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ABSTRACT 
 

Personalized Progressive Federated Learning with 

Leveraging Client-Specific Vertical Features 

 

Tae Hyun Kim 

Department of Biomedical Systems Informatics 

The Graduate School, Yonesi University, Seoul, Korea 

 

Federated learning (FL) has been used for model building across distributed clients. 

However, conventional horizontal federated learning (HFL) cannot leverage vertically 

partitioned features to increase model complexity, and vertical federated learning (VFL) 

requires all clients to share a large number of overlapping sample-ids. On the other hand, 

the main challenge of FL is the distributed setting of data heterogeneity and non-

independent and identically distributed (non-I.I.D) data among clients. In this study, we 

proposed a personalized progressive federated learning (PPFL) model, which is a multi-

model-based personalization that allows the leveraging of vertically partitioned client-

specific features. The performance of PPFL was evaluated using two datasets: the 

Physionet Challenges 2012 dataset and a real-world dataset composed of eICU data and 



 vii 
 

highly intensive care unit (HICU) data from the Severance Hospital, Seoul, South Korea. 

We compared the performance of in-hospital mortality and length of stay task prediction 

between our model and the comparison models based on the accuracy and area under 

receiver operating characteristic (AUROC). The PPFL showed an accuracy of 0.849 and 

AUROC of 0.790 in in-hospital mortality prediction, which are the highest scores compared 

to comparison models. For length-of-stay prediction, PPFL also showed an AUROC of 

0.808 in average which was the highest among all comparators. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                
Key words: Personalized federated learning, vertically partitioned data, Non-IID data  
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Chapter 1 

Introduction 

Federated learning (FL) is a collaborative machine-learning approach used for solving 

data problems, such as data leakage, while preserving privacy in distributed environments 

across multiple devices and institutions in a communication-efficient manner [1–3]. 

Despite the numerous advantages of FL, such as privacy preservation, fulfillment of data 

requirements, and communication efficacy, it is still limited regarding the availability of 

information from conventional FL designs that are generally based on a distributed 

environment. FL designs (e.g., horizontal federated learning (HFL) and vertical federated 

learning (VFL)) can be categorized based on the data distribution among various parties 

(i.e., whether data are distributed based on the feature space or sample-ID space) [2]. HFL 

[3–9] can analyze large volumes of data using “identical feature spaces” from multiple 

clients. VFL [10, 11] can be built from distributed feature spaces using only “identical 

sample IDs” across different clients. 

However, in an HFL scenario, some clients might have specific feature information that 

is generated only within specific clients or is not allowed in a federated manner because of 

critical privacy concerns. For instance, there may be differences in the features collected 

among hospitals participating in federated learning, and these client-specific features may 

be excluded from the HFL scenario. Under a real-world VFL scenario, it is difficult for 



 2 
 

distributed clients to obtain sufficient identical samples to build a ma-chine-learning model. 

These issues may degrade the performance of the model.  

In contrast, the main challenge for FL is the distributed setting of data heterogeneity and 

non-independent and identically distributed (non-IID) data from clients [12]. Previous 

studies [13, 14] have demonstrated that a global FL model with a federated averaging 

algorithm might perform poorly using statistical data heterogeneity, which slows down FL 

convergence. 

The limitations of FL designs and data heterogeneity have motivated the development 

of a new approach to overcome both problems. In real-world situations, client-specific 

vertical features can be ignored in an HFL design, whereas identical sample IDs are 

insufficient in a VFL design, and data heterogeneity degrades performance. Therefore, we 

focused on leveraging client-specific vertical features while implementing a model that is 

well adapted to the heterogeneity of data across clients in a cross-silo environment. 

In this study, we propose a novel approach called personalized progressive federated 

learning (PPFL) combining FL with variants of progressive neural networks [15]. In PPFL, 

building a personalized model allows the learning of client-specific distributions from a 

globally learned FL model by transmitting layer-wise knowledge to different network 

columns. The proposed model learns global knowledge from common feature information 

and expands the feature space related to client-specific vertical features by creating new 

column networks.  
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We applied the lateral connection in a progressive neural network [15] to expand the 

layer-wise feature space from a globally pre-trained FL model. Additionally, a progressive 

neural network was proposed to address the forgetting problem [15, 16]. Therefore, our 

model prevents the forgetting of previously learned global knowledge during the 

personalization phase. 

Although PPFL is a domain agnostic framework that can be applied to various fields, in 

this study, we experiment and validate the algorithm with real-world medical data. 

Federated learning has gained increasing attention in the medical domain as a possible 

privacy preserving machine learning framework [17]. To this end, we additionally tested 

the PPFL with real-world medical data utilizing highly intensive care unit (HICU) data 

from the Severance Hospital, Seoul, South Korea. 

To the best of our knowledge, this study is the first federated learning study that 

considers the common and vertical features of each client by applying personalized 

progressive learning and intends to verify whether our PPFL algorithm performs higher 

than the existing federated learning models based on real-world medical data from multiple 

hospitals. 
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Chapter 2 

Background 

2.1 Federated Learning and Design 

FL is a machine-learning approach in which multiple clients collaboratively build a 

learning task while considering privacy issues and communication efficacy [3]. FL can be 

classified into HFL and VFL, depending on how the data are distributed among various 

clients [2]. HFL deals with a scenario in which each client has an identical feature space 

but different sample-id spaces. FedAvg [3] is a collaborative machine-learning framework 

proposed for this HFL scenario. HFL approaches cannot utilize vertically partitioned 

features, which are specifically generated by individual clients and are not shared with the 

HFL frameworks, increasing the model complexity. 

VFL deals with a scenario in which each client has a different feature space and identical 

sample ID space. Although secured machine-learning methods [10, 32–35] for distributed 

features have been proposed, such methods cannot be used as deep learning approaches. In 

addition, despite the proposal of VFL approaches for deep learning [11, 36, 37], these 

methods have a limitation, in which every client must learn sufficient “identical sample-

IDs” using a deep learning model. 

 

 



 5 
 

2.2 Federated Learning on Non-IID Data 

Data heterogeneity and non-IID data complicate the construction of a global FL model 

that can be applied to individual clients. FedAvg demonstrates a reduced model 

performance, including accuracy, under statistical data heterogeneity [14]. Additionally, 

the heterogeneity of the data slows down and destabilizes the convergence of FedAvg [13]. 

Previous studies [14, 30, 38, 39] have focused on utilizing the data augmentation method 

in an FL manner to address the weight divergence on non-IID data during the FL process. 

This method has been proposed to smoothen the statistical heterogeneity across distributed 

clients. However, when data augmentation approaches FL, it suffers from privacy leakage 

because data sharing has not been eliminated. Client selection approaches, such as FAVOR 

[29] used to build the FL model from the more homogeneous data distributions, also exist.  

Previous studies [31, 40–45] proposed a personalized globally trained FL model for 

heterogeneous clients. Meta-learning-based approaches, such as personalized federated 

average (Per-FedAvg) [31], have been proposed to personalize an FL model by finding an 

optimal initialization for local personalization and learning of task-specific local 

representations based on a single global model design through meta-learning [40]. Multi-

model personalization based on hierarchical clustering [41] was used to train an FL model 

for each cluster of clients. This framework involves training clusters of clients during each 

round of FL training. PFL approaches based on multi-task learning, model interpolation, 

and transfer learning build a model for each individual client through the FL process. The 

MOCHA algorithm was proposed as a personalization method for combining distributed 
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multi-task learning and FL [42]. The model interpolation method [43] was proposed to 

handle the trade-off between a globally learned model and locally learned models with an 

adjustable penalty parameter. Transfer-learning-based approaches [44,45] aim to transfer 

the globally trained knowledge to the local models of individual clients through fine-tuning. 

 

2.3 Federated Learning with Medical Data  

FL has gained increasing attention in the medical field for its ability to enable machine 

learning in a distributed environment without sharing raw data. Moreover, the need for 

generalizable and robust models is another factor that motivates the interest in FL in 

medical data [17]. Various studies have applied FedAvg and other methods of FL on 

medical data. However, most research topics focused on HFL settings. There are only few 

works done in terms of VFL in its applications in medical data [46]. Although the vertical 

data problem is a domain agnostic problem, there are cases where different medical data 

for a patient are split throughout clinical institutions. Vepakomma et al. (2018) presented 

split learning algorithm as a possible framework for vertical learning in the healthcare 

sector [47]. However, the limitation is that this study does not utilize medical data. Further 

research in VFL in medical data is required and PPFL aims to target this issue. 
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Chapter 3 

Method 

We proposed a PPFL algorithm for achieving client-specific personalized inferences on 

data heterogeneity and non-IID data settings. PPFL also addresses the limited information 

availability of FL design by leveraging not only common features but also client-specific 

vertical features across distributed clients. Figure 3.1 shows the overview of our proposed 

framework. The proposed process involves two major steps. First, we built a horizontal 

federated model (HFL) on a central server using only the common features of the client 

from the distributed clients. Second, the pre-trained horizontal federated model was 

deployed for each client, learning personalized knowledge for client-specific inference 

tasks through a personalized progressive network (PersonalizedNet). The PersonalizedNet 

considers both a horizontal FL network (HorizontalNet), which receives input as weights 

from a globally trained model based on the common features of the client, and a vertical 

network (VerticalNet), which learns the specific feature of the client.  
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3.1 Problem Formulation 

This study aims to solve the case where the features of each client are common and 

client-specific cases exist (Figure 3.2 A). All common feature information should be shared 

among clients. Suppose that an individual client 𝑘𝑘 has a dataset 𝐷𝐷𝑘𝑘 ≔ �𝒙𝒙𝑖𝑖𝑘𝑘 , 𝒔𝒔𝑖𝑖𝑘𝑘 ,𝑦𝑦𝑖𝑖𝑘𝑘�𝑖𝑖=1
𝑚𝑚(𝑘𝑘)

 

consisting of 𝑚𝑚(𝑘𝑘) samples, where the client k ∈  𝒦𝒦 ≔ {1, … ,𝐾𝐾}. The 𝑖𝑖-th sample of 𝐷𝐷𝑘𝑘 

can be represented using a common feature vector with 𝑝𝑝 -dimension 𝒙𝒙𝑖𝑖𝑘𝑘 ≔

{𝑥𝑥𝑖𝑖
1(𝑘𝑘), 𝑥𝑥𝑖𝑖

2(𝑘𝑘) ,…, 𝑥𝑥𝑖𝑖
𝑝𝑝(𝑘𝑘)} ; the client’s specific vertical feature vector with 𝑞𝑞 -dimension 

𝒔𝒔𝑖𝑖𝑘𝑘 ≔ {𝑠𝑠𝑖𝑖
1(𝑘𝑘), 𝑠𝑠𝑖𝑖

2(𝑘𝑘) ,…, 𝑠𝑠𝑖𝑖
𝑞𝑞(𝑘𝑘)} , and the corresponding target variable 𝑦𝑦𝑖𝑖𝑘𝑘 . Note that the 

attributes and dimension 𝑝𝑝(𝑘𝑘) of the common feature vector 𝒙𝒙𝑖𝑖𝑘𝑘 are identical for all clients 

     
Figure 3.1: Overview of the PPFL framework



 9 
 

𝑘𝑘 ∈  𝒦𝒦. However, the attributes and dimension 𝑞𝑞(𝑘𝑘) of the client’s specific vertical feature 

vector 𝒔𝒔𝑖𝑖𝑘𝑘 may not be the same for all clients.  

 

3.2 Horizontal Federated Learning 

A horizontal federated model learns global knowledge related to common features across 

multiple clients in a federated manner. The proposed model is generic and can be applied 

to other collaboratively aggregated method based on the deep-learning model. However, in 

this study, we applied our algorithm to the FedAvg as a base method for building a 

horizontal federated model because it is the most well-known and commonly used method. 

FedAvg is an algorithm that aggregates the weight parameters of the models within each 

client using weighted averaging. 𝑚𝑚  is the total sample size of 𝐾𝐾  clients. In addition, 

      Figure 3.2: Problem setting and network architecture of the PPFL
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𝑓𝑓𝑖𝑖(𝝎𝝎) is the loss function of the prediction on example (𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖). Therefore, the objective 

function for solving the empirical risk minimization is  

 

𝑚𝑚𝑖𝑖𝑚𝑚
𝝎𝝎𝑐𝑐∈ℝ𝑑𝑑

𝐹𝐹(𝝎𝝎𝑐𝑐) ≔  �
𝑚𝑚(𝑘𝑘)

𝑚𝑚
𝐹𝐹𝑘𝑘�𝝎𝝎𝑘𝑘�

𝐾𝐾

𝑘𝑘=1
, 

(1) 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐹𝐹𝑘𝑘�𝝎𝝎𝑘𝑘� ≔ � 𝑓𝑓𝑖𝑖(𝝎𝝎𝑘𝑘)

𝒙𝒙𝒊𝒊∈𝐷𝐷𝑘𝑘

 

 

3.3 Personalized Progressive Federated Learning 

PPFL contains three network columns: HorizontalNet, VerticalNet, and 

PersonalizedNet. PPFL is a multi-model-based approach that generates differently for 

every client at the deployment step and aims to solve the trade-off problem between 

globally generalized knowledge and client-specific knowledge. Hence, we utilized the 

concept of lateral connection in progressive neural networks [15], which is proposed for 

leveraging transfer and avoiding catastrophic forgetting in multi-task learning. Figure 3.2 

B shows the architecture of the PPFL model. 

 
3.3.1 Horizontal Network 

HorizontalNet, which is the first column of PPFL, is a network that is transferred from 

the horizontal federated model. The internal weight parameters of the HorizontalNet 

column 𝝎𝝎𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  were initialized using parameter 𝝎𝝎  of the horizontal federated model 

described in Section 2.2. This network column aims to pass generalized knowledge to 
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personalized networks with the common feature data of the client 𝒙𝒙𝒌𝒌 as input information. 

Note that the internal weight matrix 𝝎𝝎𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  in HorizontalNet, which is not connected with 

PersonalizedNet, is “frozen” to train. However, the lateral weight parameter 𝝎𝝎𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖 , which 

is the weight parameter between HorizontalNet and PersonalizedNet, can be updated using 

an optimization algorithm. This approach avoids forgetting the generalized knowledge that 

has already been learned. The hidden layers 𝒉𝒉𝑙𝑙𝑐𝑐  in the HorizontalNet column for the 

client’s common feature vector 𝒙𝒙𝑘𝑘  are computed using the internal weight parameter 

𝝎𝝎𝑙𝑙
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  of the HorizontalNet as  

𝒉𝒉𝑙𝑙+1𝑐𝑐 = 𝜎𝜎 �𝝎𝝎𝑙𝑙
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝒉𝒉𝑙𝑙𝑐𝑐 + 𝒃𝒃𝑙𝑙𝑐𝑐� , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒     𝒉𝒉0𝑐𝑐 = 𝒙𝒙𝑘𝑘 .        (2) 

 

The output values for the HorizontalNet hidden layers 𝒉𝒉𝑙𝑙𝑐𝑐  are transferred to 

PersonalizedNet via the lateral weight parameter 𝝎𝝎𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖  without overlaying the original 

internal weight parameter 𝝎𝝎𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  of HorizontalNet. Therefore, the internal parameter of 

HorizontalNet 𝝎𝝎𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 is not a trainable weight parameter for retaining the globally learned 

knowledge for the common feature space, and its lateral weight parameter 𝝎𝝎𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖 allows 

the transfer of proper knowledge from 𝒉𝒉𝑙𝑙𝑐𝑐 to the personalizedNet layer 𝒉𝒉𝑙𝑙
𝑝𝑝. 

 

 

 



 12 
 

3.3.2 Vertical Network 

The second network column was the VerticalNet column. This network progressively 

expanded the feature space with respect to the specific vertical features of the client. The 

input of VerticalNet is the specific vertical feature data of the client 𝒔𝒔𝑘𝑘 ∈ 𝐷𝐷𝑘𝑘. The weight 

parameter 𝝎𝝎𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖  is the internal weight parameter of VerticalNet, which is not connected to 

PersonalizedNet. The lateral weight parameter 𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖  consists of the parameters of the 

VerticalNet and PersonalizedNet columns. Both 𝝎𝝎𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖  and 𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖  can be learned through 

the training step because these parameters are newly constructed to expand the feature 

space and to connect with PersonalizedNet, which is the network column used for an 

inference task. Thus, the internal weight parameter 𝝎𝝎𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖  and lateral weight parameter 

𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖  learn client-specific vertical feature information and transmit their knowledge to 

PersonalizedNet. The hidden layers 𝒉𝒉𝑙𝑙𝑣𝑣  in the VerticalNet column with respect to the 

client-specific vertical feature 𝒔𝒔𝑘𝑘  and internal weight parameter 𝝎𝝎𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖  are 

𝒉𝒉𝑙𝑙+1𝑣𝑣 = 𝜎𝜎 �𝝎𝝎𝑙𝑙
𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝒉𝒉𝑙𝑙𝑣𝑣 + 𝒃𝒃𝑙𝑙𝑣𝑣� ,     𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝒉𝒉0𝑣𝑣 = 𝒔𝒔𝑘𝑘               (3) 

 

3.3.3 Personalized Network 

The PersonalizedNet layers learn the specific personalized knowledge of the client by 

acquiring the value of HorizontalNet, VerticalNet, and its previous layer as inputs. The 

computation between network columns is made possible through a lateral connection, the 
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parameters of which, 𝝎𝝎𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖and 𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖 , are lateral weight parameters. Therefore, 𝝎𝝎𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖  and 

𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖 determine the amount of activation of the globally learned common feature 

information and vertical feature information within the client, respectively. Its internal 

parameters 𝝎𝝎𝑝𝑝 are the internal weight parameters used to mix the information from both 

HorizontalNet and VerticalNet and learn more complex information to achieve the 

inference tasks of individual clients. The hidden layers 𝒉𝒉𝑙𝑙
𝑝𝑝 in the PersonalizedNet column 

are computed using Equation (4). 

𝒉𝒉𝑙𝑙+1
𝑝𝑝 = 𝜎𝜎 �𝝎𝝎𝑙𝑙+1

𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖𝒉𝒉𝑙𝑙+1𝑐𝑐 + 𝝎𝝎𝑙𝑙+1
𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖𝒉𝒉𝑙𝑙+1𝑣𝑣 + 𝝎𝝎𝑙𝑙+1

𝑝𝑝 𝒉𝒉𝑙𝑙+1
𝑝𝑝 +𝒃𝒃𝑙𝑙

𝑝𝑝�     (4) 

 

Note that the proposed method can be applied even in the absence of client-specific 

vertical features. In this case, the hidden layer of a personalized progressive network is 

expressed as  

𝒉𝒉𝑙𝑙+1
𝑝𝑝 = 𝜎𝜎 �𝝎𝝎𝑙𝑙+1

𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖𝒉𝒉𝑙𝑙+1𝑐𝑐 + 𝝎𝝎𝑙𝑙+1
𝑝𝑝 𝒉𝒉𝑙𝑙+1

𝑝𝑝 +𝒃𝒃𝑙𝑙
𝑝𝑝�.                  (5) 

 

 
Algorithm 1 Learning procedure of horizontal federated model 

Input: The Dataset 𝐷𝐷𝑘𝑘𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖 ∶= ��𝒙𝒙𝑖𝑖𝑘𝑘,𝑦𝑦𝑖𝑖𝑘𝑘��𝑖𝑖=1
𝑚𝑚𝑘𝑘

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐 𝑘𝑘 ∈ 𝐾𝐾 ∶= {1, …𝐾𝐾}; is the local 
mini-batch size, E is the number of local epochs, and 𝜂𝜂 is the learning rate. 

Output: The horizontal federated model 𝐶𝐶 and its weight parameter 𝝎𝝎𝑐𝑐 
1: Central server execute: 
2: Construct the horizontal federated model 𝐶𝐶 and initialize its weight parameter 𝝎𝝎𝑐𝑐 
3: for each round t = 0, 1, 2 … , N do 
4:     Randomly set the 𝑆𝑆𝑖𝑖 from the clients with the number of 𝑚𝑚 ← max (𝑆𝑆 ⋅ 𝐾𝐾, 1), where 

0 < 𝑆𝑆 ≤ 1 
5:     for each client 𝑘𝑘 ∈ 𝑆𝑆𝑖𝑖 in parallel do 
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6:         𝜔𝜔𝑖𝑖+1
𝑘𝑘 ← 𝑪𝑪𝑪𝑪𝒊𝒊𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪�𝑘𝑘, 𝜔𝜔𝑖𝑖;  𝑥𝑥𝑖𝑖𝑘𝑘� 

7: end for 

8:      𝝎𝝎𝑖𝑖+1
𝑐𝑐 ←�

𝑚𝑚𝑘𝑘

𝑚𝑚
𝜔𝜔𝑖𝑖+1
𝑘𝑘

𝐾𝐾

𝑘𝑘=1
 

9: end for 
10: return 𝝎𝝎𝑐𝑐 to all clients 
  
11: 𝑪𝑪𝑪𝑪𝒊𝒊𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑘𝑘,𝝎𝝎𝑘𝑘;  𝒙𝒙𝑖𝑖 , 𝑦𝑦𝑖𝑖) ∶  //Run on client k  
12: 𝓑𝓑 ← (split 𝐷𝐷k𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖 into batches of size B) 
13: for each local epoch e from 1 to E do 
14:     for batch 𝑏𝑏 ∈ 𝓑𝓑 do 
         𝝎𝝎𝒌𝒌+𝟏𝟏 ← 𝑔𝑔𝑒𝑒𝑔𝑔𝑔𝑔𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑔𝑔𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒𝑚𝑚𝑐𝑐(𝛚𝛚𝑘𝑘;  ℓ,η𝑝𝑝; b) 
15:     end for 
16: end for 
17: return 𝝎𝝎𝑖𝑖+1

𝑘𝑘  to central server 
  

 
Algorithm 2 Learning procedure of personalized progressive federated learning model 

Input: The Dataset 𝐷𝐷𝑘𝑘 ∶= ��𝒙𝒙𝑖𝑖𝑘𝑘, (𝒔𝒔𝑖𝑖𝑘𝑘), 𝑦𝑦𝑖𝑖𝑘𝑘��𝑖𝑖=1
𝑚𝑚(𝑘𝑘)

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐 𝑘𝑘 ∈ 𝐾𝐾 ∶= {1, …𝐾𝐾}; 𝐵𝐵𝑝𝑝  is the 
local mini-batch size for personalization,  Ep is the number of epochs for personalization, 
and 𝜂𝜂𝑝𝑝 is the learning rate for personalization 

Output: The personalized progressive FL model 𝒫𝒫 
1: Client execute: // Run on specific client 𝑘𝑘 
2: Receive the 𝜔𝜔𝑐𝑐 from central server 
3: 𝓑𝓑 ← (split 𝐷𝐷𝑘𝑘 into batches of size 𝐵𝐵𝑝𝑝) 
4: if client k has client-specific vertical feature 𝒔𝒔𝑘𝑘 then 
5:    𝒫𝒫 ← 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝒙𝒙𝐤𝐤, 𝒔𝒔𝒌𝒌) 
6: else 
7:    𝒫𝒫 ← 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝒙𝒙𝐤𝐤) 
8: end if 
  
9: 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝒙𝒙𝐤𝐤, 𝒔𝒔𝒌𝒌) 
10: Construct the PPFL model 
 𝒫𝒫 ← 𝑓𝑓(𝝎𝝎𝒄𝒄𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖 ,𝝎𝝎𝒗𝒗𝑖𝑖𝑖𝑖𝑖𝑖,𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖 ,𝝎𝝎𝑝𝑝;  𝒙𝒙𝑘𝑘,  𝒔𝒔𝑘𝑘)  
11: initialize 𝝎𝝎𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 to 𝝎𝝎𝑐𝑐, and freeze the training of 𝝎𝝎𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 
12: initialize  𝝎𝝎𝒄𝒄𝑙𝑙𝑙𝑙𝑖𝑖 ,𝝎𝝎𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 ,𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑖𝑖,𝝎𝝎𝑝𝑝 
13: for each personalization epoch e from 1 to 𝐸𝐸𝑝𝑝 do 
14:     for batch 𝑏𝑏𝑝𝑝 ∈ 𝓑𝓑 do 
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15:       (𝝎𝝎𝑒𝑒+1
𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 ,𝝎𝝎𝑒𝑒+1

𝑣𝑣𝑖𝑖𝑖𝑖𝑙𝑙 ,𝝎𝝎𝑒𝑒+1
𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 ,𝝎𝝎𝑒𝑒+1

𝑝𝑝 ) 
               ← 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈(𝝎𝝎𝑒𝑒

𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 ,𝝎𝝎𝑒𝑒
𝑣𝑣𝑖𝑖𝑖𝑖𝑙𝑙 ,𝝎𝝎𝑒𝑒

𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 ,𝝎𝝎𝑒𝑒
𝑝𝑝;  ℓ, 𝜂𝜂𝑝𝑝;𝑏𝑏𝑝𝑝) 

16:     end for 
17: end for 
18: return the PPFL model 𝒫𝒫  
  
19: 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝒙𝒙𝐤𝐤) 
20: Construct the PPFL model 
 𝒫𝒫 ← 𝑓𝑓(𝜔𝜔𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝜔𝜔𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖 ,𝜔𝜔𝑝𝑝; 𝑥𝑥𝑘𝑘)  
21: initialize 𝜔𝜔𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙 to 𝜔𝜔𝑐𝑐, and freeze the training of 𝜔𝜔𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙 
22: initialize  𝜔𝜔𝑐𝑐𝑙𝑙𝑙𝑙𝑖𝑖 ,𝜔𝜔𝑝𝑝 
23: for each personalization epoch e from 1 to 𝐸𝐸𝑝𝑝 do 
24:     for batch 𝑏𝑏𝑝𝑝 ∈ 𝓑𝓑 do 
25:       (𝝎𝝎𝑒𝑒+1

𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 ,𝝎𝝎𝑒𝑒+1
𝑝𝑝 )  ← 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈((𝝎𝝎𝑒𝑒

𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 ,𝝎𝝎𝑒𝑒
𝑝𝑝;   ℓ, 𝜂𝜂𝑝𝑝;𝑏𝑏𝑝𝑝) 

26:     end for 
27: end for 
28: return the PPFL model 𝒫𝒫  

 
The algorithms for building the horizontal federated model and PPFL models are 

The algorithms for building the horizontal federated model and PPFL models are 

presented in Algorithms 1 and 2, respectively. In Algorithm 1, the input is a common 

feature vector from the participating clients and target variables. As an output of Algorithm 

1, the horizontal federated model can be learned using common feature information from 

the participating clients in the FL. The outputs of Algorithm 1 and the dataset, including 

common features, vertical features, and target variables from the participating clients, are 

the inputs of Algorithm 2. Subsequently, the PPFL model, consisting of the HorizontalNet, 

VerticalNet, and PersonalizedNet columns, is generated for each client. The HorizontalNet 

column of the PPFL model 𝝎𝝎𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙  is initialized using the weight parameter 𝝎𝝎𝑐𝑐 from the 

horizontal federated model. The input is a common feature vector and a client-specific 
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vertical feature vector from the individual client and target variables. The weight parameter 

𝝎𝝎𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙  of the HorizontalNet column are frozen to retain globally learned knowledge related 

to common features, where 𝝎𝝎𝑣𝑣𝑖𝑖𝑖𝑖𝑙𝑙is the internal weight parameter of VerticalNet for client-

specific vertical features. The lateral weight parameters 𝝎𝝎𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙  and  𝝎𝝎𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 transmit 

knowledge of layer-wise network columns, including HorizontalNet and VerticalNet, 

respectively. The PersonalizedNet weight parameter 𝝎𝝎𝑝𝑝 allows learning of more complex 

information from the PersonalizedNet layer 𝒉𝒉𝑙𝑙
𝑝𝑝 , which receives the values of 𝒉𝒉𝑙𝑙𝑐𝑐 and 𝒉𝒉𝑙𝑙𝑣𝑣 

. As an output for Algorithm 2, these parameters can be learned using optimization methods 

such as gradient descent optimization algorithms [18]. Through this process, the proposed 

model can be personalized, except for the VerticalNet column, if there are no client-specific 

vertical features. 
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Chapter 4 

Experiments 

4.1 Study Design 

To validate the performance of our model on specific datasets in the medical domain, we 

compared the combinations of input data from the Physionet Challenge 2012 [19], eICU 

data [20], and HICU data from Severance Hospital, Seoul, Korea to evaluate the 

performance of the PPFL algorithm. Details of the data are provided in the data section.    

We compared PPFL with the models described below. (x) indicates that the model has 

learned only the common feature space, and (x, s) indicates the model has learned both 

common features and client-specific vertical features. 

 

• FedAvg (x): HorizontalNet learned by the FedAvg algorithm with common features. 

• FedProx (x): HorizontalNet learned by the FedProx algorithm with common features. 

• PPFL (x): The PPFL model learns on individual clients by leveraging only common 

features. 

• PPFL (x, s): The PPFL model learns on individual clients by leveraging both common 

features and client-specific vertical features. 

• Local (x): Multi-layer perceptron (MLP) models learned only from common feature 

data of a specific client. 
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• Local (x, s): MLP models learned from both common and vertical feature data for a 

specific client. 

 

We divided the training, validation, and test datasets in the ratio of 6:2:2 for each client 

participating in PPFL training. The validation dataset was used to search for 

hyperparameters using a random-search algorithm. We optimized the weight parameters of 

the models by stochastic gradient descent using the Adam optimizer [21]. We utilized the 

cross-entropy loss as a loss function for the application of our proposed and comparison 

models to binary classification. For hyperparameter tuning, 100 epochs were set for local 

training in federated learning, and 30 rounds were used to aggregate the local models. 

We implemented them while providing accuracy and an area under the receiver operating 

characteristic (AUROC) score for each ICU client to demonstrate the performance 

improvement for individual clients and the robustness of the unseen distribution for the 

proposed model. 

 

4.2 Dataset 

The performance of the PPFL model was evaluated on two datasets: (1) a public EMR 

dataset called Physionet Challenge 2012 [19] and (2) a distributed ICU dataset from four 

types of ICUs from 208 institutions from the eICU [20] and Severance Hospital in South 

Korea. First, the Physionet Challenge 2012, which was extracted from the MIMIC-II 

database [22], consists of information regarding 8,000 ICU patients. These records 
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contained 36 time-series features (i.e., laboratory tests, vital signs, and mechanical 

ventilation) and five demographic features, including ICU-type information. In this study, 

we aggregated ICU information for 48 h in an average manner because we did not focus 

on time-series data. Each ICU, with a total of 6,000 samples, was considered an individual 

client. Coronary care unit (CCU), cardiac surgery recovery unit (CSRU), medical ICU 

(MICU), and surgical ICU (SICU) retained 889, 1,219, 2,216, 1,676, and 2,000 ICU stay 

samples, respectively. The remaining 2,000 samples were used as external ICUs, 

configured without client separation. The external ICU was not used during the PPFL 

training. In this dataset, we assumed that the common feature set comprised demographic 

and mechanical ventilation information. In contrast, client-specific vertical features 

comprised vital signs and laboratory tests for all clients. The description of data distribution 

by the ICU for common features of the Physionet Challenge 2012 data set is presented in 

Supplementary Table 1-3.  

Second, the distributed ICU dataset was composed of the eICU dataset [20] and 

Severance Hospital in Seoul, Korea, to predict in-hospital mortality. From the eICU (208 

hospitals), 14,550 patients admitted to the MICU and 10,664 patients from the SICU were 

selected. From the Severance Hospital, 5,306 patients admitted to the high ICU (HICU) 

were selected. For external validation, we selected 12,706 patients from the neuro-surgical 

ICU (NSICU) from the eICU dataset. We identified 14 common features for each ICU, and 

different client-specific features were selected for each client using an L1-based feature 

selection method that utilizes linear models with an L1 penalty (L1-norm) added to the loss 
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function [23]. The description of data distribution by the ICU for common features of the 

distributed ICU dataset is presented in Supplementary Table 4. This study was approved 

by the Institutional Review Board of Severance Hospital (IRB approval no. “4-2021-

0820”). 

 
4.2 Experiment Details 

PPFL performance was evaluated using the Physionet Challenge 2012 dataset from 

CCU, CSRU, MICU, and SICU. Each ICU was selected as an independent client. For each 

client, we compared the performance of FedAvg (x), PPFL (x), PPFL (x, s), Local (x), and 

Local (x, s) for both internal and external validations. Internal performance was measured 

using a test set from a local client. For external validation, we used 2,000 samples that were 

set aside when partitioning ICU data. We evaluated the performance of binary 

classifications for the following two cases: in-hospital mortality as a binary class (dead or 

alive) and length of stay as a binary class for more than seven days after 48 h of ICU 

admission.  

We computed feature importance using the SHAP value computed by Deep SHAP to 

investigate the concept shift after the application of PPFL [24]. SHAP is a method used for 

computing the value of a data instance. Deep SHAP approximates the SHAP value using 

DeepLIFT [25]. 

We compared the loss of in-hospital mortality prediction tasks while training PPFL (x) 

and PPFL (x, s) with transfer learning to evaluate the effects of the personalizing 
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mechanism on PPFL. We simulated PPFL in two ways. First, we compared the loss of 

PPFL (x) and PPFL (x) without freezing FedAvg (x) and transfer learning for each training 

epoch to evaluate personalized learning in a horizontal data environment. Additionally, we 

compared PPFL (x, s) with PPFL (x, s) without freezing and transfer learning to evaluate 

the effects of personalized learning in the presence of the client-specific vertical features.  

Moreover, we conducted a performance comparison with distributed ICU dataset to 

evaluate the effectiveness of PPFL and the performance of the PPFL in an extreme data 

environment. We compared the performance of the local models (x) and (x, s) and FedAvg 

(x) with PPFL (x) and PPFL (x, s). The task was to predict in-hospital mortality. The 

training and evaluation details were the same as those described in the study design section.  

4.3 Experiment Setting 

All experimental settings were implemented using TensorFlow 2.5.0 [26]. The models 

were trained on a machine equipped with two NVIDIA QUADRO RTX 8000 CUDA 11.0, 

128 GB memory and one Intel Xeon Platinum 8253 2.2 GHz CPU. 
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Chapter 5 

Results 

5.1 Performance Evaluation 

PPFL (x, s) showed the highest performance for every ICU client on external validation. 

The PPFL(x) showed an average of 0.790 AUROC for the in-hospital mortality task and 

0.808 AUROC for the length of the stay task (Figures 5.1 A and 5.1 B, respectively).  

Where FedAvg(x) and FedProx(x) showed performance (AUROC) by 0.616 and 0.615 in 

mortality prediction, respectively. In addition, PPFL(x, s) higher performance than 

FedAvg(x) and FedProx(x) both in hospital mortality and length of stay prediction. The 

average AUROC of FedAvg(x) was 0.643 and 0.643 for FedProx(x) in length of stay 

prediction. Compared with Local(x, s), PPFL (x, s) show that all AUROC performances of 

PPFL(x, s) outperform in external validations. The average AUROC for local(x, s) in 

external validation was 0.743 in in hospital mortality prediction, and 0.773 in length of stay 

prediction. In average, PPFL(x, s) showed higher performance than local(x, s) models in 

external validation(Figure 5.1 A, Figure 5.1 B, Supplementary Table 5). Comparing the 

average AUROC of PPFL(x, s) to Local(x, s) in Figure 2C and Figure 2D, our model 

showed higher performance in in hospital mortality task. However, in length of stay 

prediction, the SICU showed 0.865, which was higher than the average AUROC 

performance than PPFL(x, s). Overall, PPFL(x, s) showed the highest AUROC compared 

to other local model(x, s) in average (Figure 5.1 C, Figure 5.1 D). Figures 5.2 shows the 
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contributions of common and vertical features for all clients in predicting in-hospital 

mortality. Within common features, age and mechanical ventilation (MechVent) features 

had the highest shape value in all clients (age was 0.5 or more in all clients and MechVent 

Figure 5.1: Performance evaluation on Physionet 2012. PPFl was evaluated 
compared to FedAvg (x), FedProx (x), Local (x), and Local (x, s) in terms of AUROC 
on external validation. PPFL (x, s) shows the highest score in every task. A. AUROC 
comparison for in-hospital mortality prediction task. B. AUROC score comparison for the 
length of stay prediction task. C. AUROC score compared for each ICUs for in-hospital 
mortality prediction task among Local (x, s), PPFL (x, s), and FedAvg (x) D. AUROC 
score compared for each ICUs for the length of stay (>7) prediction task among Local (x, 
s), PPFL (x, s), FedProx (x), and FedAvg (x). 
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was 0.3 or more in three clients). Among the vertical features, the Glasgow Coma Scale 

(GCS) had the highest shape value for all clients (0.025 or higher for all clients). 

Mechanical ventilation still had a high ranking for CCU and SICU.  

We also compared FedAvg (x) to PPFL (x, s) to evaluate whether leveraging client 

specific features shows high performance. PPFL (x, s) showed higher performance than 

FedAvg (x) (Supplementary Table 6). For the MICU, the SHAP value for MechVent was 

not lower than those of the other clients. However, in terms of vertical features, vital signs, 

such as GCS, blood urea nitrogen, fraction of inspired oxygen, heart rate, and absolute 

blood pressure, have higher SHAP values than those for mechanical ventilation. 

 
5.2 Effectiveness of Progressive Model 

Figure 5.3 shows the results of the cross-entropy loss for the mortality prediction task 

for the personalized models for each client. The loss was evaluated by an external client 

        
          

       

Figure 5.2: Mean absolute SHAP values of common and vertical features in 
predicting in-hospital mortality. A. SHAP values in common features. B. top 10 
highest SHAP value features with vertical features.
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during the training process. The loss without a weight freeze (green line) and the loss 

without a personalized progressive network (blue line) increased as the number of epochs 

increased compared with the loss of PPFL (x). We also observed a loss increase in PPFL 

(x, s) without a weight freeze compared with PPFL (x, s) with a loss freeze (Figure 5.4). In 

this comparison, we observed that: (1) Personalizing through simple transfer learning to 

HorizontalNet (x) makes unstable the learning procedure related to loss. (2) Personalizing 

using PPFL without freezing the internal parameters of HorizontalNet also makes unstable 

the learning procedure. (3) The proposed PPFL method showed a continuous decrease in 

loss compared to comparison models. (4) This improvement was more effectively observed 

as the client-specific distribution became increasing different 
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Figure 5.3: Loss comparison of the PPFL, PPFL without freezing and transfer 
in each client using common features. Client-1: CCU, Client-2: CSRU, Client-3: 
MICU, Client-4: SICU
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5.3 Performance Evaluation Using Real-World Clinical Data 

In the performance evaluation of the actual experiment, PPFL(x, s) showed the highest 

score, with an accuracy of 0.939 and AUROC of 0.934 (Figure 5.5 A and Supplementary 

Table 7). In most ICU clients, PPFL (x, s) shows the highest AUROC, except for HICU. 

In the HICU, PPFL (x) showed the highest performance, with an AUROC of 0.892 and 

accuracy of 0.932 (Supplementary Table 7), which were 0.1% and 0.3% higher than that 

of PPFL (x, s), respectively. Compared with the models Local (x, s), FedAvg (x), and 
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FedProx (x), the AUROC values of the PPFL (x, s) model for predicting in-hospital 

mortality improved in the internal assessments (Figure 5.5 B). FedAvg (x) showed an 

average AUROC of 0.722, and FedProx (x) performed 0.663 which was the lowest score 

in all models. However, PPFL (x, s) performed 0.935 in average. Figure 5.5 B shows that 

the local models show higher performance than FedAvg (x), while PPFL (x, s) achieves 

the highest AUROC. In addition, the AUROC increases for all clients as the number of 

clients increases. In external evaluation with NSICU from the eICU dataset, PPFL (x, s) 

showed an AUROC of 0.948, which was 3.1% higher than that of the Local (x, s) model. 
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Chapter 6 

Discussion 

The usage of federated learning in analyzing distributed medical data is a well-known 

research topic [17, 27]. Therefore, research on federated learning that can potentially 

protect data privacy has been conducted in various medical fields [28]. However, most 

current studies consider learning common features among clients. In this study, we 

proposed a personalized progressive federated learning (PPFL) algorithm for 

heterogeneously distributed clients that expands the feature space for client-specific 

vertical features. This study is the first federated learning study that considers common 

features and client-specific vertical features by applying progressive learning. PPFL shows 

a robust performance compared to other algorithms based on the comparison of PPFL with 

existing federated learning models and local models in various settings.  

Compared to FedAvg, which is suitable for a horizontally partitioned data environment 

[3–9], PPFL is a novel federated learning framework that leverages the idea of progressive 

learning to perform learning in both horizontally and vertically partitioned environments. 

PPFL can utilize more features and samples than other models (Figure 5.1, Supplementary 

Table 5, Figure 5.5), resulting in better performance compared to existing local and 

federated learning models. For example, FedAvg and FedProx have a limited feature space 

because only the common features from multiple clients are input into the model in terms 

of its structure. The local model uses only the sample of each client; thus, the number of 



 29 
 

samples is inevitably smaller than that of the PPFL input dataset. PPFL demonstrated a 

higher performance than the existing model by inputting all the collected features and 

samples of multi-clients.  

A learning weight based on a common feature is delivered to each client, and the effect 

of transfer learning is confirmed by running the delivered running weight and vertical 

feature together (Figure 5.3, Figure 5.4, and Supplementary Table 5). Wang et al. reported 

that client transfer learning is effective in learning client-specific features [29]. The 

effectiveness of the proposed model is the greatest for clients who are significantly different 

from the overall data distribution since CSRU has the most different label distribution from 

an external client and the most severe class imbalance problem.   

In addition, an important known problem of federated learning is the unstable 

convergence of weights and performance degradation in heterogeneous data environments 

[14, 30]. In this study, the PPFL model showed stable convergence of loss in a 

heterogeneous multi-client environment compared to transfer learning (Figure 5.3 and 

Figure 5.4).  

For all internal validations of the clients, except for the in-hospital mortality task for 

some clients, HorizontalNet(x), learned through FedAvg, exhibits a degraded performance 

compared to that with Local(x). Previous studies have confirmed that FL performance may 

decrease when the distribution among clients is heterogeneous [13, 14]. Additionally, the 

data we tested was statistically significant heterogeneous across clients (Supplementary 

Table 1). We found that the hospital stay of SICU patients was significantly longer than 
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that of other ICU patients (Supplementary Table 1). Moreover, we found that the 

performance of the local(x) model using only local data was higher than our proposed 

PPFL(x, s) (Figure 5.1 D). This indicates that extreme data heterogeneity in FL can lead to 

lower performance than that of local models. However, we emphasize that our model still 

outperforms FedAvg and FedProx, and the performance difference with the local model 

(SICU) is negligible. 

Although client-specific vertical features contain more information, our proposed model 

is effective in terms of robustness. This shows that PPFL is robust to the global knowledge 

forgetting problem in the personalization process of the FL models. Since there are few 

studies conducted with real-world data scenarios on federating learning and demands on 

experiments using real-world data are emphasized [30, 31], this is the first study to use real-

world clinical data from multiple ICU clients from different countries. In this study, real-

world data considering all ICU features showed higher performance compared to the 

Physionet challenge 2012 dataset with limited features. This is the rationale for PPFL to 

become a clinically applicable algorithm.  

Federated Learning generally performs better in terms of privacy than local models. 

Yang et al. (2019) reports possibility of indirect privacy leakage in FL systems [2]. Since 

PPFL utilizes horizontal features in the training process, the client specific features are 

secure, having advantage than other FL algorithms. Indirect data leakage may occur only 

in the horizontal features. However, the client specific vertical features progressively 
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learned in each client are safe from any direct or indirect privacy leakage compared to other 

FL frameworks. 

Our study has several limitations. First, there is little difference in the computing time 

and resources when verifying the PPFL in the same network bandwidth. However, 

additional research on the computation time and resources between physically distant 

networks is required for multi-client from multi-country studies. Second, this PPFL 

algorithm was written assuming that information on the features of multiple clients is 

shared; however, information about common and vertical features of each client may not 

be provided in the real world. Research on an automatic feature selection process based on 

the characteristics of input data among the features of multiple clients is essential. Third, 

Yang et al. (2019) reported that there is a possibility of indirect privacy leakage to raw 

federated learning systems [2]. We plan to further our studies in strengthening PPFL from 

these issues. Fourth, although only MLP modules based on linear layer have been applied 

to the PPFL framework in this study, we will also apply them to other neural network 

structures such as sequential-based layers in future studies. 
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Chapter 7 
Conclusion 

We proposed the PPFL algorithm to personalize federated algorithms for 

heterogeneously distributed clients and expand the feature space for client-specific vertical 

feature information. Moreover, we investigated the performance improvement and 

robustness of our proposed model using real-world EHR data and validated the usefulness 

of the model. Our model showed higher performance than FedAvg and FedProx. We plan 

to further our studies in improving the PPFL compared to other models in FL.  
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Appendix 
 
 

 CCU 

 

(n = 889) 

CSRU 

 

(n = 1,219) 

MICU 

 

(n = 2,216) 

SICU 

 

(n = 1,676) 

External 

ICU 

(n = 2,000) 

P-

value 

Age  69.4 (14.6) 67.6 (13.1) 63.5 (18.1) 60.3 (19.3) 64.1 (12.2)   < 0.001 

Gender Female  357 (40.2) 453 (35.8) 1075 (50.1)  706 (41.6) 241 (45.2)  < 0.001 

 Male  531 (59.8) 812 (64.2) 1070 (49.9)  992 (58.4) 292 (54.8)    

Height  170.6 (17.8) 169.9 (10.5) 168.3 (19.7) 170.1 (17.3) 169.3 (23.2) < 0.001 

Weight  80.7 (21.8) 87.4 (20.0) 82.3 (27.2)  83.0 (25.8) 81.9 (23.3) < 0.001 

In-hospital 

death 

Alive 773 (87.0) 1205 (95.2) 1724 (80.3)  1457 (85.8) 453 (85.0) < 0.001 

 Death 115 (13.0) 61 (4.8) 423 (19.7)  242 (14.2) 80 (15.0)  

Length of stay <7 

days 

396 (44.6) 455 (35.9) 801 (37.3)  453 (26.7) 189 (35.5) < 0.001 

 

 >7 

days 

492 (55.4) 811 (64.1) 1346 (62.7) 1246 (73.3) 344 (64.5)  

* One-way analysis of variance (ANOVA) for continuous features; χ2-test for categorical features. 
 
 

 

 

In hospital mortality 

Client Client-specific vertical features 

1 
CCU 

DiasAB
P 

PaO2 pH SysABP Lactate HR SaO2 Bilirubi
n 

ALP Platelets 

2 
CSRU 

Na Albumi
n 

PaO2 FiO2 SaO2 Urine pH Lactate Creatini
ne 

SysABP 

3 
MICU 

PaCO2 Temp Na K PaO2 Creatini
ne 

HCT SysABP Bilirubi
n 

pH 

4 
SICU 

pH HCT MAP SysABP Albumi
n 

Mg Platelets DiasAB
P 

K FiO2 

 

  

Supplementary Table 1: Description of data distribution by icu for common variables of 
Physionet Challenge 2012 

 

Supplementary Table 2: Selected client-specific vertical features of Physionet 2012 
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No. Cite name Feature name Description 

1 Common feature Age Patient age on initial visit. 

2 Common feature Gender Patient’s biological sex. 

3 Common feature Height Patient’s height on initial visit. 

4 Common feature Weight Patient’s weight on initial visit. 

5 Common feature In Hospital 

Death 

Whether the patient died during admitted in 

hospital. 

6 Common feature Length of Stay Patient’s length of stay at ICU. 

7 CCU DiasABP Patient’s diastolic blood pressure. 
8 CCU Na Sodium ion concentration in vein. 
9 CCU Albumin Albumin concentration in vein. 

10 CCU PaO2 Partial pressure of Oxygen in arterial blood. 
11 CCU pH Hydrogen ion concentration in vein. 
12 CCU SysABP Patient’s systolic blood pressure. 
13 CCU Lactate Lactate concentration in vein. 
14 CCU HR Patient’s Heart rate. 
15 CCU SaO2 Oxygen saturation in arterial blood. 
16 CCU Bilirubin Bilirubin concentration in vein. 
17 CCU ALP Alkaline Phosphatase concentration in vein. 
18 CCU Platelet Platelet counts in vein. 
19 CSRU Na Sodium ion concentration in vein. 
20 CSRU Albumin Albumin concentration in vein. 
21 CSRU PaO2 Partial pressure of Oxygen in arterial blood. 
22 CSRU FiO2 Fraction of inspired oxygen. 
23 CSRU SaO2 Oxygen saturation in arterial blood. 
24 CSRU Urine Total urine output during first visit. 
25 CSRU pH Hydrogen ion concentration in vein. 
26 CSRU Lactate Lactate concentration in vein. 
27 CSRU Creatinine Creatinine saturation in vein. 
28 CSRU SysABP Patient’s systolic blood pressure. 
29 MICU PaCO2 Partial pressure of carbon dioxide in arterial blood. 
30 MICU Temp Patient’s temperature on initial visit. 
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31 MICU Na Sodium ion concentration in vein 
32 MICU K Potassium ion concentraion in vein 
33 MICU PaO2 Partial pressure of Oxygen in arterial blood. 
34 MICU Creatinine Creatinine concentration in vein. 
35 MICU HCT Hematocrit in vein. Measures the proportion of red 

blood cells in blood. 
36 MICU SysABP Patient’s systolic blood pressure. 
37 MICU Bilirubin Bilirubin concentration in vein. 
38 MICU pH Hydrogen ion concentration in vein. 
39 SICU pH Hydrogen ion concentration in vein. 
40 SICU HCT Hematocrit in vein. Measures the proportion of red 

blood cells in blood. 
41 SICU MAP Mean arterial blood pressure. 
42 SICU SysABP Patient’s systolic blood pressure. 
43 SICU Albumin Albumin concentration in vein. 
44 SICU Mg Magnesium ion concentration in vein. 
45 SICU Platelet Platelet counts in vein. 
46 SICU DiasABP Patient’s diastolic blood pressure. 
47 SICU K Potassium ion concentration in vein. 
48 SICU FiO2 Fraction of inspired oxygen. 

 
 
  

Supplementary Table 3: Description of the common and client-specific vertical features of 
Physionet Challenge 2012 
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No. Cite name Feature name Description 

1 Common feature RBC Count Red blood cell count from vein. 

2 Common feature Weight Body weight on initial visit. 

3 Common feature temperature Body temperature on initial visit. 

4 Common feature Bun Blood Urea Nitrogen from urine. 

5 Common feature Creatinine Creatinine from urine. 

6 Common feature Hct Hematocrit from vein. 

7 Common feature Sodium Sodium concentraion in vein. 

8 Common feature Gender Biological sex. 

9 Common feature Respiratoryrate Respiratory rate on initial visit. 

10 Common feature Height Height on initial visit. 

11 Common feature Heartrate Heartrate on initial visit. 

12 Common feature Age Patient’s age on initial visit. 

13 Severance HICU  PLT Count Platelet count from vein. 

14 Severance HICU Height Z Patient’s height on normal distribution. 

15 Severance HICU Height P Patient’s height scaled on some distribution. 

16 Severance HICU Eosinophil (%) Eosinophil percentage among other white blood cells in vein. 

17 Severance HICU Basophil (%) Basophil percentage among other white blood cells in vein. 

18 Severance HICU Weight Z Patient Weight on Z test. 

19 Severance HICU Monocyte (%) Monocyte percentage among other white blood cells in vein. 

20 Severance HICU Neutrophil (%) Neutrophil percentage among other blood cells in vein. 

21 Severance HICU foreign Whether a patient is a foreigner. 
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22 Severance HICU Body surface area Body surface area of a patient. 

23 Severance HICU Cl Chloride evaluated on vein. 

24 Severance HICU Weight P Patient’s weight scaled on some distribution. 

25 Severance HICU Hemoglobin Hemoglobin count on vein. 

26 Severance HICU Albumin Albumin concentration in vein. 

27 Severance HICU Total protein Total protein amount in vein. 

28 Severance HICU FiO2 Fraction of inspired O2. 

29 Severance HICU GCS Glasgow Coma Scale on initial visit. 

30 Severance HICU pH Hydrogen ion concentration in water. 

31 Severance HICU Anion gap Difference between positively charged ions. 

32 Severance HICU vent Whether the patient used a ventilator. 

33 Severance HICU Bicarbonate Bicarbonate concentration in vein. 

34 Severance HICU NARCAN Brand name for Naloxone HCL. 

35 Severance HICU VANCOMYCIN 

HCL 1000 MG IV 

SOLR 

Vancomycin injection through intravenous route. 

36 eICU MICU PANTOPRAZOLE 

SODIUM 40 MG PO 

TEBEC 

Patient prescribed with Pantoprazole tablet through oral 

administration. 

37 eICU MICU 1000 ML FLEX 

CONT : SODIUM 

CHLORIDE 0.9 % IV 

SOLN 

Patient prescribed with Sodium chloride injection through 

intravenous route. 

38 eICU MICU POTASSIUM 

CHLORIDE CRYS 

Potassium chloride through oral administration. 
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ER 20 MEQ POP 

TBCR 

39 eICU MICU Albumin Albumin concentration in vein. 

40 eICU MICU fiO2 Fraction of inspired O2. 

41 eICU MICU Bicarbonate Bicarbonate concentration in vein. 

42 eICU MICU GCS Glasgow Coma Scale on initial visit. 

43 eICU MICU Anion gap  Difference between positively charged ions. 

44 eICU MICU Vent Whether the patient used a ventilator. 

45 eICU MICU DEXTROSE 50%-

WATER 

Patient prescribed with Water with 50% of dextrose. 

46 eICU MICU SODIUM 

CHLORIDE 0.9% 

Patient prescribed with sodium chloride 0.9%. 

47 eICU MICU METOPROLOL 

TARTRATE 25 MG 

PO TABS 

Patient prescribed with Metoprolol 25MG tablet through oral 

administration. 

48 eICU SICU PANTOPRAZOLE 

SODIUM 40 MG PO 

TBEC 

Patient prescribed with Pantoprazole tablet through oral 

administration. 

49 eICU SICU OXYCODONE Patient prescribed with Oxycodone tablet through oral 

administration. 

50 eICU SICU ACETAMINOPHEN 

5,325 MG PO TABS 

Patient prescribed with acetoaminophen tablet through oral 

administration. 

51 eICU SICU POTASSIUM 

CHLORIDE CRYS 

ER 20 MEQ PO 

TBCR 

Patient prescribed with Potassium chloride tablet through oral 

administration. 

52 eICU SICU DOCUSATE 

SODIUM 100 MG PO 

CAPS 

Patient prescribed with docustate sodium 100MG tablet 

through oral administration. 
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53 eICU SICU ZOFRAN Patient prescribed with ZOFRAN. 

54 eICU SICU LORazepam Patient prescribed with Lorazepam. 

55 eICU NSICU Albumin Albumin concentration in vein. 

56 eICU NSICU Hospitaldischargeyear Patient’s hospital discharge year. 

57 eICU NSICU fiO2 Fraction of inspired O2. 

58 eICU NSICU GCS Glasgow Coma Scale on initial visit. 

59 eICU NSICU ACETAMINOPHEN 

650 MG RE SUPP 

Patient prescribed with Acetaminophen 650MG. 

60 eICU NSICU Vent Whether the patient used a ventilator. 

61 eICU NSICU PANTOPRAZOLE 

SODIUM 40 MG IV 

SOLR 

Patient prescribed with Pantoprazole tablet through intravenous 

route. 

62 eICU NSICU LEVETIRACETAM 

500 MG PO TABS 

Patient prescribed with Levetiracetam tablet through oral 

administration. 

 
 
  

Supplementary Table 4: Selected features for real-world clinical data validation. 
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  In hospital mortality  Length of stay ( >7) 

  Internal  External  Internal  External 

Client  Model Acc. AUROC  Acc. AUROC  Acc. AUROC  Acc. AUROC 

1. CCU 

FedAvg (x) 0.857 0.671  0.818 0.616  0.650 0.690  0.710 0.643 
FedProx (x) 0.861 0.766  0.835 0.615  0.539 0.628  0.647 0.604 
PPFL (x) 0.862 0.773  0.860 0.640  0.862 0.715  0.860 0.671 
PPFL (x, s) 0.879 0.827  0.845 0.803  0.871 0.853  0.862 0.861 
Local (x) 0.860 0.657  0.823 0.598  0.852 0.803  0.839 0.636 
Local (x, s) 0.871 0.810  0.835 0.781  0.864 0.822  0.847 0.792 

2. CSRU 

FedAvg (x) 0.951 0.614  0.818 0.616  0.535 0.661  0.710 0.643 
FedProx (x) 0.944 0.638  0.835 0.615  0.640 0.548  0.647 0.604 
PPFL (x) 0.937 0.643  0.814 0.617  0.923 0.690  0.816 0.625 
PPFL (x, s) 0.954 0.873  0.836 0.762  0.954 0.833  0.856 0.719 
Local (x) 0.952 0.635  0.818 0.576  0.927 0.691  0.851 0.596 
Local (x, s) 0.926 0.824  0.818 0.671  0.931 0.714  0.860 0.710 

3. MICU 

FedAvg (x) 0.809 0.616  0.818 0.616  0.640 0.593  0.710 0.643 

FedProx (x) 0.809 0.557  0.835 0.615  0.616 0.610  0.647 0.604 
PPFL (x) 0.812 0.643  0.820 0.655  0.815 0.643  0.860 0.703 
PPFL (x, s) 0.815 0.715  0.847 0.789  0.864 0.695  0.868 0.779 
Local (x) 0.809 0.631  0.818 0.604  0.805 0.619  0.860 0.619 
Local (x, s) 0.818 0.709  0.841 0.765  0.805 0.690  0.852 0.722 

4. SICU 

FedAvg (x) 0.833 0.659  0.818 0.616  0.643 0.617  0.710 0.643 
FedProx (x) 0.855 0.561  0.835 0.615  0.734 0.583  0.647 0.604 
PPFL (x) 0.855 0.672  0.860 0.648  0.851 0.689  0.860 0.659 
PPFL (x, s) 0.860 0.835  0.867 0.807  0.856 0.853  0.864 0.873 
Local (x) 0.803 0.665  0.818 0.622  0.741 0.692  0.858 0.657 
Local (x, s) 0.846 0.792  0.862 0.764  0.851 0.796  0.871 0.865 

Average 

FedAvg (x) 0.863 0.64  0.818 0.616  0.617 0.640  0.710 0.643 
FedProx (x) 0.867 0.631  0.835 0.615  0.632 0.592  0.647 0.604 
PPFL (x) 0.867 0.683  0.839 0.64  0.863 0.684  0.849 0.665 
PPFL (x, s) 0.877 0.813  0.849 0.790  0.886 0.809  0.863 0.808 
Local (x) 0.856 0.647  0.819 0.600  0.831 0.701  0.852 0.627 
Local (x, s) 0.866 0.784  0.839 0.745  0.862 0.755  0.875 0.772 

 
 
  

Supplementary Table 5: Performance evaluation on Physionet 2012. PPFL was evaluated  
compared to FedAvg, FedProx, Local (using common features), Local (using common and specific 
features) in internal and external validation. 
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In hospital mortality 

Client Model 

Internal  External  

Accuracy AUROC  Accuracy AUROC 

CCU 

FedAvg (x) 0.857 0.671  0.818 0.616 

PPFL (x,s) 0.871 0.838  0.862 0.723 

CSRU 

FedAvg (x) 0.951 0.614  0.818 0.616 

PPFL (x,s) 0.954 0.847  0.861 0.760 

MICU 

FedAvg (x) 0.809 0.616  0.818 0.616 

PPFL (x,s) 0.805 0.774  0.860 0.745 

SICU 

FedAvg (x) 0.833 0.659  0.818 0.616 

PPFL (x,s) 0.860 0.781  0.865 0.772 

 
 
  

Supplementary Table 6: Internal and external validation of using client-specific 
features in each client on Physionet 2012. 
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In hospital mortality  

 
client model 

 
Accuracy 

 
AUROC 

Internal validation   

1. Sev-HICU 

FedAvg (x)  0.929 0.753 

FedProx (x) 0.930 0.706 

PPFL (x) 0.932 0.892 

PPFL (x, s) 0.931 0.889 

Local (x) 0.930 0.886 

Local (x, s) 0.927 0.886 

2. eICU-MICU 

FedAvg (x) 0.812 0.697 

FedProx (x) 0.870 0.756 

PPFL (x) 0.867 0.785 

PPFL (x, s) 0.928 0.955 

Local (x) 0.881 0.789 

Local (x, s) 0.906 0.918 

3. eICU-SICU 

FedAvg (x) 0.890 0.747 

FedProx (x) 0.911 0.693 

PPFL (x) 0.916 0.790 

PPFL (x, s) 0.957 0.946 

Local (x) 0.911 0.752 

Local (x, s) 0.927 0.915 
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External validation   

4. NSICU 

FedAvg (x) 0.890 0.780 

FedProx (x) 0.917 0.689 

PPFL (x) 0.918 0.787 

PPFL (x, s) 0.941 0.948 

Local (x) 0.915 0.765 

Local (x, s) 0.908 0.917 

 
  Supplementary Table 7: Performance evaluation on real-world clinical data. PPFL was 
evaluated compared to FedAvg, FedProx, Local (using common features), Local 
(using common and specific features) in internal and external validation using 
distributed real-world data. 
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국문초록 
 

사용자 특징적인 수직 분할 데이터를 활용한 

개인화된 점진 연합 학습 

 

김태현 

의생명시스템정보학과 

연세대학교 일반대학원 

 

연합학습은 분산된 사용자들 사이에서 모델을 학습시키기 위한 방식이다. 

하지만, 기존의 수평 연합 학습은 모델의 복잡성을 증가시키기 위해 수직 

분할 데이터를 활용하지 못하며, 수직 연합 학습은 모든 사용자에게서 많은 

양의 동일한 사용자가 공유 되어야한다. 반면, 연합 학습의 주요 과제 중 

하나는 사용자 사이의 데이터 이질성과 독립-항등 분포가 아닌 환경에서의 

학습이다. 본 연구에서 사용자 특징적인 수직 분할 데이터를 활용할 수 있는 

다중 모델 기반 개인화된 알고리즘인 개인화된 점진 연합 학습 (Personalized 

Progressive Federated Learning, PPFL)을 제안한다. PPFL 의 성능은 Physionet 
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Challenge 2012 와 eICU 및 세브란스 병원 데이터로 이루어의 현실 세계 

데이터의 두 데이터에서 평가되었다. 병원 내 사망과 병원 체류 기간 예측의 

두 가지 문제에 대해 정확도와 수신자 조작 특성 곡선 면적 (Area Under 

Receiver Operating Characteristic, AUROC)에 기반하여 평가하였다. PPFL 은 병원 

내 사망 예측에서 평균 0.849 의 정확도와 0.790 의 AUROC 의 성능을 

보여주었으며, 다른 비교 모델들에 비해 가장 높은 점수를 보여주었다. 체류 

기간 예측에서 PPFL 은 평균 0.808 AUROC 로 비교 모델들 중 가장 높은 

성능을 보였다.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                
핵심 단어: 개인화된 연합학습, 수직 분할 데이터, 데이터 이질성 


