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ABSTRACT

Personalized Progressive Federated Learning with

Leveraging Client-Specific Vertical Features

Tae Hyun Kim
Department of Biomedical Systems Informatics

The Graduate School, Yonesi University, Seoul, Korea

Federated learning (FL) has been used for model building across distributed clients.
However, conventional horizontal federated learning (HFL) cannot leverage vertically
partitioned features to increase model complexity, and vertical federated learning (VFL)
requires all clients to share a large number of overlapping sample-ids. On the other hand,
the main challenge of FL is the distributed setting of data heterogeneity and non-
independent and identically distributed (non-1.1.D) data among clients. In this study, we
proposed a personalized progressive federated learning (PPFL) model, which is a multi-
model-based personalization that allows the leveraging of vertically partitioned client-
specific features. The performance of PPFL was evaluated using two datasets: the

Physionet Challenges 2012 dataset and a real-world dataset composed of elCU data and

Vi



highly intensive care unit (HICU) data from the Severance Hospital, Seoul, South Korea.
We compared the performance of in-hospital mortality and length of stay task prediction
between our model and the comparison models based on the accuracy and area under
receiver operating characteristic (AUROC). The PPFL showed an accuracy of 0.849 and
AUROC 0f 0.790 in in-hospital mortality prediction, which are the highest scores compared
to comparison models. For length-of-stay prediction, PPFL also showed an AUROC of

0.808 in average which was the highest among all comparators.

Key words: Personalized federated learning, vertically partitioned data, Non-1ID data
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Chapter 1

Introduction

Federated learning (FL) is a collaborative machine-learning approach used for solving
data problems, such as data leakage, while preserving privacy in distributed environments
across multiple devices and institutions in a communication-efficient manner [1-3].
Despite the numerous advantages of FL, such as privacy preservation, fulfillment of data
requirements, and communication efficacy, it is still limited regarding the availability of
information from conventional FL designs that are generally based on a distributed
environment. FL designs (e.g., horizontal federated learning (HFL) and vertical federated
learning (VFL)) can be categorized based on the data distribution among various parties
(i.e., whether data are distributed based on the feature space or sample-ID space) [2]. HFL
[3-9] can analyze large volumes of data using “identical feature spaces” from multiple
clients. VFL [10, 11] can be built from distributed feature spaces using only “identical

sample IDs” across different clients.

However, in an HFL scenario, some clients might have specific feature information that
is generated only within specific clients or is not allowed in a federated manner because of
critical privacy concerns. For instance, there may be differences in the features collected
among hospitals participating in federated learning, and these client-specific features may

be excluded from the HFL scenario. Under a real-world VFL scenario, it is difficult for



distributed clients to obtain sufficient identical samples to build a ma-chine-learning model.

These issues may degrade the performance of the model.

In contrast, the main challenge for FL is the distributed setting of data heterogeneity and
non-independent and identically distributed (non-1ID) data from clients [12]. Previous
studies [13, 14] have demonstrated that a global FL. model with a federated averaging
algorithm might perform poorly using statistical data heterogeneity, which slows down FL

convergence.

The limitations of FL designs and data heterogeneity have motivated the development
of a new approach to overcome both problems. In real-world situations, client-specific
vertical features can be ignored in an HFL design, whereas identical sample IDs are
insufficient in a VFL design, and data heterogeneity degrades performance. Therefore, we
focused on leveraging client-specific vertical features while implementing a model that is

well adapted to the heterogeneity of data across clients in a cross-silo environment.

In this study, we propose a novel approach called personalized progressive federated
learning (PPFL) combining FL with variants of progressive neural networks [15]. In PPFL,
building a personalized model allows the learning of client-specific distributions from a
globally learned FL model by transmitting layer-wise knowledge to different network
columns. The proposed model learns global knowledge from common feature information
and expands the feature space related to client-specific vertical features by creating new

column networks.



We applied the lateral connection in a progressive neural network [15] to expand the
layer-wise feature space from a globally pre-trained FL model. Additionally, a progressive
neural network was proposed to address the forgetting problem [15, 16]. Therefore, our
model prevents the forgetting of previously learned global knowledge during the

personalization phase.

Although PPFL is a domain agnostic framework that can be applied to various fields, in
this study, we experiment and validate the algorithm with real-world medical data.
Federated learning has gained increasing attention in the medical domain as a possible
privacy preserving machine learning framework [17]. To this end, we additionally tested
the PPFL with real-world medical data utilizing highly intensive care unit (HICU) data

from the Severance Hospital, Seoul, South Korea.

To the best of our knowledge, this study is the first federated learning study that
considers the common and vertical features of each client by applying personalized
progressive learning and intends to verify whether our PPFL algorithm performs higher
than the existing federated learning models based on real-world medical data from multiple

hospitals.



Chapter 2

Background

2.1 Federated Learning and Design

FL is a machine-learning approach in which multiple clients collaboratively build a
learning task while considering privacy issues and communication efficacy [3]. FL can be
classified into HFL and VFL, depending on how the data are distributed among various
clients [2]. HFL deals with a scenario in which each client has an identical feature space
but different sample-id spaces. FedAvg [3] is a collaborative machine-learning framework
proposed for this HFL scenario. HFL approaches cannot utilize vertically partitioned
features, which are specifically generated by individual clients and are not shared with the

HFL frameworks, increasing the model complexity.

VFL deals with a scenario in which each client has a different feature space and identical
sample ID space. Although secured machine-learning methods [10, 32-35] for distributed
features have been proposed, such methods cannot be used as deep learning approaches. In
addition, despite the proposal of VFL approaches for deep learning [11, 36, 37], these
methods have a limitation, in which every client must learn sufficient “identical sample-

IDs” using a deep learning model.



2.2 Federated Learning on Non-IID Data

Data heterogeneity and non-1ID data complicate the construction of a global FLL model
that can be applied to individual clients. FedAvg demonstrates a reduced model
performance, including accuracy, under statistical data heterogeneity [14]. Additionally,

the heterogeneity of the data slows down and destabilizes the convergence of FedAvg [13].

Previous studies [14, 30, 38, 39] have focused on utilizing the data augmentation method
in an FL manner to address the weight divergence on non-IID data during the FL process.
This method has been proposed to smoothen the statistical heterogeneity across distributed
clients. However, when data augmentation approaches FL, it suffers from privacy leakage
because data sharing has not been eliminated. Client selection approaches, such as FAVOR

[29] used to build the FL model from the more homogeneous data distributions, also exist.

Previous studies [31, 40—45] proposed a personalized globally trained FL model for
heterogeneous clients. Meta-learning-based approaches, such as personalized federated
average (Per-FedAvg) [31], have been proposed to personalize an FL. model by finding an
optimal initialization for local personalization and learning of task-specific local
representations based on a single global model design through meta-learning [40]. Multi-
model personalization based on hierarchical clustering [41] was used to train an FL model
for each cluster of clients. This framework involves training clusters of clients during each
round of FL training. PFL approaches based on multi-task learning, model interpolation,
and transfer learning build a model for each individual client through the FL process. The

MOCHA algorithm was proposed as a personalization method for combining distributed



multi-task learning and FL [42]. The model interpolation method [43] was proposed to
handle the trade-off between a globally learned model and locally learned models with an
adjustable penalty parameter. Transfer-learning-based approaches [44,45] aim to transfer

the globally trained knowledge to the local models of individual clients through fine-tuning.

2.3 Federated Learning with Medical Data

FL has gained increasing attention in the medical field for its ability to enable machine
learning in a distributed environment without sharing raw data. Moreover, the need for
generalizable and robust models is another factor that motivates the interest in FL in
medical data [17]. Various studies have applied FedAvg and other methods of FL on
medical data. However, most research topics focused on HFL settings. There are only few
works done in terms of VFL in its applications in medical data [46]. Although the vertical
data problem is a domain agnostic problem, there are cases where different medical data
for a patient are split throughout clinical institutions. Vepakomma et al. (2018) presented
split learning algorithm as a possible framework for vertical learning in the healthcare
sector [47]. However, the limitation is that this study does not utilize medical data. Further

research in VFL in medical data is required and PPFL aims to target this issue.



Chapter 3

Method

We proposed a PPFL algorithm for achieving client-specific personalized inferences on
data heterogeneity and non-IID data settings. PPFL also addresses the limited information
availability of FL design by leveraging not only common features but also client-specific
vertical features across distributed clients. Figure 3.1 shows the overview of our proposed
framework. The proposed process involves two major steps. First, we built a horizontal
federated model (HFL) on a central server using only the common features of the client
from the distributed clients. Second, the pre-trained horizontal federated model was
deployed for each client, learning personalized knowledge for client-specific inference
tasks through a personalized progressive network (PersonalizedNet). The PersonalizedNet
considers both a horizontal FL network (HorizontalNet), which receives input as weights
from a globally trained model based on the common features of the client, and a vertical

network (VerticalNet), which learns the specific feature of the client.



Client I's | | Client 2's Client 3's
Common feature set Common feature set Common feature set b ‘Common feature set

Horizontal Federated Learning

PersonalizedNet
[ HorizontalNet ] [ VerticalNet ]

Non-trainable weight i for PPFL

Trainable weight connections for PPFL

Client I's I Client 1's specific
Common feature set Vertical feature set

Client 2's Client 2°s speeific
Common feature set Vertical feature set
Client 3's Client 3’s specific
Common feature set Vertical feature set

Client K's Client K’s specific
Common feature set Vertical feature set

Figure 3.1: Overview of the PPFL framework

3.1 Problem Formulation

This study aims to solve the case where the features of each client are common and

client-specific cases exist (Figure 3.2 A). All common feature information should be shared

m(

k sk yk)
i=1

among clients. Suppose that an individual client k has a dataset Dy, := {xl , S0,V

consisting of m®) samples, where the client k € X := {1, ..., K}. The i-th sample of Dy

can be represented using a common feature vector with p -dimension x¥ :=

{xil (k),xi2 (k),..., xip (k)}; the client’s specific vertical feature vector with g-dimension

sﬁ‘ = {si1 (k),si2 (k),..., siq(k)}, and the corresponding target variable y{‘. Note that the

attributes and dimension p® of the common feature vector x¥ are identical for all clients
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Figure 3.2: Problem setting and network architecture of the PPFL

k € K. However, the attributes and dimension g of the client’s specific vertical feature

vector s¥ may not be the same for all clients.

3.2 Horizontal Federated Learning

A horizontal federated model learns global knowledge related to common features across
multiple clients in a federated manner. The proposed model is generic and can be applied
to other collaboratively aggregated method based on the deep-learning model. However, in
this study, we applied our algorithm to the FedAvg as a base method for building a
horizontal federated model because it is the most well-known and commonly used method.

FedAvg is an algorithm that aggregates the weight parameters of the models within each

client using weighted averaging. m is the total sample size of K clients. In addition,



fi(w) is the loss function of the prediction on example (x;,y;). Therefore, the objective

function for solving the empirical risk minimization is

Km0
min F(wc) = Z TFk(w"),

wCeR4

(1)
where F(w") = Z fi(@w®)

X;ED}

3.3 Personalized Progressive Federated Learning

PPFL contains three network columns: HorizontalNet, VerticalNet, and
PersonalizedNet. PPFL is a multi-model-based approach that generates differently for
every client at the deployment step and aims to solve the trade-off problem between
globally generalized knowledge and client-specific knowledge. Hence, we utilized the
concept of lateral connection in progressive neural networks [15], which is proposed for
leveraging transfer and avoiding catastrophic forgetting in multi-task learning. Figure 3.2

B shows the architecture of the PPFL model.

3.3.1 Horizontal Network

HorizontalNet, which is the first column of PPFL, is a network that is transferred from

the horizontal federated model. The internal weight parameters of the HorizontalNet

column @™ were initialized using parameter @ of the horizontal federated model

described in Section 2.2. This network column aims to pass generalized knowledge to

10



personalized networks with the common feature data of the client x¥ as input information.
Note that the internal weight matrix ™ in HorizontalNet, which is not connected with

PersonalizedNet, is “frozen” to train. However, the lateral weight parameter wclat, which
is the weight parameter between HorizontalNet and PersonalizedNet, can be updated using
an optimization algorithm. This approach avoids forgetting the generalized knowledge that
has already been learned. The hidden layers h{ in the HorizontalNet column for the

client’s common feature vector x; are computed using the internal weight parameter
cint .
w;  of the HorizontalNet as

ht,, = o (@§"hf +bf), where h§ = x*. 2)

The output values for the HorizontalNet hidden layers hj are transferred to
PersonalizedNet via the lateral weight parameter '™ without overlaying the original
internal weight parameter ™ of HorizontalNet. Therefore, the internal parameter of
HorizontalNet @™ is not a trainable weight parameter for retaining the globally learned

knowledge for the common feature space, and its lateral weight parameter " allows

the transfer of proper knowledge from hj to the personalizedNet layer hf.

11



3.3.2 Vertical Network

The second network column was the VerticalNet column. This network progressively
expanded the feature space with respect to the specific vertical features of the client. The
input of VerticalNet is the specific vertical feature data of the client s¥ € Dy. The weight
parameter ’™ is the internal weight parameter of VerticalNet, which is not connected to
PersonalizedNet. The lateral weight parameter w’'™ consists of the parameters of the
VerticalNet and PersonalizedNet columns. Both w”™ and w?'** can be learned through
the training step because these parameters are newly constructed to expand the feature
space and to connect with PersonalizedNet, which is the network column used for an

inference task. Thus, the internal weight parameter »”"" and lateral weight parameter

w”" learn client-specific vertical feature information and transmit their knowledge to

PersonalizedNet. The hidden layers hj in the VerticalNet column with respect to the

client-specific vertical feature s and internal weight parameter '™ are

vl‘l’lt

hl, =0 (wl hy + b}’) where h = sk 3)

3.3.3 Personalized Network

The PersonalizedNet layers learn the specific personalized knowledge of the client by
acquiring the value of HorizontalNet, VerticalNet, and its previous layer as inputs. The

computation between network columns is made possible through a lateral connection, the

12



. lat lat . lat
parameters of which, w¢ and @V ", are lateral weight parameters. Therefore, w®  and

@’ determine the amount of activation of the globally learned common feature
information and vertical feature information within the client, respectively. Its internal
parameters w? are the internal weight parameters used to mix the information from both
HorizontalNet and VerticalNet and learn more complex information to achieve the
inference tasks of individual clients. The hidden layers hf in the PersonalizedNet column

are computed using Equation (4).

P _ clat ¢ viat g P pp p
hj,, =0 (wz+1 hii, + oy hiyy + @y by +b; 4

Note that the proposed method can be applied even in the absence of client-specific
vertical features. In this case, the hidden layer of a personalized progressive network is

expressed as

clat

h?+1 =0 (“’l+1 hii, + “’?+1h?+1+b?)' (%)

Algorithm 1 Learning procedure of horizontal federated model

Input: The Dataset Dfo™mon := {(x{-‘,yik)}:zkl,where client k € K :={1,..K}; is the local
mini-batch size, £ is the number of local epochs, and 7 is the learning rate.

Output: The horizontal federated model C and its weight parameter w*

1: Central server execute:

2:  Construct the horizontal federated model C and initialize its weight parameter w®

3: for eachroundt=0,1,2 ... ,Ndo

4

Randomly set the S; from the clients with the number of m « max(S - K, 1), where
0<sS <1
5: for cach client k € S; in parallel do

13



6: w¥, « ClientCommonUpdate(k, w,; x})

7: end for
K
m
&: Wiy < Z _kwfﬂ
k=1 M
9: end for

10:  return w® to all clients

11: ClientCommonUpdate(k, *; x;, y;) : //Run on client k
12: B « (split DE°™™°™ into batches of size B)
13:  for each local epoch e from 1 to E do

14: for batch b € B do
w**! « gradientdescent(w”; £,17;b)
15: end for

16: end for
17:  return oo’,f+1 to central server

Algorithm 2 Learning procedure of personalized progressive federated learning model

0
Input: The Dataset D, := {(x¥, (s¥), yl")}zl ,where client k € K :={1,..K}; BP is the

local mini-batch size for personalization, E” is the number of epochs for personalization,
and nP is the learning rate for personalization
Output: The personalized progressive FL model P
Client execute: // Run on specific client k
Receive the w® from central server
B « (split Dy into batches of size BP)

if client k has client-specific vertical feature s* then

else
P « PersonalizedVertical (x¥)

1
2
3
4
5: P « PersonalizedVertical(x¥, s*)
6
7
8 end if

9:  PersonalizedVertical(x¥, s¥)
10:  Construct the PPFL model

int lat int lat
P« f(@™, 0", "™, 0", wP; x*, s%)

int .. int
¢ to w°, and freeze the training of w°

clat pint plat
) ) ’

11:  initialize w

12: initialize w w w?P
13:  for each personalization epoch e from 1 to E? do

14: for batch bP? € B do

14



15: (@i, WY, 02T, @0, )
«— gradientdescent(wglat, wg“”, w‘;lat, wé’; £,nP; bP)

16: end for
17:  end for
18:  return the PPFL model P
19: PersonalizedCommon(x¥)
20:  Construct the PPFL model

P f(wcint, wclat,wp;xk)
21:  initialize W™ to w°,and freeze the training of w®™
22:  initialize @', w?
23:  for each personalization epoch ¢ from 1 to EP do
24: for batch b? € B do
25: (WS, w?,,) « gradientdescent((w", w?; £,77;bP)
26: end for
27: end for

28: return the PPFL model P

The algorithms for building the horizontal federated model and PPFL models are

The algorithms for building the horizontal federated model and PPFL models are
presented in Algorithms 1 and 2, respectively. In Algorithm 1, the input is a common
feature vector from the participating clients and target variables. As an output of Algorithm
1, the horizontal federated model can be learned using common feature information from
the participating clients in the FL. The outputs of Algorithm 1 and the dataset, including
common features, vertical features, and target variables from the participating clients, are
the inputs of Algorithm 2. Subsequently, the PPFL model, consisting of the HorizontalNet,

VerticalNet, and PersonalizedNet columns, is generated for each client. The HorizontalNet

column of the PPFL model @™ is initialized using the weight parameter w¢ from the

horizontal federated model. The input is a common feature vector and a client-specific

15



vertical feature vector from the individual client and target variables. The weight parameter

Cln

™ of the HorizontalNet column are frozen to retain globally learned knowledge related

to common features, where w’"is the internal weight parameter of VerticalNet for client-
specific vertical features. The lateral weight parameters 0" and @’ transmit
knowledge of layer-wise network columns, including HorizontalNet and VerticalNet,
respectively. The PersonalizedNet weight parameter wP allows learning of more complex
information from the PersonalizedNet layer h? , which receives the values of h{ and hY
. As an output for Algorithm 2, these parameters can be learned using optimization methods
such as gradient descent optimization algorithms [18]. Through this process, the proposed
model can be personalized, except for the VerticalNet column, if there are no client-specific

vertical features.

16



Chapter 4

Experiments

4.1 Study Design

To validate the performance of our model on specific datasets in the medical domain, we
compared the combinations of input data from the Physionet Challenge 2012 [19], eICU
data [20], and HICU data from Severance Hospital, Seoul, Korea to evaluate the
performance of the PPFL algorithm. Details of the data are provided in the data section.

We compared PPFL with the models described below. (x) indicates that the model has
learned only the common feature space, and (x, s) indicates the model has learned both

common features and client-specific vertical features.

e FedAvg (x): HorizontalNet learned by the FedAvg algorithm with common features.

e  FedProx (x): HorizontalNet learned by the FedProx algorithm with common features.

e  PPFL (x): The PPFL model learns on individual clients by leveraging only common
features.

e  PPFL (x, 5): The PPFL model learns on individual clients by leveraging both common
features and client-specific vertical features.

e Local (x): Multi-layer perceptron (MLP) models learned only from common feature

data of a specific client.
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e Local (x, s): MLP models learned from both common and vertical feature data for a

specific client.

We divided the training, validation, and test datasets in the ratio of 6:2:2 for each client
participating in PPFL training. The validation dataset was used to search for
hyperparameters using a random-search algorithm. We optimized the weight parameters of
the models by stochastic gradient descent using the Adam optimizer [21]. We utilized the
cross-entropy loss as a loss function for the application of our proposed and comparison
models to binary classification. For hyperparameter tuning, 100 epochs were set for local
training in federated learning, and 30 rounds were used to aggregate the local models.

We implemented them while providing accuracy and an area under the receiver operating
characteristic (AUROC) score for each ICU client to demonstrate the performance
improvement for individual clients and the robustness of the unseen distribution for the

proposed model.

4.2 Dataset

The performance of the PPFL model was evaluated on two datasets: (1) a public EMR
dataset called Physionet Challenge 2012 [19] and (2) a distributed ICU dataset from four
types of ICUs from 208 institutions from the eICU [20] and Severance Hospital in South
Korea. First, the Physionet Challenge 2012, which was extracted from the MIMIC-II

database [22], consists of information regarding 8,000 ICU patients. These records
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contained 36 time-series features (i.e., laboratory tests, vital signs, and mechanical
ventilation) and five demographic features, including ICU-type information. In this study,
we aggregated ICU information for 48 h in an average manner because we did not focus
on time-series data. Each ICU, with a total of 6,000 samples, was considered an individual
client. Coronary care unit (CCU), cardiac surgery recovery unit (CSRU), medical ICU
(MICU), and surgical ICU (SICU) retained 889, 1,219, 2,216, 1,676, and 2,000 ICU stay
samples, respectively. The remaining 2,000 samples were used as external ICUs,
configured without client separation. The external ICU was not used during the PPFL
training. In this dataset, we assumed that the common feature set comprised demographic
and mechanical ventilation information. In contrast, client-specific vertical features
comprised vital signs and laboratory tests for all clients. The description of data distribution
by the ICU for common features of the Physionet Challenge 2012 data set is presented in
Supplementary Table 1-3.

Second, the distributed ICU dataset was composed of the eICU dataset [20] and
Severance Hospital in Seoul, Korea, to predict in-hospital mortality. From the eICU (208
hospitals), 14,550 patients admitted to the MICU and 10,664 patients from the SICU were
selected. From the Severance Hospital, 5,306 patients admitted to the high ICU (HICU)
were selected. For external validation, we selected 12,706 patients from the neuro-surgical
ICU (NSICU) from the eICU dataset. We identified 14 common features for each ICU, and
different client-specific features were selected for each client using an L1-based feature

selection method that utilizes linear models with an L1 penalty (L1-norm) added to the loss
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function [23]. The description of data distribution by the ICU for common features of the
distributed ICU dataset is presented in Supplementary Table 4. This study was approved
by the Institutional Review Board of Severance Hospital (IRB approval no. “4-2021-

0820”).

4.2 Experiment Details

PPFL performance was evaluated using the Physionet Challenge 2012 dataset from
CCU, CSRU, MICU, and SICU. Each ICU was selected as an independent client. For each
client, we compared the performance of FedAvg (x), PPFL (x), PPFL (x, s), Local (x), and
Local (x, s) for both internal and external validations. Internal performance was measured
using a test set from a local client. For external validation, we used 2,000 samples that were
set aside when partitioning ICU data. We evaluated the performance of binary
classifications for the following two cases: in-hospital mortality as a binary class (dead or
alive) and length of stay as a binary class for more than seven days after 48 h of ICU
admission.

We computed feature importance using the SHAP value computed by Deep SHAP to
investigate the concept shift after the application of PPFL [24]. SHAP is a method used for
computing the value of a data instance. Deep SHAP approximates the SHAP value using
DeepLIFT [25].

We compared the loss of in-hospital mortality prediction tasks while training PPFL (x)

and PPFL (x, s) with transfer learning to evaluate the effects of the personalizing
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mechanism on PPFL. We simulated PPFL in two ways. First, we compared the loss of
PPFL (x) and PPFL (x) without freezing FedAvg (x) and transfer learning for each training
epoch to evaluate personalized learning in a horizontal data environment. Additionally, we
compared PPFL (x, s) with PPFL (x, s) without freezing and transfer learning to evaluate
the effects of personalized learning in the presence of the client-specific vertical features.
Moreover, we conducted a performance comparison with distributed ICU dataset to
evaluate the effectiveness of PPFL and the performance of the PPFL in an extreme data
environment. We compared the performance of the local models (x) and (x, s) and FedAvg
(x) with PPFL (x) and PPFL (x, s). The task was to predict in-hospital mortality. The

training and evaluation details were the same as those described in the study design section.
4.3 Experiment Setting

All experimental settings were implemented using TensorFlow 2.5.0 [26]. The models
were trained on a machine equipped with two NVIDIA QUADRO RTX 8000 CUDA 11.0,

128 GB memory and one Intel Xeon Platinum 8253 2.2 GHz CPU.
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Chapter 5

Results

5.1 Performance Evaluation

PPFL (x, s) showed the highest performance for every ICU client on external validation.
The PPFL(x) showed an average of 0.790 AUROC for the in-hospital mortality task and
0.808 AUROC for the length of the stay task (Figures 5.1 A and 5.1 B, respectively).
Where FedAvg(x) and FedProx(x) showed performance (AUROC) by 0.616 and 0.615 in
mortality prediction, respectively. In addition, PPFL(x, s) higher performance than
FedAvg(x) and FedProx(x) both in hospital mortality and length of stay prediction. The
average AUROC of FedAvg(x) was 0.643 and 0.643 for FedProx(x) in length of stay
prediction. Compared with Local(x, s), PPFL (x, s) show that all AUROC performances of
PPFL(x, s) outperform in external validations. The average AUROC for local(x, s) in
external validation was 0.743 in in hospital mortality prediction, and 0.773 in length of stay
prediction. In average, PPFL(x, s) showed higher performance than local(x, s) models in
external validation(Figure 5.1 A, Figure 5.1 B, Supplementary Table 5). Comparing the
average AUROC of PPFL(x, s) to Local(x, s) in Figure 2C and Figure 2D, our model
showed higher performance in in hospital mortality task. However, in length of stay
prediction, the SICU showed 0.865, which was higher than the average AUROC
performance than PPFL(x, s). Overall, PPFL(x, s) showed the highest AUROC compared

to other local model(x, s) in average (Figure 5.1 C, Figure 5.1 D). Figures 5.2 shows the
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Figure 5.1: Performance evaluation on Physionet 2012. PPFl was evaluated
compared to FedAvg (x), FedProx (x), Local (x), and Local (x, s) in terms of AUROC
on external validation. PPFL (x, s) shows the highest score in every task. A. AUROC
comparison for in-hospital mortality prediction task. B. AUROC score comparison for the
length of stay prediction task. C. AUROC score compared for each ICUs for in-hospital
mortality prediction task among Local (x, s), PPFL (x, s), and FedAvg (x) D. AUROC
score compared for each ICUs for the length of stay (>7) prediction task among Local (x,
s), PPFL (X, s), FedProx (x), and FedAvg (x).

contributions of common and vertical features for all clients in predicting in-hospital
mortality. Within common features, age and mechanical ventilation (MechVent) features

had the highest shape value in all clients (age was 0.5 or more in all clients and MechVent
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Figure 5.2: Mean absolute SHAP values of common and vertical features in
predicting in-hospital mortality. A. SHAP values in common features. B. top 10
highest SHAP value features with vertical features.

was 0.3 or more in three clients). Among the vertical features, the Glasgow Coma Scale
(GCS) had the highest shape value for all clients (0.025 or higher for all clients).
Mechanical ventilation still had a high ranking for CCU and SICU.

We also compared FedAvg (x) to PPFL (x, s) to evaluate whether leveraging client
specific features shows high performance. PPFL (x, s) showed higher performance than
FedAvg (x) (Supplementary Table 6). For the MICU, the SHAP value for MechVent was
not lower than those of the other clients. However, in terms of vertical features, vital signs,
such as GCS, blood urea nitrogen, fraction of inspired oxygen, heart rate, and absolute

blood pressure, have higher SHAP values than those for mechanical ventilation.

5.2 Effectiveness of Progressive Model

Figure 5.3 shows the results of the cross-entropy loss for the mortality prediction task

for the personalized models for each client. The loss was evaluated by an external client
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Figure 5.3: Loss comparison of the PPFL, PPFL without freezing and transfer
in each client using common features. Client-1: CCU, Client-2: CSRU, Client-3:
MICU, Client-4: SICU
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Figure 5.4: Loss comparison of the PPFL and PPFL without freezing
using common and client-specific vertical features. Client-1: CCU, Client-2:
CSRU, Client- 3: MICU, Client-4: SICU

during the training process. The loss without a weight freeze (green line) and the loss
without a personalized progressive network (blue line) increased as the number of epochs
increased compared with the loss of PPFL (x). We also observed a loss increase in PPFL
(x, s) without a weight freeze compared with PPFL (x, s) with a loss freeze (Figure 5.4). In
this comparison, we observed that: (1) Personalizing through simple transfer learning to
HorizontalNet (x) makes unstable the learning procedure related to loss. (2) Personalizing
using PPFL without freezing the internal parameters of HorizontalNet also makes unstable
the learning procedure. (3) The proposed PPFL method showed a continuous decrease in
loss compared to comparison models. (4) This improvement was more effectively observed

as the client-specific distribution became increasing different
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5.3 Performance Evaluation Using Real-World Clinical Data
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Figure 5.5: Performance evaluation on real-world clinical data. PPFL was evaluated
compared to FedAvg, FedProx, and local models using real-world data in terms of
AUROC. PPFL (x, s) shows the highest score in every task A. AUROC comparison
for in-hospital mortality prediction task. B. AUROC score compared for each ICUs
for in-hospital mortality prediction task.

In the performance evaluation of the actual experiment, PPFL(x, s) showed the highest
score, with an accuracy of 0.939 and AUROC of 0.934 (Figure 5.5 A and Supplementary
Table 7). In most ICU clients, PPFL (x, s) shows the highest AUROC, except for HICU.
In the HICU, PPFL (x) showed the highest performance, with an AUROC of 0.892 and
accuracy of 0.932 (Supplementary Table 7), which were 0.1% and 0.3% higher than that

of PPFL (x, s), respectively. Compared with the models Local (x, s), FedAvg (x), and
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FedProx (x), the AUROC values of the PPFL (x, s) model for predicting in-hospital
mortality improved in the internal assessments (Figure 5.5 B). FedAvg (x) showed an
average AUROC of 0.722, and FedProx (x) performed 0.663 which was the lowest score
in all models. However, PPFL (x, s) performed 0.935 in average. Figure 5.5 B shows that
the local models show higher performance than FedAvg (x), while PPFL (x, s) achieves
the highest AUROC. In addition, the AUROC increases for all clients as the number of
clients increases. In external evaluation with NSICU from the eICU dataset, PPFL (x, s)

showed an AUROC of 0.948, which was 3.1% higher than that of the Local (x, s) model.
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Chapter 6

Discussion

The usage of federated learning in analyzing distributed medical data is a well-known
research topic [17, 27]. Therefore, research on federated learning that can potentially
protect data privacy has been conducted in various medical fields [28]. However, most
current studies consider learning common features among clients. In this study, we
proposed a personalized progressive federated learning (PPFL) algorithm for
heterogeneously distributed clients that expands the feature space for client-specific
vertical features. This study is the first federated learning study that considers common
features and client-specific vertical features by applying progressive learning. PPFL shows
a robust performance compared to other algorithms based on the comparison of PPFL with
existing federated learning models and local models in various settings.

Compared to FedAvg, which is suitable for a horizontally partitioned data environment
[3-9], PPFL is a novel federated learning framework that leverages the idea of progressive
learning to perform learning in both horizontally and vertically partitioned environments.
PPFL can utilize more features and samples than other models (Figure 5.1, Supplementary
Table 5, Figure 5.5), resulting in better performance compared to existing local and
federated learning models. For example, FedAvg and FedProx have a limited feature space
because only the common features from multiple clients are input into the model in terms

of its structure. The local model uses only the sample of each client; thus, the number of
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samples is inevitably smaller than that of the PPFL input dataset. PPFL demonstrated a
higher performance than the existing model by inputting all the collected features and
samples of multi-clients.

A learning weight based on a common feature is delivered to each client, and the effect
of transfer learning is confirmed by running the delivered running weight and vertical
feature together (Figure 5.3, Figure 5.4, and Supplementary Table 5). Wang et al. reported
that client transfer learning is effective in learning client-specific features [29]. The
effectiveness of the proposed model is the greatest for clients who are significantly different
from the overall data distribution since CSRU has the most different label distribution from
an external client and the most severe class imbalance problem.

In addition, an important known problem of federated learning is the unstable
convergence of weights and performance degradation in heterogeneous data environments
[14, 30]. In this study, the PPFL model showed stable convergence of loss in a
heterogeneous multi-client environment compared to transfer learning (Figure 5.3 and
Figure 5.4).

For all internal validations of the clients, except for the in-hospital mortality task for
some clients, HorizontalNet(x), learned through FedAvg, exhibits a degraded performance
compared to that with Local(x). Previous studies have confirmed that FL performance may
decrease when the distribution among clients is heterogeneous [13, 14]. Additionally, the
data we tested was statistically significant heterogeneous across clients (Supplementary

Table 1). We found that the hospital stay of SICU patients was significantly longer than
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that of other ICU patients (Supplementary Table 1). Moreover, we found that the
performance of the local(x) model using only local data was higher than our proposed
PPFL(x, s) (Figure 5.1 D). This indicates that extreme data heterogeneity in FL can lead to
lower performance than that of local models. However, we emphasize that our model still
outperforms FedAvg and FedProx, and the performance difference with the local model
(SICU) is negligible.

Although client-specific vertical features contain more information, our proposed model
is effective in terms of robustness. This shows that PPFL is robust to the global knowledge
forgetting problem in the personalization process of the FL models. Since there are few
studies conducted with real-world data scenarios on federating learning and demands on
experiments using real-world data are emphasized [30, 31], this is the first study to use real-
world clinical data from multiple ICU clients from different countries. In this study, real-
world data considering all ICU features showed higher performance compared to the
Physionet challenge 2012 dataset with limited features. This is the rationale for PPFL to
become a clinically applicable algorithm.

Federated Learning generally performs better in terms of privacy than local models.
Yang et al. (2019) reports possibility of indirect privacy leakage in FL systems [2]. Since
PPFL utilizes horizontal features in the training process, the client specific features are
secure, having advantage than other FL algorithms. Indirect data leakage may occur only

in the horizontal features. However, the client specific vertical features progressively
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learned in each client are safe from any direct or indirect privacy leakage compared to other
FL frameworks.

Our study has several limitations. First, there is little difference in the computing time
and resources when verifying the PPFL in the same network bandwidth. However,
additional research on the computation time and resources between physically distant
networks is required for multi-client from multi-country studies. Second, this PPFL
algorithm was written assuming that information on the features of multiple clients is
shared; however, information about common and vertical features of each client may not
be provided in the real world. Research on an automatic feature selection process based on
the characteristics of input data among the features of multiple clients is essential. Third,
Yang et al. (2019) reported that there is a possibility of indirect privacy leakage to raw
federated learning systems [2]. We plan to further our studies in strengthening PPFL from
these issues. Fourth, although only MLP modules based on linear layer have been applied
to the PPFL framework in this study, we will also apply them to other neural network

structures such as sequential-based layers in future studies.
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Chapter 7
Conclusion

We proposed the PPFL algorithm to personalize federated algorithms for
heterogeneously distributed clients and expand the feature space for client-specific vertical
feature information. Moreover, we investigated the performance improvement and
robustness of our proposed model using real-world EHR data and validated the usefulness
of the model. Our model showed higher performance than FedAvg and FedProx. We plan

to further our studies in improving the PPFL compared to other models in FL.
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Appendix

CCU CSRU MICU SICU External P-
ICU value
(n = 889) (n=1,219) (n=2,216) (n = 1,676) (n = 2,000)

Age 69.4 (14.6) 67.6 (13.1) 63.5 (18.1) 60.3 (19.3) 64.1 (12.2)  <0.001
Gender Female 357 (40.2) 453 (35.8) 1075 (50.1) 706 (41.6) 241 (45.2) <0.001
Male 531 (59.8) 812 (64.2) 1070 (49.9) 992 (58.4) 292 (54.8)
Height 170.6 (17.8)  169.9 (10.5) 168.3 (19.7) 170.1 (17.3) 1693 (232)  <0.001
Weight 80.7 (21.8) 87.4 (20.0) 82.3 (27.2) 83.0 (25.8) 81.9 (23.3) < 0.001
In-hospital Alive 773 (87.0) 1205 (95.2) 1724 (80.3) 1457 (85.8) 453 (85.0) < 0.001
death
Death 115 (13.0) 61 (4.8) 423 (19.7) 242 (14.2) 80 (15.0)
Length of stay <7 396 (44.6) 455 (35.9) 801 (37.3) 453 (26.7) 189 (35.5) <0.001
days
>7 492 (55.4) 811 (64.1) 1346 (62.7) 1246 (73.3) 344 (64.5)
days

* One-way analysis of variance (ANOVA) for continuous features; y>-test for categorical features.

Supplementary Table 1: Description of data distribution by icu for common variables of
Physionet Challenge 2012

In hospital mortality

Client Client-specific vertical features

1 DiasAB Pa0O2 pH SysABP Lactate HR Sa02 Bilirubi ALP Platelets
CCU P n

2 Na Albumi PaO2 FiO2 Sa02 Urine pH Lactate Creatini SysABP
CSRU n ne

3 PaCO2 Temp Na K Pa0O2 Creatini HCT SysABP Bilirubi pH
MICU ne n

4 pH HCT MAP SysABP Albumi Mg Platelets DiasAB K FiO2
SICU n P

Supplementary Table 2: Selected client-specific vertical features of Physionet 2012
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No. | Cite name Feature name Description
1 | Common feature | Age Patient age on initial visit.
2 | Common feature | Gender Patient’s biological sex.
3 | Common feature | Height Patient’s height on initial visit.
4 | Common feature | Weight Patient’s weight on initial visit.
5 | Common feature | In Hospital | Whether the patient died during admitted in
Death hospital.
6 | Common feature | Length of Stay | Patient’s length of stay at ICU.
7 | CcCU DiasABP Patient’s diastolic blood pressure.
8 | CCU Na Sodium ion concentration in vein.
9 | CCU Albumin Albumin concentration in vein.
10 | CCU Pa02 Partial pressure of Oxygen in arterial blood.
11 | CCU pH Hydrogen ion concentration in vein.
12 | CCU SysABP Patient’s systolic blood pressure.
13 | CCU Lactate Lactate concentration in vein.
14 | CCU HR Patient’s Heart rate.
15 | CCU Sa02 Oxygen saturation in arterial blood.
16 | CCU Bilirubin Bilirubin concentration in vein.
17 | CCU ALP Alkaline Phosphatase concentration in vein.
18 | CCU Platelet Platelet counts in vein.
19 | CSRU Na Sodium ion concentration in vein.
20 | CSRU Albumin Albumin concentration in vein.
21 | CSRU Pa02 Partial pressure of Oxygen in arterial blood.
22 | CSRU Fi02 Fraction of inspired oxygen.
23 | CSRU Sa02 Oxygen saturation in arterial blood.
24 | CSRU Urine Total urine output during first visit.
25 | CSRU pH Hydrogen ion concentration in vein.
26 | CSRU Lactate Lactate concentration in vein.
27 | CSRU Creatinine Creatinine saturation in vein.
28 | CSRU SysABP Patient’s systolic blood pressure.
29 | MICU PaCO2 Partial pressure of carbon dioxide in arterial blood.
30 | MICU Temp Patient’s temperature on initial visit.
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31 | MICU Na Sodium ion concentration in vein

32 | MICU K Potassium ion concentraion in vein

33 | MICU Pa02 Partial pressure of Oxygen in arterial blood.

34 | MICU Creatinine Creatinine concentration in vein.

35 | MICU HCT Hematocrit in vein. Measures the proportion of red
blood cells in blood.

36 | MICU SysABP Patient’s systolic blood pressure.

37 | MICU Bilirubin Bilirubin concentration in vein.

38 | MICU pH Hydrogen ion concentration in vein.

39 | SICU pH Hydrogen ion concentration in vein.

40 | SICU HCT Hematocrit in vein. Measures the proportion of red
blood cells in blood.

41 | SICU MAP Mean arterial blood pressure.

42 | SICU SysABP Patient’s systolic blood pressure.

43 | SICU Albumin Albumin concentration in vein.

44 | SICU Mg Magnesium ion concentration in vein.

45 | SICU Platelet Platelet counts in vein.

46 | SICU DiasABP Patient’s diastolic blood pressure.

47 | SICU K Potassium ion concentration in vein.

48 | SICU FiO2 Fraction of inspired oxygen.

Supplementary Table 3: Description of the common and client-specific vertical features of

Physionet Challenge 2012
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No. | Cite name Feature name Description
1 Common feature RBC Count Red blood cell count from vein.
2 Common feature Weight Body weight on initial visit.
3 Common feature temperature Body temperature on initial visit.
4 Common feature Bun Blood Urea Nitrogen from urine.
5 Common feature Creatinine Creatinine from urine.
6 Common feature Het Hematocrit from vein.
7 Common feature Sodium Sodium concentraion in vein.
8 Common feature Gender Biological sex.
9 Common feature Respiratoryrate Respiratory rate on initial visit.
10 | Common feature Height Height on initial visit.
11 | Common feature Heartrate Heartrate on initial visit.
12 | Common feature Age Patient’s age on initial visit.
13 | Severance HICU PLT Count Platelet count from vein.
14 | Severance HICU Height Z Patient’s height on normal distribution.
15 | Severance HICU Height P Patient’s height scaled on some distribution.
16 | Severance HICU Eosinophil (%) Eosinophil percentage among other white blood cells in vein.
17 | Severance HICU Basophil (%) Basophil percentage among other white blood cells in vein.
18 | Severance HICU Weight Z Patient Weight on Z test.
19 | Severance HICU Monocyte (%) Monocyte percentage among other white blood cells in vein.
20 | Severance HICU Neutrophil (%) Neutrophil percentage among other blood cells in vein.
21 | Severance HICU foreign Whether a patient is a foreigner.
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22 | Severance HICU Body surface area Body surface area of a patient.

23 | Severance HICU Cl Chloride evaluated on vein.

24 | Severance HICU Weight P Patient’s weight scaled on some distribution.

25 | Severance HICU Hemoglobin Hemoglobin count on vein.

26 | Severance HICU Albumin Albumin concentration in vein.

27 | Severance HICU Total protein Total protein amount in vein.

28 | Severance HICU FiO2 Fraction of inspired O2.

29 | Severance HICU GCS Glasgow Coma Scale on initial visit.

30 | Severance HICU pH Hydrogen ion concentration in water.

31 | Severance HICU Anion gap Difference between positively charged ions.

32 | Severance HICU vent Whether the patient used a ventilator.

33 | Severance HICU Bicarbonate Bicarbonate concentration in vein.

34 | Severance HICU NARCAN Brand name for Naloxone HCL.

35 | Severance HICU VANCOMYCIN Vancomycin injection through intravenous route.
HCL 1000 MG 1V
SOLR

36 | eICU MICU PANTOPRAZOLE Patient prescribed with Pantoprazole tablet through oral
SODIUM 40 MG PO | administration.
TEBEC

37 | eICU MICU 1000 ML  FLEX | Patient prescribed with Sodium chloride injection through
CONT SODIUM | intravenous route.
CHLORIDE 0.9 % IV
SOLN

38 | eICU MICU POTASSIUM Potassium chloride through oral administration.

CHLORIDE CRYS
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ER 20 MEQ POP
TBCR

39 | eICU MICU Albumin Albumin concentration in vein.

40 | eICU MICU fi0o2 Fraction of inspired O2.

41 | eICU MICU Bicarbonate Bicarbonate concentration in vein.

42 | eICU MICU GCS Glasgow Coma Scale on initial visit.

43 | eICU MICU Anion gap Difference between positively charged ions.

44 | eICU MICU Vent Whether the patient used a ventilator.

45 | eICU MICU DEXTROSE  50%- | Patient prescribed with Water with 50% of dextrose.
WATER

46 | eICU MICU SODIUM Patient prescribed with sodium chloride 0.9%.
CHLORIDE 0.9%

47 | eICU MICU METOPROLOL Patient prescribed with Metoprolol 25MG tablet through oral
TARTRATE 25 MG | administration.
PO TABS

48 | eICU SICU PANTOPRAZOLE Patient prescribed with Pantoprazole tablet through oral
SODIUM 40 MG PO | administration.
TBEC

49 | eICU SICU OXYCODONE Patient prescribed with Oxycodone tablet through oral

administration.

50 | eICU SICU ACETAMINOPHEN | Patient prescribed with acetoaminophen tablet through oral
5,325 MG PO TABS administration.

51 | eICU SICU POTASSIUM Patient prescribed with Potassium chloride tablet through oral
CHLORIDE CRYS | administration.
ER 20 MEQ PO
TBCR

52 | eICU SICU DOCUSATE Patient prescribed with docustate sodium 100MG tablet

SODIUM 100 MG PO
CAPS

through oral administration.
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53 | eICU SICU ZOFRAN Patient prescribed with ZOFRAN.

54 | eICU SICU LORazepam Patient prescribed with Lorazepam.

55 | eICU NSICU Albumin Albumin concentration in vein.

56 | eICU NSICU Hospitaldischargeyear | Patient’s hospital discharge year.

57 | eICU NSICU fi02 Fraction of inspired O2.

58 | eICU NSICU GCS Glasgow Coma Scale on initial visit.

59 | eICU NSICU ACETAMINOPHEN | Patient prescribed with Acetaminophen 650MG.
650 MG RE SUPP

60 | eICU NSICU Vent Whether the patient used a ventilator.

61 | eICUNSICU PANTOPRAZOLE Patient prescribed with Pantoprazole tablet through intravenous
SODIUM 40 MG 1V | route.
SOLR

62 | eICU NSICU LEVETIRACETAM Patient prescribed with Levetiracetam tablet through oral
500 MG PO TABS administration.

Supplementary Table 4: Selected features for real-world clinical data validation.
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In hospital mortality Length of stay ( >7)

Internal External Internal External
Client Model Acc. AUROC  Acc. AUROC Acc. AUROC  Acc. AUROC
FedAvg (x) 0.857 0.671  0.818 0.616 0.650 0.690 0710  0.643
FedProx (x) 0.861 0.766  0.835 0.615 0.539 0.628  0.647  0.604
| ccu PPFL (x) 0.862 0.773  0.860  0.640 0.862 0715 0860  0.671
PPFL (x,s)  0.879 0.827  0.845 0.803 0.871 0.853  0.862 0.861
Local (x) 0.860 0.657  0.823 0.598 0.852 0.803 0839  0.636
Local (x, s) 0.871 0.810  0.835 0.781 0.864 0.822 0847  0.792
FedAvg (x) 0.951 0.614  0.818 0.616 0.535 0.661 0.710  0.643
FedProx (x) 0.944 0.638  0.835 0.615 0.640 0.548  0.647  0.604
> csry  PPFL (O 0.937 0.643 0814 0617 0.923 0.690 0816  0.625
PPFL (x,s)  0.954 0.873  0.836 0.762 0.954 0.833  0.856  0.719
Local (x) 0.952 0.635 0818  0.576 0.927 0.691  0.851 0.596
Local (x, s) 0.926 0.824 0818  0.671 0.931 0.714 0.860 0.710
FedAvg (x) 0.809 0.616  0.818 0.616 0.640 0.593 0.710  0.643
FedProx (x) 0.809 0.557  0.835 0.615 0.616 0.610  0.647  0.604
3 micu TPFL ) 0.812 0.643  0.820 0.655 0.815 0.643 0.860  0.703
PPFL (x,s)  0.815 0715 0.847 0.789 0.864 0.695  0.868 0.779
Local (x) 0.809 0.631 0818  0.604 0.805 0.619 0860  0.619
Local (x, s) 0.818 0.709  0.841 0.765 0.805 0.690 0852  0.722
FedAvg (x) 0.833 0.659  0.818 0.616 0.643 0.617 0710  0.643
FedProx (x) 0.855 0.561  0.835 0.615 0.734 0.583 0.647  0.604
4 sicy PPFL () 0.855 0.672  0.860  0.648 0.851 0.689 0860  0.659
PPFL (x, s) 0.860 0.835  0.867 0.807 0.856 0.853  0.86¢4  0.873
Local (x) 0.803 0.665 0818  0.622 0.741 0.692 0858  0.657
Local (x, s) 0.846 0792  0.862  0.764 0.851 0.796  0.871 0.865
FedAvg (x) 0.863 0.64 0.818  0.616 0.617 0.640 0710  0.643
FedProx (x) 0.867 0.631  0.835 0.615 0.632 0.592  0.647  0.604
PPFL (x) 0.867 0.683  0.839 0.64 0.863 0.684 0849  0.665
Average
PPFL (x, s) 0.877 0.813 0.849 0.790 0.886 0.809  0.863 0.808
Local (x) 0.856 0.647 0819  0.600 0.831 0.701 0852  0.627
Local (x, s) 0.866 0.784 0839  0.745 0.862 0.755  0.875 0.772

Supplementary Table 5: Performance evaluation on Physionet 2012. PPFL was evaluated
compared to FedAvg, FedProx, Local (using common features), Local (using common and specific
features) in internal and external validation.
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In hospital mortality

Internal External
Client Model Accuracy AUROC Accuracy AUROC
FedAvg (x) 0.857 0.671 0.818 0.616
ccu PPFL (x,8) 0.871 0.838 0.862 0.723
FedAvg (x) 0.951 0.614 0.818 0.616
CSRU PPFL (x,s) 0.954 0.847 0.861 0.760
FedAvg (x) 0.809 0.616 0.818 0.616
MICU PPFL (x,s) 0.805 0.774 0.860 0.745
FedAvg (x) 0.833 0.659 0.818 0.616
SIcU PPFL (x,s) 0.860 0.781 0.865 0.772

Supplementary Table 6: Internal and external validation of using client-specific
features in each client on Physionet 2012.
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In hospital mortality

client model Accuracy AUROC

Internal validation

FedAvg (x) 0.929 0.753

FedProx (x) 0.930 0.706

PPFL (x) 0.932 0.892

1. Sev-HICU Pt G o) o .

Local (x) 0.930 0.886

Local (x, s) 0.927 0.886

FedAvg (x) 0.812 0.697

FedProx (x) 0.870 0.756

PPFL (x) 0.867 0.785

2. eICU-MICU ot e s rors o
Local (x) 0.881 0.789

Local (x, s) 0.906 0.918

FedAvg (x) 0.890 0.747

FedProx (x) 0.911 0.693

PPFL (x) 0.916 0.790

3. eICU-SICU ot G o voen o
Local (x) 0.911 0.752

Local (x, s) 0.927 0.915
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External validation

FedAvg (x) 0.890 0.780
FedProx (x) 0.917 0.689
PPFL (x) 0.918 0.787
T PPFL (x, s) 0.941 0.948
Local (x) 0.915 0.765
Local (x, s) 0.908 0.917

Supplementary Table 7: Performance evaluation on real-world clinical data. PPFL was
evaluated compared to FedAvg, FedProx, Local (using common features), Local
(using common and specific features) in internal and external validation using
distributed real-world data.
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