crash-related KIDAS dataset 

 

2.4. Sample size estimation 

 In this study, the sample size required for the MVOs serious injury prediction model was 

calculated using G-power 3.1 software (Heinrich-Heine- Universität, Düsseldorf). It was 

calculated as the sample size (F test) for multiple logistic regression (deviation of 𝑅2 from 

zero), which is the most widely used statistical model. 

 We set the input parameters as 0.02 for effect size f-square, 0.05 for α error probability, 

and 0.80 for Power (1-β error probability), and set seven predictors (i.e., age, seat belts 
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usage, the principal direction of force, vehicle type, collision partner, multiple impact, and 

Delta-V) for the model. Based on the assumption above, the desired sample size is 725 

patients. The 1,417 patients used in this study, therefore, more than adequate. 

 

2.5. Injury severity classification 

The Injury Severity Score (ISS) is a medical score used to assess trauma severity and was 

established by the Association for Advanced Automotive Medicine [27]. The score 

provides a primary anatomical diagnosis for trauma, considering the epidemiological 

information needed to classify injury severity and determine treatment viability. An ISS 

score ranges from 0 to 75 and is assigned according to the abbreviated injury scale, which 

addresses six anatomical body regions: head and neck, face, thorax, abdomen, extremities, 

and externals (See Table 2.1). The ISS is used extensively as a discriminant measure for 

predicting severe injury in MVCs. An ISS of 1–8 is considered minor, 9–15 moderate, and 

more than 15+ as severe to critical trauma. In this study, patients with an ISS of 15+ were 

categorized as severely injured based on the criteria for injury classification. 
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Table 2.1. An example of Injury Severity Score calculation 

Region Description of Injury AIS Square top three 

Head & Neck Scalp laceration 110602.1  

Face Lt. medial orbital wall fracture 251231.2 4 

Chest Rt. 4-9th rib fractures 450203.3 9 

Abdomen Adrenal grand contusion 540212.1  

Extremity Combined fracture at Lt. radius and ulna 853171.3 9 

External Multiple abrasion 910200.1  

ISS   22 

AIS, abbreviated injury scale; ISS, injury severity score 

 

2.6. Study design 

This study applied ML analytics through imbalanced clinical data processing to determine 

the best-performing model according to a binary injury classification. The overall 

methodological procedure is illustrated in Figure 2.23. We pre-processed the class-

imbalanced data using oversampling techniques to achieve results that reduced the defects 

of the training dataset. All models were verified using k-fold cross-validation to avoid 

overfitting problems. A detailed methodological description is described in the following 

subsections. 
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Figure 2.23. Prediction model analytics of MVC occupant injuries  

 

2.7. Predictive parameters 

The selection of parameters used in the prediction model requires in-depth consideration 

of risk factors that affect the safety of occupants. The Centers for Disease Control and 

Prevention (CDC) in the United States provided recommendations from an expert panel on 

trauma-patient classification system guidelines for advanced automatic collision 

notification [10]. We adopted indicators such as these and the extant national standards for 

predicting injury severity. This study selected seven parameters (i.e., age, seat belts usage, 

the principal direction of force (PDOF), vehicular type, collision number, crash partner, 

and Delta-V) to predict the severity of the patient’s injuries in C2C crashes. 
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2.8. Data sampling techniques for class-imbalance data 

Effective predictive analytics requires a model that uses large-scale data consisting of 

neutrally balanced constituents. However, we considered that the injury severity classes 

based on the KIDAS dataset are generally imbalanced. These clinical datasets are 

frequently imbalanced due to the sample count depending on the number of patients visiting 

trauma centers with different degrees of injury severity [28]. This creates a strong bias for 

the prediction model’s performance, which then causes severe errors in diagnosis. Since 

the class imbalance problem occurs when the majority class has more data than the minority 

class [29], this can then facilitate the calculation of the imbalance ratio (ratio of majority 

class to minority class) [30]. The calculations of imbalance ratio can be simplified as 

follows: 

 

Imbalance Ratio (IR) =
𝑁𝑚𝑎𝑗

𝑁𝑚𝑖𝑛
    (2.4) 

 

When precisely balanced, the class imbalance ratio is 1:1, however, a larger ratio implies 

a higher imbalanced dataset. This study considered the severity of the imbalanced clinical 

dataset as mildly imbalanced for a ratio between 1.9 and 9 and extremely imbalance for a 

ratio higher than 9 [31,32]. The approach to handling an imbalanced class dataset is to 

select a data sampling techniques that will balance the class. Class weighting, resampling, 
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the synthetic minority oversampling technique (SMOTE), and adaptive synthetic sampling 

(ADASYN) were used in the present study. 

Class weighting is not an oversampling methodology. However, it could be used to assign 

weights to each class to calculate the model’s objective function. Resampling is a method 

of sampling minorities by replacing as many units as the number of majorities [33]. Despite 

the advantage of balancing classes, the technique increases the likelihood of overfitting as 

it replicates random records from the minority class. SMOTE and ADASYN were used to 

avoid overfitting by generating a newly synthesized minority class in a relatively wider 

region [34,35]. This can effectively change the sparse distribution of minority-class 

samples. SMOTE randomly generates synthetic minority instances that contain nearby 

instances of the minority class. ADASYN is a similar idea that assigns a weighted 

distribution for different minority class samples according to the density of majority class 

samples around the nearest neighbor’s boundary. 

Overall, the imbalanced data oversampling and predictive model development was 

performed using the Python programming language (version 3.8.2, Python Software 

Foundation, Wilmington, DE, USA), and the libraries used included scikit-learn 0.24.1, 

Imblearn 0.7.0, TensorFlow 2.3.1, and XGBoost 1.4.0 (version SNAPSHOT) in Table 2.2. 

 

 

 



31 
 

Table 2.2. Hyperparameters used in the prediction model 

Logistic Regression Multilayer Perceptron Extreme Gradient Boosting 

Penalty: l1 

Solver: lbfgs 

Number of hidden layers: 2 

Activation function: ReLU 

Dropout: 0.3 

Loss function: Binary 

Crossentropy 

Optimizer: Adam 

Epochs: 100 

Batch size: 32 

Booster: gbtree 

Max depth: 10 

Min child weight: 2 

Gamma: 1 

Colsample bytree: 0.8 

Colsample bylevel: 0.9 

Number of estimators: 100 

 

2.9. Classification models 

This study used three ML classification techniques to develop a model to predict injury 

severity in MVCs. LR was the most widely used in prediction analysis; it is a classification 

algorithm used to assign observations to discrete response variables. The algorithm 

transforms the output using the logistic sigmoid function to return a probability value. MLP 

is a deep learning (DL) model suitable for handling heterogeneous variables in any order. 

The MLP is a stacked linear model wherein the activation function is generalized similar ly 

to the LR model [36]. XGBoost is a decision tree ML model with a boot-strapping 

framework [35]. XGBoost processes sequential tree buildings in parallel. This method can 

prevent overfitting and improve calculation speed. Among the tree-based models, the 

performance of this method is excellent, and the importance of its features is still to be 

determined. 
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2.10.  Model training and testing 

The dataset was divided into 80% for training and 20% for testing. In the case of the LR 

and XGBoost models, five-fold cross-validation was applied in training, and a grid search 

was used for hyperparameter tuning. Though many k-fold may be used for validation, 

others were conducted similarly using short-scaled datasets [28]. In the case of the MLP 

model, the number of hidden layers was limited to two. The optimal values of the 

hyperparameters were tuned for each model. 

 

2.11.  Performance evaluation 

In this study, we evaluated the presented ISP models for their internal validity in binary 

injury severity. We evaluated the proposed ML models using F-measures (F1 score) which 

were computed based on the harmonic average of precision and recall. Also, accuracy was 

calculated for performance comparison with other previous studies. These are defined in 

the following equations. 
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Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (2.5) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (2.6) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (2.7) 

F1 score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
  (2.8) 

 

where true positive (TP), the number of actual events of severely injured patients is 

classified as severe injury, true negative (TN), the number of events of non-severe injured 

patients counted as non-severe injury; false positive (FP), the number of non-severe injured 

patients detected as severely injured, and false negative (FN), the number of events of 

severely injured presents as non-severely injury, respectively (Table 2.3). 

 

Table 2.3. Model intra-validation associated with the prediction model and 

traumatic clinical data abbreviation 

 Actual Positive 

(Severe Injury) 

Actual Negative 

(Non-severe Injury) 

Predicted Positive 

(Severe Injury) 

 

True Positive (TP) 

(Hits) 

 

False Positive (FP) 

(Over-triage) 

Predicted Negative 

(Non-severe Injury) 

 

False Negative (FN) 

(Under-triage) 

 

True Negative (TN) 

(Reject) 
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However, standard errors of false alarms represent misleading predictions, such as over-

triage (false positive ratio) and under-triage (false negative ratio) classification. Therefore, 

this study considered an under-triage level before evaluating the predictive performance in 

clinical assessments. 

Using the receiver operating characteristics curve (ROC) value, we conducted a 

performance evaluation for a primary classifier based on ML analytics. The curve plots the 

true positive rate (TPR) against the false negative rate (FPR), illustrating the predictive 

performance of a binary classifier. The TPR also represents an equal calculating equation 

as recall (or sensitivity), and FPR as (1-specificty). 

The AUC values ranged from 0.5 to 1. Hosmer and Lemeshow defined the evaluation of 

AUC as a “no discrimination” outcome when the AUC was 0.5; it is an acceptable 

discrimination outcome when 0.7 ≤ AUC < 0.8, and an excellent discrimination outcome 

occurs when 0.8 ≤ AUC < 0.9. Furthermore, an outstanding discrimination outcome occurs 

when the AUC ≥ 0.9. Finally, as the AUC approaches 1.0, the response can be interpreted 

as a complete predictive power outcome [23]. 
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Chapter 3 

Results 

 

3.1. Data sampling techniques for class imbalance clinical outcomes 

Scatterplots of primary continuous data (age and Delta-V) were used by each sampling 

technique to configure the data distribution of binary injury severities (Figure 3.1). Since 

the oversampling was conducted only on severely injured data, the plots show an increased 

focus on Resample, SMOTE, and ADASYN datasets compared to the imbalance 

distribution. However, the class-weighted datasets are demonstrated to be equal to the raw 

data due to the assignment of weights to each class in the initial data. The degree of spread 

and central tendency of the sampling data was similar in cases of imbalance and 

oversampled datasets. The Delta-V distribution showed a significant spread in severe 

injuries, whereas the central tendency of non-severe patients was focused on the low–

middle range. 
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Figure 3.1. Comparison of scatter plots of data obtained from tested oversampling 
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3.2. Baseline characteristics of crash data distributions enrolled in 

regional trauma centers 

The descriptive data were summarized as a sample for predicting severely injured C2C 

crash occupants (Table 3.1). According to the classification of injury severity, the data 

distribution led to performance outcomes nearly five times higher in the non-severe group 

(n = 1,181, 83.3%) than in the severe group (n = 236, 16.7%). Among the patients with the 

majority and minority classes, the imbalance ratio showed nearly 5:1, which is a mildly 

imbalanced dataset (1.9-to-9.0). Since the dataset has not satisfied an extremely imbalanced 

ratio (>9), it is more likely to be appropriate for predicting the majority of classes in the 

clinical data. Also, the data indicated that young occupants were more engaged with MVCs 

than older groups. 

The proportion of restrained occupants at the time of the MVC was larger. The PDOF was 

the largest in cases of frontal (e.g., head-on) impacts. In terms of vehicle type, the sedan 

met with the highest number of crashes, followed by sport-utility vehicles (SUVs) and light 

trucks. In this study, we classified the relative sizes of the counterparts into three categories. 

The impact incidence with vehicles similar to or larger than the counterpart vehicle was 

higher. Regarding the number of collisions, the probability of multiple impacts was lower 

than 10% in all MVCs. The Delta-V accounted for nearly 70% at the low and medium 

ranges (0–30 km/h). We developed a model to predict the severity of damage to patients 

based on age and Delta-V distribution. 
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Table 3.1. Demographic data of MVCs related to trauma 

Variables Descriptions 
Frequency 

(n=1,417) 

Ratio 

(100% ) 

Dependent variables ISS (binary) 
Severe injury 236 16.7 

Non-severe injury 1,181 83.3 

Independent variables  

Age 

54 years under 907 64.0 

55-64 years 312 22.0 

65 years over 198 14.0 

Seat belts usage 
Fastened 930 65.6 

Unfastened 487 34.4 

PDOF 

Frontal impact 881 62.2 

Side impact 336 23.7 

Rear-end impact 200 14.1 

Vehicle type 

Sedan 820 57.9 

SUV 230 16.2 

Light truck 212 15.0 

Van 122 8.6 

Heavily trailers 33 2.3 

Collision partner 

Smaller 114 8.0 

Similar 931 65.7 

Larger 372 26.3 

Multiple impact 
Yes 118 8.3 

No 1,299 91.7 

Delta-V 

0-10 km/h 470 33.2 

11-19 km/h 275 19.4 

20-29 km/h 243 17.1 

30-39 km/h 177 12.5 

40-49 km/h 97 6.8 

50 km/h over 155 10.9 

ISS, injury severity score; PDOF, principal direction of force; SUV, sports utility vehicle 
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3.3. Confusion matrices for triage controls on injury severity 

classifications 

This study assessed 15 models to predict severe injury based on the oversampling 

techniques of class-imbalanced MVC data. The confusion matrix of the present model was 

analyzed using five-fold cross-validation (Table 3.2). The sampling data (Resample, 

SMOTE, and ADASYN) oversampled nearly twice as high as the raw and weighted dataset. 

In addition, the Resampling and SMOTE oversampled more sampling numbers than 

ADASYN. However, the number of samples used for ML in each dataset was identical. 

A crucial role of classification problems in ML predictions may be visualized as a 

confusion matrix that shows the classification model being confused with the prediction 

model. The number of correct (positive) and incorrect (negative) predictions of binary 

classifiers (severe or non-severe injury) is summarized with count values and broken down 

by each class. However, a significant error of false reporting represents misleading 

predictions as over-triage (false positive ratio) or under-triage (false negative ratio) in 

clinical outcomes. The false-negative rate (severe injury) should be considered within the 

lowest peak for an accurate model to avoid under-triage in MVOs classifications. This 

study found the best-performing model with lower bounds of the under-triage-rated model 

in imbalanced data (MLP = 2.5%). However, the oversampled data-enhanced prediction of 

severely injured patients included a good under-triage tolerance of <10%. 
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Table 3.2. A comparison of the confusion matrix used to predict injury severity classification 

Dataset Classifier N 
Balance Confusion matrix 

Positive Negative TP (TPR) FN (FNR) FP (FPR) TN (TNR) 

Imbalanced Raw 

LR 284 6 (2.1) 278 (97.9) 5 (1.8) 47 (16.5) 1 (0.4) 231 (81.3) 

MLP 284 163 (57.4) 121 (42.6) 40 (14.1) 7 (2.5) 123 (43.3) 114 (40.1) 

XGB 284 11 (3.9) 273 (96.1) 3 (1.1) 42 (14.8) 8 (2.8) 231 (81.3) 

Weighted 
Class-

weighted 

LR 284 89 (31.3) 195 (68.7) 26 (9.2) 20 (7.0) 63 (22.2) 175 (61.6) 

MLP 284 122 (43.0) 162 (57.0) 40 (14.1) 13 (4.6) 82 (28.9) 149 (52.5) 

XGB 284 5 (1.8) 279 (98.2) 3 (1.1) 42 (14.8) 2 (0.7) 237 (83.5) 

Over-sampled 

Resampled 

LR 473 218 (46.1) 255 (53.9) 132 (27.9) 106 (22.4) 86 (18.2) 149 (31.5) 

MLP 473 237 (50.1) 236 (49.9) 162 (34.2) 93 (19.7) 75 (15.9) 143 (30.2) 

XGB 473 274 (57.9) 199 (42.1) 203 (42.9) 45 (9.5) 71 (15.0) 154 (32.6) 

SMOTE 

LR 473 241 (51.0) 232 (49.0) 161 (34.0) 77 (16.3) 80 (16.9) 155 (32.8) 

MLP 473 314 (66.4) 159 (33.6) 205 (43.3) 20 (4.2) 109 (23.0) 139 (29.4) 

XGB 473 272 (57.5) 201 (42.5) 221 (46.7) 29 (6.1) 51 (10.8) 172 (36.4) 

ADASYN 

LR 459 231 (50.3) 228 (49.7) 156 (34.0) 70 (15.3) 75 (16.3) 158 (34.4) 

MLP 459 236 (51.4) 223 (48.6) 165 (35.9) 62 (13.5) 71 (15.5) 161 (35.1) 

XGB 459 238 (51.9) 221 (48.1) 182(39.7) 28 (6.1) 56 (12.2) 193 (42.0) 

SMOTE, synthetic minority oversampling technique; ADASYN, adaptive synthetic sampling; LR, logistic regression; MLP, multilayer 

perceptron; XGB, extreme gradient boosting; TP, true positive; TRP, true positive ratio; FN, false negative; FNR, false negative ratio; 

FP, false positive; FPR, false positive ratio; TN, true negative; TNR, true negative ratio
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3.4. Evaluating predictive performances on injury severity prediction 

classifiers 

Table 3.3 shows the classification performance of injury severity results obtained from 

the confusion matrices for each sampled classifier in Table 3.2. Thanks to these matrices, 

it has been determined how injury severities were predicted correctly by referring to Table 

2.3. It is clear that with the proposed method, the least incorrect injury severity estimation 

is made. According to the performance findings, the outperformed classifier of the 

SMOTE-XGBoost model achieved the accuracy, precision, recall, and F1 measures as 

83.1%, 81.3%, 88.4%, and 84.7%, respectively. From the obtained results, we can observe 

that SMOTE and ADASYN perform similarly, although the outperformed classifiers are 

machine learning models (especially in XGBoost) based on the SMOTE sampled dataset.  

The calculation of the performance parameter (accuracy, precision, recall, and F1 score) 

for the outperformed model SMOTE (LR, MLP, and XGB) of Table 3.3 have been obtained 

using the metrics columns in Table 3.2.  
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Table 3.3. Predictive performance of severely injured MVOs based on sampling techniques 

Dataset Classifier Accuracy Precision Recall F1 score AUC 

Imbalanced Raw 

LR 0.831 0.833 0.096 0.172 0.768 

MLP 0.542 0.245 0.851 0.381 0.685 

XGB 0.824 0.273 0.067 0.107 0.756 

Weighted 
Class- 

weighted 

LR 0.708 0.292 0.565 0.385 0.737 

MLP 0.665 0.328 0.755 0.457 0.711 

XGB 0.845 0.600 0.067 0.120 0.806 

Oversampled 

Resampled 

LR 0.594 0.606 0.555 0.579 0.627 

MLP 0.645 0.684 0.635 0.659 0.658 

XGB 0.755 0.741 0.819 0.778 0.755 

SMOTE 

LR 0.668 0.668 0.676 0.672 0.735 

MLP 0.727 0.653 0.911 0.761 0.795 

XGB 0.831 0.813 0.884 0.847 0.896 

ADASYN 

LR 0.684 0.675 0.690 0.683 0.748 

MLP 0.710 0.699 0.727 0.713 0.792 

XGB 0.817 0.765 0.867 0.813 0.878 

SMOTE, synthetic minority oversampling technique; ADASYN, adaptive synthetic sampling; LR, logistic regression; MLP, multilayer 

perceptron; XGB, extreme gradient boosting; AUC, area under the curve
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For instance, if we analyze the same oversampled SMOTE dataset of LR from the 

confusion matrix parameters as given in Table 4, TP = 161, FN = 77, FP = 80, and TN = 

155. Thus, the accuracy = (161+155)/(161+155+80+70) =0.668, precision = 161/(161+80) 

= 0.668, recall = 161/(161+77) = 0.676, and the F1 score = (2×161)/((2×161)+80+77) = 

0.672.  

The matrix parameters for the SMOTE-based MLP classifier are presented as TP = 205, 

FN = 20, FP = 109, and TN = 139. This may be calculated as accuracy = 

(205+139)/(205+139+109+20) = 0.727, precision = 205/(205+109) = 0.653, recall = 

205/(205+20) = 0.911, and the F1 score = (2×205)/((2×205)+109+20) = 0.761, respectively. 

The outperformed parameter calculation is presented using the SMOTE dataset for the 

XGBoost classifier given as TP = 221, FN = 29, FP = 51, and TN = 172. In this case, the 

accuracy = (221+172)/(221+172+29+51) = 0.831, precision = 221/(221+51) = 0.813, recall 

= 221/(221+29) = 0.884, and the F1 score = (2×221)/((2×221)+51+29) = 0.847. Other 

classifiers may also be calculated by referring to equation 2.5-2.8. 

In the case of predicting severely injured occupants, the SMOTE-XGBoost model also 

yielded excellent discrimination in C2C crashes (AUC = 0.896). The comparison of 

prediction performance also can be visualized from the graphic plot illustrations using the 

ROC curve (Figure 3.2). This visualizes the success rate for the classifier as quantified by 

calculating the curves. A higher value of evaluation metrics represents the outperforming 

of predictions. 
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Figure 3.2. Comparison of ROC curve using various sampling techniques 
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3.5. Rankings of features important to outperforming SMOTE-

XGBoost 

This study suggests which indicators are essential in ensuring the best performance model 

(SMOTE-XGBoost) when predicting a patient’s injury classification (Table 3.4). The 

Delta-V featured exclusive importance compared with other variables. Furthermore, the 

age distribution and PDOF showed nearly equal secondary importance. Though collision 

partners had relatively lower ranks in C2C crashes, the result has shown an advantage of 

importance compared to vehicle types. 

 

Table 3.4. Features importance ranking of outperformed classifier 

Parameters Importance scores Importance ratios Features Rank 

Delta-V 0.275 1.00 1 

Age 0.176 0.64 2 

PDOF 0.171 0.62 3 

Seat belts usage 0.107 0.39 4  

Multiple collision 0.107 0.39 4  

Collision partner 0.085 0.31 5 

Vehicle type 0.079 0.29 6 

 PDOF, principal direction of force 
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Chapter 4 

 

Discussion 

This study provided an ISP model using clinical data of MVOs who visited Level-1 

trauma centers from January 2011 to April 2021 in South Korea. The primary outcome 

measurements were conducted as binary variables considering an overall ISS of 15 or 

greater, referring to the indicators used to evaluate trauma triage performance as 

recommended by the American College of Surgeon-Committee on Trauma (ACS-COT) 

within a limited protocol. The parameters used for prediction referred to the field triage 

recommendations of the CDC Expert Panel [6] and parameters of vehicle incompatibility 

of C2C crashes [11,12,15], including age, seat belts usage (fastened or unfastened), PDOF 

(frontal, side, and rear), vehicle type (sedan, SUV, light truck, van, heavy trailers), collision 

partner (smaller, similar, and larger-sized vehicle), multiple impacts (single or multiple), 

and Delta-V (kph unit). 

The main findings showed that the ISP model of C2C crash-related occupants had an AUC 

of 0.896. This indicates the potential for improving predictive performance when 

considering sampling methods for imbalanced clinical data. Moreover, these results 

showed that the triage performance of the ML model was higher than that of traditional 
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statistical models (see Table 3.2).  

This study confirmed that prediction performance improved through the data sampling 

technique before developing the ISP model. Most MVOs visiting trauma centers were 

classified as non-severely injured, resulting in a clinical data class imbalance. Previous 

studies have reported that data imbalances cause prediction model bias and affect prediction 

performance [25,37-39]. Thus, several studies using the National Automotive Sampling 

System/Crashworthiness Data System (NASS-CDS) have leveraged population-weighted 

samples to address data bias [19,40,41]. However, a database lacking a data-weighting 

system has difficulty handling data under similar conditions. In contrast, data sampling 

techniques have recently been embraced as methodological approaches to addressing class 

imbalance problems. Some researchers have pointed out that data balancing should be 

considered to predict reliable injury outcomes [39,42-45]. This study showed similar results, 

with the best performance found using SMOTE-based oversampling data [25,37]. Using 

crash-related data, SMOTE provided an excellent prediction probability for MVO binary 

injuries. Meanwhile, undersampling or hybrid sampling approaches paired with different 

sampling techniques were not considered owing to the small sample-sized data. 

Meanwhile, several studies suggest that the prediction models based on machine 

intelligence have improved performance [25,40,43,46-48]. Compared with statistical 

methodologies, the latest machine learning and deep learning techniques enhance the 

predictive performance. In the previous study, various classifiers were used to compare the 

prediction performance of each model. These include a decision tree [48,49], k-nearest 
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neighbor [24], support vector machine (SVM) [50,51], tree-based model [52], neural 

networks [53], Naïve Bayesian classifier [54], and gradient boosting [55]. Yet, some of the 

latest methods have received the attention that implies that they are superior to the 

conventional prediction models in the case of MVOs-related injury classification. A deep 

learning model, multilayer perceptron (MLP), yielded the highest accuracy as well as area 

under the curve (AUC) rate compared to the k-nearest neighbor, NBC, DTC, support vector 

machine, and logistic regression models [47]. On the other hand, the eXtreme Gradient 

Boosting (XGBoost) model outperformed compared to such models; K-nearest neighbor 

(KNN), linear SVM, radial basis function SVM (RBF SVM), Gaussian process classifier 

(GP), Decision tree (DT), random forest (RF), multilayer perceptron (MLP), AdaBoost, 

naïve Bayes (NB), and quadratic discriminant analysis (QDA) [55]. However, no study has 

been conducted comparing the suggested models. Therefore, the present work is evaluating 

the performance of three ML models. 

The results indicated that both the MLP and XGBoost models exhibited excellent 

discrimination for binary injury classification. In particular, the XGBoost model yielded 

the best predictions based on SMOTE oversampling in minority class data. The gap 

differences in predictive performance between XGBoost and MLP existed because most 

data used in the model consisted of categorical variables [56]. Because the factors affecting 

road traffic injuries in real-world crashes were immensely complicated, there was a 

tendency to categorize the data to estimate injury outcomes. For instance, it was intuitive 

to categorize the wearing of seatbelts (belted or unbelted) rather than using quantitative 
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kinematics for belt loading of MVOs to estimate injury severity. XGBoost is a gradient 

tree-based ML classifier with no issues encoding data with most of these categorical 

variables. However, predictive models based on continuous variables could expect 

improved MLP prediction probabilities. The implication of these findings pointed to the 

potential to support the selection decisions of ISP models based on different data 

characteristics and conditions. 

In contrast to ML, statistical models have been reported to have weak ISP performance 

owing to their fixed assumptions [25]. ML models are flexible when capturing valuable 

information from nonlinear complex and heterogeneous data because they do not include 

pre-assured relationships between variables [45,48,57,58]. Furthermore, these 

methodological approaches have produced a better model fit than statistical methods [24]. 

Jamal et al. [58] suggested that various ML models (e.g., random forest and decision tree), 

including XGBoost, outperformed traditional statistical models, yielding results similar to 

our study. Nevertheless, regression models can classify injury severity by intuitively 

providing clear theoretical interpretations [59]. In previous studies, statistical models 

achieved acceptable discriminative predictive power using large-scale data [19,21,60,61]. 

However, the sample size used affected the performance of traditional statistical methods. 

It was difficult to expect the probability of prediction power using insufficient data 

acquisition at the national or regional levels. Sampling-based ML models provided 

effective approaches for an ISP using relatively small datasets. 

Several studies proposed outperforming methods for ISP engaged with MVOs comparing 
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various machine intelligence in binary classification (Table 3.5). Most of all, they have 

different data collection periods for analysis in various databases. Also, there was a 

difference in the imbalance ratio according to the injury severity classification in each study. 

Although the machine learning models had superior predictive performance in related 

studies [46, 48], others gave better results in traditional statistical techniques [40, 61]. It is 

assumed that this may influence the performance of the model’s performance depending 

on the parameter selection in predicting the binary class of injury outcome. In particular, 

Delen et al [48] showed the best predictive performance in SVM; however, the under-triage 

results were missing, so they could not support clinical insights in the real-world. Therefore, 

this study confirmed that the logistic regression performed better than previous models 

(Random forest, Adaboost, Naïve Bayes, Support Vector Machine, k-nearest neighbor, 

Ridge Regression, Bernoulli Naïve Descent, Stochastic Gradient Descent) detecting errors 

in trauma classification from medical point of view [40,61]. Thus, comparing the presented 

methodologies in the previous studies, the XGBoost model outperformed all of others 

especially considering the under-triage rate in medical terms. However, additional studies 

are required to apply techniques based on the optimal parameters when considering 

complex crash injury mechanisms. 

 



51 
 

Table 3.5. Performance comparison between the proposed models and previous studies 

Studies 

Data (year) 

Crash data 
Variables 

Crash 

injury 
targets 

Class break-down (%) 
Imbalance Ratio 

Data 
sampling 

Classification 
Models 

Performance 

evaluation 
(%) 

Under-

triage 
(%) 

Major ranked  
features 

Kusano & 
Gabler  
[40] 

 NASS-CDS  
(2002-2011) 
 N=16,398 
 7 

General 
MVOs 

 Severe injury (N/A) 
 / Non-severe injury (N/A) 
 N/A 

Population-
weighted 

LR 
(RF, AB, NB, 
SVM, kNN) 

Accuracy: 88.3 
Sensitivity: 67.5 
Specificity: 88.9 
AUC: N/A 

8.5  N/A 

Delen et al 
[48] 

 NASS-GES 
(2011-2012) 
 N=27,214 

 29 

General 
MVOs 

 High level of severity (21.0) 
 / Low level of severity (79.0) 
 1:3.8 

Under- 
sampling 

SVM 
(ANN, DT, 
LR) 

Accuracy: 90.4 
Sensitivity: 88.5 
Specificity: 92.0 

AUC: 92.8 

N/A 

 Restraint use 
 Manner of 

collision 

 Ejection 

AI Mamlook  
et al  

[46] 

 MTCF  
(2010-2017) 

 N=106,274 
 8 

Elderly 

MVOs 

 Severe injury (12.4) 
 / Non-severe injury (87.6) 

 1:7.1 

SMO TE 
Light-GMB 
(RF, DT, LR, 

NB) 

Precision: 87.9 
Recall: 81.4 

F1 score: 83.7 
AUC: 87.5 

N/A 
 Age 
 Traffic volume 

 Car age 

Candefjord  

et al  
[61] 

 NASS-CDS 

(2010-2015) 
 N=21,589 
 14 

General 
MVOs 

 Severe injury (5.7) 

 / Non-severe injury (94.3) 
 1:16.5 

Population-
weighted 

LR 

(RR, BNB, 
SGD, ANN) 

AUC: 86.0 
5.0-
20.0 

 Ejection 

 Entrapment 
 Belt use 

Our study 

 KIDAS 
(2011-2020) 

 N=1,417 
 7 

C2C 

MVOs 

 Severe injury (16.7) 

 / Non-severe injury (83.3) 
 1:5.0 

SMO TE 
(CW, 

Resample, 
ADASYN) 

XGB 

(LR, MLP) 

Accuracy: 83.1 
Precision: 81.3 

Recall: 88.4 
F1 score: 84.7 
AUC: 89.6 

6.1 

 Delta-V 

 Age 
 PDOF 

NASS-CDS, national automotive sampling system-crashworthiness data system; NASS-GES, national automotive sampling system-

general estimates system; MTCF, Michigan traffic crash facts; MVO, motor vehicle occupants; KIDAS, Korea in-depth accident study; 

C2C, car-to-car crashes; SMOTE, synthetic minority oversampling technique; CW, class-weighted, ADASYN, adaptive synthetic 

sampling; LR, logistic regression, RF, random forest; AB, AdaBoost; NB, Naïve Bayes; SVM, support vector machine; kNN, k-nearest 

neighbor; ANN; artificial neural networks; DT, decision trees; Light-GMB, light gradient boosting machine; RR, ridge regression; BNB, 

Bernoulli Naïve Bayes; SGD, stochastic gradient descent; XGB, extreme gradient boosting; MLP, multilayered perceptron 
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Many ISP models have been developed to consider all crash types [19-21,61]. However, 

factors affecting severe MVO injuries differed depending on various crash scenarios. 

Unlike fixed-material collisions, vehicle incompatibilities (e.g., passenger cars versus 

SUVs) in C2C crashes have contributed to injury severity outcomes [16,62-64]. These 

vehicle body structure mismatches increased the risk of injury severity to MVOs with 

disadvantageous self-protective capacities due to the vehicle differences, such as mass, 

weight, geometry, and stiffness, based on Newtonian mechanics [11,14-16,51,54,65]. Zeng 

et al. (2016) reported that vans and trucks had stronger self-protection and aggressivity than 

passenger vehicles [16]. However, no further research has been conducted that reflects 

these characteristics in real-world C2C crashes. This study suggested an ISP model with 

collision partners that considers the crash incompatibility of two-vehicle scenarios. The 

collision partner was confirmed as a highly discriminant feature of the best model 

compared to vehicle type. However, it was interpreted that these low features pointed to 

the distribution of vehicles with high rigidity (e.g., heavy trailers), which had insufficient 

numbers compared with other vehicles. Thus, large-scale data might result in enhanced 

feature rankings for collision partners. 

The application of telematics-based services (such as AACN) that can classify the injury 

severity of real-time crash victims through post-crash analysis is expected to be most 

effective for a consistent golden hour [22]. It can transmit information to the control system 

through an algorithm built into the crash vehicle. Also, the dispatcher may detect the crash 

location automatically (i.e., GPS) and provide predicted triage to the EMS provider in real-
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time. Thus, patients may arrive at the trauma center quickly by minimizing the delay time 

compared to existing in-person responses. Therefore, advanced ISP models may potentially 

assist diagnosis effectively in hospital arrival time and for public use in preventing road 

traffic fatalities in the future. 
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Chapter 5 

 

Limitation 

The study has several limitations. The main problem was that ML models were considered 

a black box, making it difficult to understand the relationships between crash inputs and 

injury outcomes. Meanwhile, an LR model interprets as a simple linear form. Clinically, 

this difference might cause problems depending on whether the structure of the model is 

interpretable. Therefore, ML models should be discussed in more detail before their 

practical application to real-world injury control, prevention, and treatment. Furthermore, 

compared with earlier studies, the number of data used to predict MVO injury severity was 

short-scaled. We used data focused on field investigations at five different regional trauma 

centers. In Korea, public databases (i.e., police investigations and transport-related 

government institutions) have not been authorized for use with ISP models. Hence, 

improving ISP model reliability through improved data collection was crucial. Since many 

hospitalized datasets have difficulties for public availability, nationalized scaled data 

collecting efforts collaborating from government and joint institutes are required to prevent 

road traffic injuries.  

Additionally, it was necessary to consider the scalability of the predictor variables 
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affecting severe injuries in C2C crashes. Although this study applied recommended 

variable MVC factors for CDC field triage guidelines and expert panels, advanced 

considerations of the characteristics of C2C crashes were limited to counterpart objects. 

Therefore, more detailed aspects of vehicle incompatibility (e.g., mass ratio or/and energy 

absorption) between two-vehicle collisions are required. However, major indicators of ISP 

models (e.g., ejections and entrapments) were not considered owing to a lack of prepared 

investigation data. 
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Chapter 6 

 

Conclusion 

The main goal of this study was to propose an ML-based model for predicting severe 

injuries of C2C crash-related patients who visited Level-1 trauma centers in Korea. We 

evaluated the probability of the predictive performance of several ISP models (i.e., 

XGBoost, MLP, and LR) using a confusion matrix and F-measures. Based on the results, it 

was confirmed that the SMOTE-XGBoost model outperformed the other models. This 

demonstrated the importance of selecting an optimized ISP model while considering the 

variable MVC conditions. Furthermore, we confirmed that the sampling technique for class 

imbalanced datasets increased the prediction power. Nonetheless, it was essential to 

provide an interpretable algorithm for practical use in the real world through the expansion 

of MVO data collection. The primary features of our model were like those from a previous 

work. This study contributed to the literature by considering C2C-crash vehicle 

incompatibilities. 

In a future study, external validation should be undertaken to improve the validity of the 

current model. Validating against different local or broad international databases is required 

to achieve model reliability. Additional research adopting state-of-the-art techniques (e.g., 
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hybrid and ensemble models) using equivalent datasets should be performed. Moreover, an 

interpretable ISP model classifier is critical. In contrast to statistical algorithms, structural 

uncertainty due to the black-box phenomenon of ML models is a vital concern for medical 

applications. Therefore, transforming explainable artificial intelligence approaches into 

ML models in clinical practice is challenging. The results indicate the potential for EMS 

providers to improve dispatches to and field triage of MVOs while preventing emergency 

department overcrowding with non-severely injured patients.
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Abstract in Korean 

 

클래스 불균형 데이터의 오버샘플링 기반 기계학습 기법을 적용한 

교통사고 탑승자의 중증외상 예측 모델 

 

공준석 

의학과 

연세대학교 대학원 

 

병원 전 단계에서 교통사고 환자의 인체상해 예측은 환자의 중증도분류에 대한 

정확한 의사결정과 적절한 이송체계를 통해 인명피해를 경감시키는 효과가 있다. 

최근 사고 현장에서 즉각적인 상해유형 판별을 위해 텔레메틱스를 기반한 자동검출 

시스템의 법제화가 각 국에서 도입되고 있으며, 이를 위한 외상환자의 상해예측 

모델에 대한 요구가 부각되고 있다. 그러나 환자의 상해예측 모델은 데이터의 클래스 

불균형(Class imbalance)에 따라 실제 왜곡된 예측과 성능저하를 초래할 수 있다. 

또한, 아직까지 교통사고 환자의 상해를 판별하기 위한 임상자료의 

균등화(balancing)를 통한 최적화된 모델의 부재로 다양한 모델간의 성능 비교가 

필요하다. 본 연구는 국내 5 개 지역의 응급의료센터에 내원한 차대차 탑승자 

교통사고 환자를 대상으로 상해중증도 판별을 개선하기 위해 최신의 기계학습 모델의 

성능을 평가하고자 한다.  

본 연구는 2011 년 1 월부터 2021 년 4 월까지 한국형 자동차사고-인체상해 구축 

(Korea In-Depth Accident Study, KIDAS) 데이터베이스에 등록된 1,417 명의 

교통사고 환자를 대상으로 선정하였다. 상해중증도에 대한 분류는 

손상중증도점수(Injury Severity Score, ISS) 기준 15 점 이상을 중상해 환자로 
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선별하였다. 다양한 사고유형에 따라 보다 정밀한 예측성능 확보를 위해 전복사고를 

제외한 평면충돌 사고를 고려하였다. 또한 차대차 사고에서 두 차량 간의 충돌 

부조화(crash incompatibility)을 고려하여 서로 다른 차량 세그먼트 구성을 

분류하였다. 탑승환자의 중증도분류 결과에 따른 데이터 불균형성을 극복하기 위해 

네 가지의 데이터 샘플링 기법(i.e., class-weighting, resampling, synthetic 

minority oversampling, and adaptive synthetic sampling)을 사용하였다.  교통사고 

환자의 상해예측 판별을 위한 기계학습 모델은 logistic regression, extreme 

gradient boosting (XGBoost), 그리고 multilayer perceptron (MLP)로 선정하였다.  

모델 성능을 향상시키기 위해 하이퍼파리미터를 조정하고 5 겹 교차검증을 통해 각 

모델의 과적합을 방지하였다. 외상환자의 상해예측은 과소분류 10% 이하의 수준을 

지닌 모델을 기반으로 모델의 성능을 평가하였다.  

본 연구에서 데이터 샘플링 기법을 적용한 SMOTE 와 ADASYN 모델이 클래스 

불균형 데이터 보다 예측 성능이 높았다. 특히 SMOTE 기반 XGBoost 모델에서 

가장 우수한 예측 성능을 보였다. 해당 모델을 활용한 특성중요도에서 두 차량간의 

속도변화량(Delta-V)이 교통사고 탑승자의 상해 예측에 기여한 주요 요인으로 

확인되었다. 

이러한 결과는 환자의 중증도분류에 따른 클래스 불균형을 데이터 샘플링 기법을 

구현하여 상해 심각도에 대한 개선된 예측 성능을 기대할 수 있다. 따라서, 교통사고 

환자의 상해 예측을 위해 활용되는 변수의 유형에 따른 샘플링 기법과 학습모델 

선정이 고려되어야 한다. 
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