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ABSTRACT

The involvement of NLRX1 in pulmonary hyperoxic acute injury
Hye Rin Kim

Department of Medical Science
The Graduate School, Yonsei University

(Directed by Professor Myung Hyun Sohn)

Hyperoxia is frequently used for treating acute respiratory failure, but it can
cause acute lung injury. Nucleotide-binding domain and leucine-rich-repeat-
containing family member X1 (NLRX1) is localized in mitochondria and related
to reactive oxygen species production, inflammation, and apoptosis, which are
the features of hyperoxic acute lung injury (HALI). However, the contribution of
NLRX1 in HALI has not been addressed, so we examined to demonstrate the role
of NLRX1 in hyperoxia. A murine model of HALI was generated in wild-type
mice (WT) and NLRX1-/- mice by exposing them to over 95% oxygen for 72 h.
As a result, NLRX1 expression was elevated in mice exposed to hyperoxia. In
acute lung injury, levels of inflammatory cells, protein leakage, cell cytotoxicity,
and pro-inflammatory cytokines were diminished in NLRX1-/- mice compared
to WT mice. In survival test, NLRX1-/- mice showed alleviated mortality under

hyperoxic conditions, and apoptotic cell death and caspase expression and
iv



activity were reduced in NLRX1-/- mice. Furthermore, levels of MAPK signaling
proteins ERK 1/2, JNK, and p38 were decreased in NLRX1-deficient mice than
in WT mice exposed to hyperoxia. This study reveals that the genetic deficiency
of NLRX1 dampens hyperoxia-induced apoptosis, suggesting NLRX1 acts as a
pivotal regulator of HALI.

Key words: acute lung injury, apoptosis, hyperoxia, MAPK signaling
pathway, NLRX1



The involvement of NLRX1 in pulmonary hyperoxic acute injury

Hye Rin Kim

Department of Medical Science
The Graduate School, Yonsei University

(Directed by Professor Myung Hyun Sohn)

I. INTRODUCTION

Oxygen is essential for human survival, and it is sometimes used as adjuvant
therapy for patients with respiratory failure and to increase oxygen delivery to
peripheral tissues in patients with severe lung or heart disease'. However, it has
been demonstrated that prolonged exposure to a high concentration of oxygen
increased DNA fragmentation and levels of reactive oxygen species (ROS),
which induce apoptosis in pulmonary tissues. Excessive accumulation of these
free radicals leads to acute and chronic lung injury”.

Hyperoxia is defined as a supraphysiological concentration and pressure of
oxygen in cells, tissues, or organs. When high concentrations of oxygen pass
through the lungs, oxygen gradually replaces nitrogen as the primary gas in
alveoli and puts the lungs in an absorption atelectasis state, which is a loss of lung

volume due to the resorption of oxygen that does not occur with nitrogen. The
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rise in partial pressure of oxygen in blood results in increased binding energy
between oxygen and hemoglobin, preventing carbon dioxide from binding to
hemoglobin. Finally, elevated blood carbon dioxide levels lower blood pH and
decrease overall lung function®. Hyperoxia increases oxidant production via the
mitochondrial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
pathway, and prolonged exposure causes mitochondria dysfunction®. Hyperoxic
acute lung injury (HALI) is characterized by damage and death of endothelial and
epithelial cells, which results in leakage of alveolar capillary proteins"®.
Continuous exposure to hyperoxia also contributes to the pathogenesis of various
lung diseases, including chronic obstructive pulmonary disease (COPD), asthma,
idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome ’.
The protein nucleotide-binding oligomerization domain and leucine-rich-
repeat-containing family member X1 (NLRX1) is a mitochondrial targeting
sequence, which is ubiquitously expressed and localized in mitochondria®’.
Mitochondria are a major source of ROS, which can induce oxidative stress,
mediate damage, and initiate inflammatory responses in the lung'®'". However,
the lungs are equipped with an antioxidant defense system to minimize infection
and preserve the lung functions'>. Recent research evidence demonstrate that
NLRX1 is involved in a variety of biological functions, including modulation of
mitochondrial function, ROS generation, autophagy and apoptosis®'*"'®. These
studies determined that NLRX1 acts as a mitochondrial controller of apoptotic
cell death during ischemia-reperfusion injury and acute cellular injuries'*". In
addition, other studies showed that the NLRX1 is involved in numerous diseases,
including COPD, cancer, deafness and tumorigenesis'®'®'’. However, studies on
NLRX1 signaling during hyperoxia have not yet defined its role.
Mitogen-activated protein kinase (MAPK; ERK 1/2, JNK, and p38) signaling
pathways are known to mediate key cellular processes, including the regulation
of cell survival and death. The MAPK pathways may act as either activators or

£20,21

inhibitors, depending on the cell type and the stimuli™>~". Studies on various
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pulmonary diseases, including respiratory failure, fibrosis, neutrophilic
inflammatory disease, and hyperoxia reported that MAPK pathways were

6,22-26

activated in response to increased apoptosis . In addition, it has been

suggested that NLRX1 modulates MAPK pathways in immune responses to a
variety of stimuli, including virus or fungal infection and tumorigenesis*’>’.

In the present study, we aimed to identify the role and mechanisms of NLRX1
in hyperoxia induced acute lung injury. We hypothesized that deletion of NLRX1
would have effects on mouse survival and lung damage in hyperoxic condition.
To test the hypothesis, we identified the basic factors of acute lung injury, from

inflammation to mortality and apoptosis, and finally determined signaling

pathway which are involved in NLRX1 deficiency under hyperoxic conditions.



I1. MATERIALS AND METHODS

1. Mice

Mice (strain: C57BL/6; 6-8 weeks old; male) were purchased from Orient Bio
Inc. (Seongnam, South Korea). NLRX1 knock-out (NLRX17") mice were kindly
provided by Dr. J. P. Ting (University of North Carolina). All animals used were
sex-and age-matched, of the same genetic background, and housed under a 12 h
dark-light cycle under specific pathogen-free (SPF) conditions. Animals had free
access to water and food during the research. Animal experiments were approved
by the Institutional Animal Care, Use Committee (IACUC) of the affiliated
university (protocol No. 2021-0178; Seoul, Korea), and the study was conducted
in compliance with the ARRIVE guidelines.

2. Oxygen Exposure

WT (NLRX1"") and NLRX1 knock-out (NLRX1”") mice were exposed to
>95% oxygen (Hyperoxia, HO) using cages enclosed in an air tight Plexiglas
chamber (57x42x37 cm, JEUNG DO BIO & PLANT Co., Ltd., Seoul, Korea).
The pressure inside the chamber was normalized to atmospheric pressure.
Oxygen levels were constantly monitored for the duration of the experiment (72h)
using an oxygen analyzer (MaxO,'A, MAXTEC, Salt Lake City, UT, USA.). As
controls, sex- and age-matched WT and NLRX 1"~ mice were housed in similar
conditions under normoxia (room air, RA). All methods were performed in

accordance with the relevant guidelines and regulations.

3. Bronchoalveolar Lavage (BAL) fluid

During sacrificing, mice underwent blunt dissection of the trachea following
anesthesia. A small-caliber tube was inserted into the airway; 0.9ml of phosphate-
buffered saline (PBS) was injected into the lungs, was collected, and this
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collection process was repeated once more so that a total of 1.8ml BAL was
collected from each mouse. The collected BAL fluid was centrifuged at 3,000rpm
for 5 min at 4°C, and then separated into cell pellet and supernatant. The cell
pellet was dissolved with PBS, mixed in a 1:1 ratio with Trypan Blue Solution,
and the cells were counted using a hemocytometer. BAL cells were centrifuged
onto slides using a Cytospin centrifuge (Thermo Fisher scientifics, Waltham,
MA). Cell differentiation was assessed using a Diff-Quik stain kit (Merck,
Darmstadt, Germany). The supernatant was stored at -80°C and used for various

protein analyses and assessment of LDH activity.

4. Histology and Immunohistochemistry (IHC)

The left lobes of sacrificed mice lung were fixed in 4% formalin for 3 days
and embedded in paraffin. Lung tissues were cut into 5- um sections and stained
using hematoxylin and eosin (H&E) to analyze airway inflammation. To assess
immunohistochemistry, sections were deparaffinized twice by washing with
xylene for 10 min and rehydrated in 100% (5 min, twice), 95% (5 min), and 70%
(5 min) alcohol. The tissues were then heated with retrieval buffer (DAKO, A/S,
Glostrup, Denmark) for 20 min in a steamer and allowed cool to room
temperature (18-22°C) for 20 min. After washing the sections, they were placed
in peroxidase blocking solution (DAKO) for 5 min, and then in protein block
solution (DAKO) for 1 hr. The NLRX1 antibody (Proteintech, Rosemont, IL) or
normal rabbit [gG (Santa cruz Biotechnology, Inc, Dallas, TX) were prepared as
1:500 dilutions and loaded into sections, followed by incubation at 4°C overnight.
The color was developed with DAB solution (DAKO), and the reaction was
stopped using deionized water; finally, the immunostained tissue sections were

mounted on slides with an aqueous-base mounting medium.



5. Bicinchoninic acid (BCA) assay

Protein leakage in BAL was evaluated using a Pierce’™ BCA Protein Assay
Kit (Thermo Fisher scientifics, Waltham, MA). The BAL fluid supernatant and
standard were dispensed into a 96-well plate for 25 pl aliquots, and 200 pl
working reagent was dispensed in each well. The plate was placed in an incubator
at 37°C and allowed to react for 30 min. The protein concentration in BAL fluid
was measured at absorbance at 562 nm using a microplate reader (Molecular

Devices, CA, USA).

6. Lactate dehydrogenase (LDH) assay

LDH concentration in BAL fluid was measured using a cytotoxicity detection
kit (Roche Applied Science, Mannheim, Germany). We dispensed 100 ul of BAL
fluid sample and 100 pl of the reagent mixed with the catalyst and dye solution
in a 96-well plate, and this was allowed react at room temperature for 30 min.
After the reaction was completed, the reaction was stopped by adding 50 pl of
stop solution, and LDH concentration was measured at an absorbance of 492/690

nm using a microplate reader.

7. Real-time PCR

After mice were sacrificed, lung tissues were homogenized with T10 Basic
Ultra-Turrax® homogenizer (IKA Labortechnik, Staufen, Germany) and lysed in
Trizol reagent (Invitrogen, Charlsbad, CA, USA) according to the manufacturer’s
protocol. The relative mRNA expression levels were measured by reverse
transcription and real-time PCR; 1 pg of total RNA was synthesized to cDNA by
reverse-transcribed with ReverTra Ace ¢ PCR RT Master Mix Kit (Toyobo Co.,
Ltd., Osaka, Japan). Real-time PCR was performed in 20 pl reactions containing
10 pl Power SYBR Green™ PCR Master Mix (Applied Biosystems, Foster City,
CA, USA), 1 pl cDNA template, 1 pl forward primer, 1 pl reverse primer, and

6



deionized water to the desired volume. Quantitative PCR was performed with the
StepOnePlus™ Real-Time PCR System (Applied Biosystems, Waltham, MA)
according to the manufacturer’s protocol. Primer pairs for real-time PCR were
manufactured by MBiotech (Hanam, South Korea). The levels of mRNA were
normalized to IPO8. Fold changes were calculated using the 24T method.

8. ELISA

The levels of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2)
were quantified in BAL fluid by ELISA (R&D systems, Minneapolis, MN, USA)
as per manufacturer’s instructions; 96-well plates were each coated with anti-
mouse cytokine antibodies overnight at room temperature (18-22°C). The wells
were blocked with PBS containing 1% BSA for 1 h. Dilution standards and
samples were then incubated for 2 h. Bound cytokines were detected using
incubation with anti-mouse-cytokine antibodies for 2 h. Samples were then
washed with streptavidin-horseradish peroxidase for 20 min and TMB substrate
solution (KPL) for a further 20 min. The reaction was stopped using 2 N sulfuric
acid, and the colorimetric reactions were read using a microplate reader at 450

nm.

9. Western blot

Lung tissues were gently homogenized and lysed in RIPA buffer (Thermo
fisher scientific, Waltham, MA, USA). The protein concentrations were measured
using the Bradford assay. Equal amounts of protein samples were loaded on gel
and separated by 8%~12% SDS-PAGE electrophoresis and were then transferred
to polyvinylidene fluoride (PVDF) membrane (Millipore, Bedford, MA, USA).
Membranes were blocked in Tris buffered saline containing 0.1% Tween 20
(TBST) with 5% skim milk and incubated overnight at 4°C with primary

antibodies. After washing with TBST, the membranes were incubated at room
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temperature with secondary antibodies for 1 h. The protein signal was analyzed
using Image J software. Protein samples were normalized to GAPDH. The
primary antibodies were used as follows: NLRX1 (Proteintech), and BAX, Cyto
C, P-ERK 1/2, T-ERK 1/2, P-JNK, T-JNK, P-p38, T-p38, and GAPDH (all from
Cell Signaling Technology).

10. TUNEL assay

To analyze apoptosis, terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP nick end labeling (TUNEL) assay was carried out using an in-situ Cell
Death Detection Kit (AP) (Roche Applied Science, Mannheim, Germany)
according to the manufacturer’s protocol. TUNEL assay detected the apoptotic
cells in lung tissue samples. Pictures were taken a light microscope at 400x
magnification in five random fields for each section and the rate of TUNEL-

positive cells was calculated.

11. Caspase activity

Total protein was extracted from the lungs using RIPA lysis buffer solution
and homogenizer according to the manufacturer’s protocol. In a 96-well plate, 25
ul of Caspase-Glo® 3/7 Reagent (Promega, Madison, WI) and 25 pg of 1 mg/ml
protein are added in a 1:1 ratio and incubation was performed for 30 min and
luminescence was recorded at 30 minute intervals from 30 minutes to 3 hours.
Caspase-Glo® 8 Assay and Caspase-Glo® 9 Assay protocols were conducted

using the same methods as Caspase-Glo® 3/7 Assay.

12. Statistics

For the animal studies, values were expressed as means = SEM. Most results
were evaluated using Student’s #-test. Cell count results were compared using
two-way ANOVA, and survival analysis was corrected for multiple comparisons

8



by the log-rank test. All evaluations were performed using GraphPad Prism
(GraphPad Software, Inc., San Diego, CA, USA). In all analyses, p <0.05 was

considered statistically significant.



I1l. RESULTS

1. NLRX1 expression increases in mouse lung under hyperoxia

conditions

To demonstrate whether NLRX1 is modulated by hyperoxia (>95% oxygen), we
established an experimental murine model of hyperoxia and analyzed the
expression levels of NLRX1. Wild-type mice were exposed to either hyperoxic
air or room air (RA) as a control for 72 h. NLRX1 mRNA and protein expression
in hyperoxia-treated mice were higher than those in the control mice (Fig. 1A-
1C). In addition, NLRX1 immunohistochemistry staining in lung tissues
demonstrated that NLRX1 level is elevated after hyperoxia exposure (Fig. 1D
and 1E).

10
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Fig. 1. NLRX1 expression levels are increased in a murine model of
hyperoxia. Wild-type mice were exposed to room air or hyperoxia (>95% oxygen)
respectively for 72 hours. After 72 h, mice were sacrificed and collected lung

tissues were analyzed. (A) The levels of NLRX1 mRNA were measured by real-

time PCR. (B) NLRX1 protein expression was evaluated via western blot using

lung lysates, and (C) the signal intensity of NLRX1 was quantified. (D)

Immunohistochemical staining of NLRX1 was assessed in mouse lung tissue, and

(E) NLRX1 positive cells were counted. Scale bars, 100 pm and 50 pm. Results

are presented as the mean + SEM and are representative of at least three

independent experiments (n = 8-21 mice per group). ***p < 0.001 (Student’s ¢

test). HPF; High power field
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2. NLRXI1 deficiency attenuates the hyperoxia-induced lung injury

Since hyperoxia increased the NLRX1 levels, we compared the severity of
acute lung injury using WT mice and NLRX1” mice. The number of
inflammatory cells from bronchoalveolar lavage (BAL) fluid, total protein
concentrations, and cell cytotoxicity were augmented by hyperoxia in WT mice.
NLRX 17 mice showed reduced inflammatory responses compared to WT mice

in response to hyperoxia exposure (Fig. 2A-2C).

To determine whether NLRXI1 contributes to hyperoxia-induced
proinflammatory cytokine expressions, we examined the mRNA and protein
levels of proinflammatory cytokines, such as IL-1B, IL-6, TNF-a, and CCL2,
using real-time PCR and ELISA. Increased mRNA and protein expression in
lung tissues and BAL fluid were detected in hyperoxia treated mice, but
NLRX1"7 mice showed alleviated inflammatory responses compared to WT
mice (Fig. 2D-2H). Hematoxylin and eosin staining of lung tissues revealed
dampened inflammation in the lungs of NLRX 1"~ mice compared to that in the

lungs of WT mice (Fig. 2I).

To evaluate the incidence of mortality, the end point of acute lung injury and
survival was measured in WT and NLRX1” mice under prolonged hyperoxia
exposure. NLRX1"" mice had significantly longer survival than WT mice
(median survival; LDsy was 106h and 92h in NLRX1”™ and WT mice,
respectively) (Fig. 2J). Thus, these data confirmed that hyperoxia-induced

acute lung injuries were significantly diminished in NLRX1”- mice.
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Fig. 2. NLRX1 deficiency dampens the inflammation and mortality induced
by hyperoxia. Wild-type mice (NLRX1"") and NLRXI knock-out mice
(NLRX17) were exposed to both room air (RA) and hyperoxia (HO, >95%
oxygen) for 72 h. (A) Inflammatory cells from bronchoalveolar lavage (BAL)
fluid were counted. (B) Total protein concentration of BAL fluid was quantified
by BCA assay. (C) Cell cytotoxicity in BAL fluid was assessed using LDH assay.
(D-F) mRNA levels of inflammatory cytokines IL-1f, IL-6, and TNF-a were
examined using real-time PCR in lung tissues. (G, H) CCL2 and IL-6 levels were
analyzed by ELISA in BAL fluid. Results are presented the mean + SEM and are
representative of at least three independent experiments (n = 15-18 mice per
group). (I) Lung tissues were histologically analyzed for lung injury and
inflammation by optical microscope after staining with hematoxylin and eosin
(H&E). Scale bars, 100 um. (J) Mortality rates in WT and NLRX1”" mice were
measured by survival test (NLRX1"*; n = 23, NLRX17; n = 22) and corrected
for multiple comparisons by the log-rank test. The median survival (LDso) is in
parentheses. Data represent at least three separate experiments. ***p < 0.001

(two-way ANOVA and Student’s ¢ test).
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3. NLRXI1 knockout reduces hyperoxia-induced apoptosis

Following our observation of the difference in mortality rates based on NLRX1
knockout and evidence from previous studies that showed a direct association
between hyperoxia and apoptosis, we investigated whether NLRX1 modulates
hyperoxic apoptosis using TUNEL assay and found that the number of apoptotic
cells was dramatically reduced in lung tissues of NLRX 17 mice than in those of
WT mice (Fig. 3A and 3B). To ascertain the impact of NLRX1”" on apoptotic
signaling, proapoptotic members of the B cell lymphoma (Bcl)-2 family, Bax and
Bak, were examined by real-time PCR (Fig. 3C and 3D). Activation of Bax and
release of cytochrome ¢, which are essential for initiating the apoptotic cascade,
were also confirmed by western blot (Fig. 3E-3G). These results suggest that
signaling related to apoptosis declined due to the loss of NLRX1 (Fig. 3C-3G).
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Fig. 3. Absence of NLRX1 decreases the number of apoptotic cells and

1" room air

signaling molecules under hyperoxic conditions. (A) NLRX
(sham), NLRX1"* hyperoxia, and NLRX1”" hyperoxia mice lung sections were
stained using TUNEL assay and (B) TUNEL-positive cells were counted. Scale
bars, 50 um. (C, D) mRNA levels of Bax and Bak were measured by real-time
PCR. (E) Protein levels of BAX and Cytochrome C (Cyto C) were analyzed using
western blot of lung lysates, and (F-G) the ratio of molecules was calculated.
Results are presented as the mean = SEM and are representative of at least three
independent experiments (n = 8-14 mice per group). *p < 0.05, ***p < 0.001
(Student’s ¢ test).
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To further elucidate the role of NLRX1 in apoptosis, the caspase cascade was
assessed using real-time PCR and caspase activity assay. We selected the
representative and pivotal components of the apoptosis pathway, initiator
caspase-8 and -9, effector caspase-3 and -7. In our hyperoxic model, caspase
expression and activity were significantly augmented in WT mice. However,
hyperoxia-treated NLRX 17" mice showed reduced expression and activity of
these caspase proteins tested as compared to hyperoxia-treated WT mice (Fig.
4A-4F). Thus, NLRX1 deficiency decreased apoptosis as well as inflammation

and mortality.

22



2.5 ek ke B 2.09 ke ok
@ | ° T &
8@ 20 - 8@ 154 .
o L o
= i N - -
0 7 lo) o = 1.0 A
52 10 0 = e
S= 0% A AA L= 000
Ok o A O 0.5 A,a
£ 054 £ alA
0.0 T T T T 0.0 T T T T
NLRX1 +/+ -I- ++ -I- NLRX1 ++ -I- ++ -I-
Oxygen RA RA HO HO Oxygen RA RA HO HO
4- Kk *kk D —~ 3000~ sk Ak
&
i . = .
0 © 34 °® > %
I =" 2000
g g - s g a8
532 2 P g 0g? _f&T °  aA
28 L - A
24 m o 10004 89, A, A
g 14 © ¢ A
£ :
0 T T T T ° 0 T T T T
NLRX1 +/+ -l ++ NE NLRX1 ++ -I- ++ -l
Oxygen RA RA HO HO Oxygen RA RA HO HO
__ 12000 e - 5 200007 . 24
=)
= -l
4 ° (3 °
= p . 15000 .
£  8000- £
: 8 e W . 3 '
9 L _ﬁ_ " & 10000+ °
% 4000 oy A Lt @ "E‘ &
2 = a % s000{ P Ap
a £ E e . o 2
7] =3 A °
8 8 of - 0 s
0 T T T T © 0 T 4 T T
NLRX1 ++ -I- +H+ -I- NLRX1 ++ -I- ++ -l-
Oxygen RA RA HO HO Oxygen RA RA HO HO



Fig. 4. NLRX1 deficiency reduces the expression of caspase and caspase
activity in hyperoxic acute lung injury. (A-C) The mRNA levels of Caspase
(CASP) -8, -9, and -3 were evaluated by real-time PCR. (D-F) Caspase -8, -9, and
-3/7 activities were analyzed by luminescence using protein from lung lysates.
Results are presented as the mean = SEM and are representative of at least three
independent experiments (n = 6-18 mice per group). **p < 0.01, ***p < 0.001
(Student’s ¢ test).
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4. NLRXI1 deficiency suppressess the MAPK signaling pathways under

hyperoxic conditions

Phosphorylation of MAPK signaling pathways is known to be modulated by
hyperoxia. NLRX1 is also known to regulate the MAPK signaling pathway. Thus,
we investigated whether MAPK pathways were involved in NLRX1 function in
hyperoxic lung injury. We evaluated the phosphorylation levels of ERK 1/2, JNK,
and p38 in lung lysates through western blotting. As expected, hyperoxia
treatment increased the phosphorylation levels of the MAPK pathways in wild-
type mice. However, NLRX1 deficiency reduced the increase in MAPK pathway
phosphorylation in response to hyperoxia (Fig. 5SA-5D). These data support that
the apoptotic role of NLRX1 mediates MAPK signaling during hyperoxia.
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Fig. 5. NLRX1 regulates MAPK signaling pathways in hyperoxia. (A)
Phosphorylation of MAPK pathways (ERK 1/2, INK, and p38) was measured by
western blot analysis using lung lysates, and (B-D) the ratios of molecule signal
intensity were quantified. Results are presented as the mean £ SEM and are
representative of four separate experiments (n = 8 mice per group). **p < 0.01,

**%p < 0.001 (Student’s ¢ test).
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IV. DISCUSSION

In this study, we found that NLRX1 knockout alleviates HALI, particularly via
inhibiting apoptosis induction. Recently, an accumulation of data on NLRXI
suggests that it has a protective role in various diseases such as cancer, COPD,
inflammatory bowel disease, and ischemia-reperfusion injury”. A recent review
has confirmed that NLRX1 inhibits the MAVS/RLH pathway, modulates the
innate immune responses and the CD4" T cells through immunometabolism®. On
the contrary, other studies, including our experimental hyperoxic model, found
that the absence of NLRX1 also had protective effects. In one study, deficient of
NLRX1 was advantageous in host defense against vesicular stomatitis virus
through increased IFN-I production and reduced autophagy'*. NLRX1 silencing
has been shown to decrease intracellular ROS generation and apoptosis involving
JNK signaling in HEI-OC1 cells induced by cisplatin®. NLRX1 deficiency has
been shown to elevate fatty acid metabolism to prevent diet-induced hepatic
steatosis®'. In cochlear hair cells, NLRX1 was essential for hair cells maturity and
hearing but was also associated with age-related increase in apoptosis through the
JNK pathway".

In previous studies, NLRX1 was associated with various pulmonary diseases,
such as influenza A virus infections, invasive pulmonary aspergillosis, and COPD
and aging”>**. However, there have been no investigations of NLRX1 and
HALI in a murine model. NLRX1 is known to modulate ROS production,
inflammatory leukocyte infiltration response, cell death, and MAPK pathways,
which are implicated in the pathogenesis of HALI****, Further, we confirmed that
increased NLRX1 expression was significantly associated with HALI

Hyperoxia is known to impair the alveoli and lung structures, interfere with lung
development, and cause fibrosis. These properties increase the permeability of
the lungs and exacerbate alveolar protein leakage®. This was evident in our data

where total protein concentrations analyzed using BCA assay were elevated in
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BAL fluid from mice exposed to hyperoxia. In addition, hyperoxia directly
increased cell cytotoxicity, thereby increasing lactate dehydrogenase (LDH)
release during cell death. These damages cause inflammatory responses, leading
to increasing inflammatory cell (macrophage, neutrophil, lymphocyte)
infiltration and pro-inflammatory cytokines (IL-1p, IL-6, TNF-a and CCL2)
production. Despite the prolonged exposure to a high concentration of oxygen,
NLRX1-deficient mice showed alleviated inflammatory responses and
pathological changes. Thus, NLRX1 may regulate hyperoxia-induced lung injury.

Cell death, specifically apoptosis and necrosis, has been demonstrated to be
involved in hyperoxia-mediated acute lung injury (ALI) pathogenesis*®. In recent
studies, NLRX1 has been shown to play a role in apoptosis through various
pathways in different cell systems'¢. The mitochondrial apoptosis is known to be
regulated by anti- and pro-apoptotic members of the Bcl-2 family®’. In particular,
Bax and caspase-3 have a major role in the mitochondria apoptosis pathway>®.
Similarly, in our study, we showed that levels of elements across the apoptosis
pathways, from the Bel-2 family to caspase cascade proteins, were increased in
response to hyperoxia and reduced by NLRX1 deficiency. These data confirmed
that NLRX1 acts as a pivotal regulator in hyperoxia-induced lung injury through
the mitochondrial apoptotic pathway. Mortality is an important factor in
hyperoxia as it is the end point of acute lung injury clinically. In previous research,
Bax and Bak deficient mice had significantly less lung injury and increased long-
term survival under hyperoxic conditions®”. In the present study, NLRXI-
deficient mice showed dramatically reduced Bax and Bak expression and
improved survival rate (p = 0.0007) as compared to WT mice. These results
suggest that NLRX1 promotes alveolar epithelial cell apoptosis and induces lung
tissue damage against oxygen toxicity and lethality via pathological apoptosis,
suggesting that NLRX1 may have a critical role in the pathogenesis of hyperoxia.

The mitogen-activated protein kinase (MAPK) signaling pathways participate

in a variety of biological processes, and regulate pro- and anti-apoptotic
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mechanisms?'. The key members of MAPK pathways are ERK 1/2, p38, and INK,
which modulate cell growth, proliferation, stress responses, and survival in
hyperoxia®. In addition, NLRX1 is known to modulate MAPK signaling®™*. In
an LC3-associated phagocytosis (LAP) model induced by Histoplasma
capsulatum, NLRX1 deficiency attenuated MAPK signaling pathway®®. In our
model, we also observed that phosphorylation levels of ERK 1/2, p38, and INK
were reduced in NLRX 17" mice than in WT mice. These results mean that NLRX 1
plays a pivotal role in apoptosis under hyperoxic conditions by via the MAPK
signaling pathway.

In conclusion, our current study revealed that NLRX1 deficiency relieves
pulmonary hyperoxic acute injuries, such as inflammation and apoptosis, and
ultimately mortality, through the MAPK pathway. These investigations suggest
that NLRX1 might be a valuable therapeutic target for HALI treatment.
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