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ABSTRACT
Investigation of the mechanism for intratumor heterogeneity in

non-small cell lung cancer

Myung Jin Song
Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Yoon Soo Chang)

“Intratumor heterogeneity (ITH)” is defined as the uneven distribution of genetically
diverse tumor subpopulations within a tumor. We investigated the clinical implications of
ITH, inferred from the number of subclones, and determined the mechanism of subclonal
expansion. Single nucleotide variation, clinical data, copy number variation, and RNA
sequencing data from The Cancer Genome Atlas-Lung Squamous Cell Carcinoma (TCGA-
LUSC) and Lung Adenocarcinoma (LUAD) cases were obtained from the Genomic Data
Commons data portal. The clonal status was estimated from the variant allele frequency of
the mutated genes using the SciClone package. Candidate biomarkers for clonal expansion
were inferred by analyzing the differentially expressed genes between the high and low
clone groups, and their impact was evaluated in NSCLC cell lines. Finally, single-cell RNA
sequencing analysis was performed to evaluate the impact of ITH on myeloid cells in the
tumor microenvironment. Data from 481 LUSCs and 493 LUAD:s in stages I-1V that had
not received any treatment for lung cancer were collected from the TCGA database. The
number of subclones was positively correlated with the number of somatic variants and the

cancer stage. The number of subclones was significantly higher in males (vs. females) and



smokers (vs. never-smokers). MTAL, FDG1, and MSI1 were selected in the DEG analysis
as candidate genes for inferring clonal expansion. In subsequent experiments, NSCLC cells
transfected with each candidate gene were not viable. Single-cell RNA sequencing data
showed a decrease in the proportion during tumorigenesis of smokers’” M2-like
Macrophage 1. In contrast, classical monocytes, nonclassical monocytes, and
proinflammatory macrophages increased in smokers during tumorigenesis. The differences
between smokers and never smokers in proportion shift of M2-like Macrophage 1, classical
monocytes, nonclassical monocytes, and proinflammatory macrophage were statistically
significant. In conclusion, the findings from this study indicated that ITH is positively
associated with the tumor mutational burden and cancer stage. Male sex and smoking are
associated with high clonality. ITH may induce inflammation in the tumor

microenvironment, promoting the proliferation of proinflammatory myeloid cells.

Keywords: non-small cell lung cancer, intratumor heterogeneity, myeloid cell,

inflammation

Vi
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I. INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer and the leading cause of
cancer-related death. In 2020, there were an estimated 2.2 million cases of lung cancer and
1.8 million lung cancer-associated deaths worldwide.! Non-small cell lung cancer (NSCLC)
is histologically divided into adenocarcinoma, squamous cell lung cancer, and large cell
carcinoma. Lung adenocarcinoma (LUAD) is located more peripherally and is more
common among never smokers. In contrast, lung squamous cell carcinoma (LUSC) is more
commonly located in the central lung and frequently invades the proximal bronchus
because its pathogenesis is strongly associated with airway lesions that arise with smoking.?
Targetable activating mutations, such as the epidermal growth factor receptor and
anaplastic lymphoma kinase fusion, which lead to remarkable changes in LUAD treatment,
are typically absent in LUSC, and targeted agents used with adenocarcinoma are largely
ineffective with LUSC.3®

Through tumor genome profiling, detailed information on carcinogenesis, including

tumor development, progression, therapeutic response, and drug resistance, has been



obtained via the development of next-generation sequencing. Multiple studies based on
tumor sequencing suggest that “intratumoral heterogeneity (ITH),” which describes the
uneven distribution of genetically diverse tumor subpopulations within a tumor, plays a
crucial role in treatment failure and drug resistance.”° However, genetic biomarkers that
can be used to infer ITH remain largely unknown.

Using whole-genome sequencing data, the number of subclones can be inferred from
variant allele frequency (VAF), the percentage of sequence reads that match a specific
DNA variant, divided by the overall coverage at that locus.!! VAF represents the percentage
of tumor cells harboring a specific mutation, assuming a relatively pure tumor sample 1213,
VAF clustering can help infer the number of subclones in the tumor and also estimate the
heterogeneity.

In this study, we investigated the relationship between intratumor heterogeneity inferred
by the number of subclones and clinical characteristics and evaluated its clinical
implications. We also investigated highly expressed genes in high clonality cancers and
evaluated whether their expression in NSCLC cell lines induced clonal expansion. Finally,
we used single-cell RNA sequencing (ScCRNA-seq) to depict the impact of clonal expansion

in the tumor microenvironment.

Il. MATERIALS AND METHODS
1. Analysis of The Cancer Genome Atlas (TCGA) data
A. Data Acquisition
The following data were downloaded from 504 LUSC and 585 LUAD cases shared in the
TCGA project (https://www.cancer.gov/tcga): 1) Mutation Annotation Format (MAF) files

for single nucleotide variants (SNV) analyzed with VarScan 2 variant Aggregation and


https://www.cancer.gov/tcga

Masking workflow; 2) Masked Copy Number Segment analyzed using Affymetrix SNP
6.0; 3) RNA sequencing analyzed using HTSeq; and 4) clinical information. The Tumor
Sample Barcodes of these cases were confirmed and analyzed based on the data obtained
from the primary solid tumor. Of the total LUSC and LUAD cases, the following cases
were excluded:1) cases whose records did not include all four data mentioned above (16
cases from LUSC, 85 cases from LUAD); 2) cases with exceptionally high numbers of
mutations (3 cases from LUSC, 1 case from LUAD); and 3) cases in which the SNVs were
0 (4 cases from LUSC, 6 cases from LUAD). Finally, 481 LUSC and 493 LUAD cases
were included in the analysis. To improve the positive predictive value of low allele
frequency, SNVs with a total read depth of less than 40 and SNV data that did not meet the
detection limit, as suggested by Shin et al.*3
B. Calculations of subclone numbers and differentially expressed gene (DEG) analysis
To estimate the number of subclones, we used the SciClone package
(http://github.com/genome/sciclone), which helps estimate the number of subclones by
clustering variants with similar allele frequencies.'* Computational efficiency was achieved
by clustering VAFs using a variational Bayesian mixture model.*® To identify genes related
to intratumor heterogeneity, which were represented by the number of subclones, DEG
analysis was performed between the high and low-clone groups. Patients with five or more
subclones were paired with those with one subclone. Potential confounding variables, such
as age, sex, stage, and smoking status, were adjusted using the propensity matching method
while pairing the two groups using the “Matchlt” package from R. Three independent
bootstrapped propensity score matching was performed in each LUSC and LUAD cohort.
The DEG between the high- and low-clone groups was analyzed using the “DEseq2”

package in each propensity score-matched cohort. When the gene expression ratio in the



experimental groups to the control group was more than 2 or less than 1/2, and the P-
adjusted value was less than 0.05, the gene was considered to have significant differential
expression, and further analysis was performed. The intersection of the three DEG results
was defined as the final DEG result for LUSC and LUAD. Genes commonly upregulated
in the DEG results of LUSC and LUAD were identified, and genes thought to be involved
in the clonal expansion were selected as candidates for genetic biomarkers. The ontology
of  differentially  expressed genes was confirmed using  ToppGene
(https://toppgene.cchmc.org/).
C. Statistical analysis

The distribution of variables was examined using the Shapiro—Wilk test. Continuous
variables of three or more groups were analyzed using the Kruskal-Wallis test. Categorical
variables were analyzed using the chi-square distribution and Fisher’s exact test. In all cases,
p-values < 0.05 were considered statistically significant. Statistical analyses were
performed using the R statistical software, version 4.1.0 (R Foundation for Statistical

Computing, Vienna, Austria).

2. In vitro cell culture experiment
A. Cells, plasmids, transfection
NSCLC lines, A549 and H460, were obtained from the American Type Culture Collection
(ATCC) (Manassas, VA, USA). The cells were maintained in RPMI-1640 medium
containing 10% fetal bovine serum and cultured at 37 °C in a humidified atmosphere of 5%
Co2.
Plasmids containing the candidate biomarkers and a paired control vector ()CMV6 empty

plasmid) were purchased from OriGene Tech (Rockville, MD, USA). The three candidate



genes were metastasis-associated 1 (MTAL), FYVE, RhoGEF, PH domain containing 1
(FGD1), and Musashi RNA-binding protein 1 (MSI1). The details of how these genes were
selected as candidate genes are described in the Results section. MTAL, FGD1, MSI1, and
the control vector were transfected into A549 and H460 cell lines using Lipofectamine®
2000 (Invitrogen, Carlsbad, USA) according to the manufacturer’s instructions. \Western
blotting was performed 48 hours after transfection. Plasmid-transfected NSCLC cells were

screened for 3—4 weeks with 500 pg/ml geneticin after a 48 h transfection.

B. Immunohistochemistry (IHC)

The expression of MTAL, FGD1, and MSI1 in NSCLC and tissue samples was analyzed
by IHC staining. Briefly, sections were deparaffinized, rehydrated, immersed in HO,
methanol solution, and incubated overnight with primary antibodies against MTAL, FGD1,
and MSIL1. Incubation was performed in an antibody diluent at dilutions of 1:500, 1:2000,
1:400, and 1:100. The sections were incubated for 10 min with a biotinylated linker and
processed using avidin/biotin IHC techniques. 3,3’-Diaminobenzidine (DAB) was used as

a chromogen in conjunction with the Liquid DAB Substrate kit (Novacastra, UK).

C. Western blotting
Cells were harvested using 2xLSB lysis buffer containing protease and phosphatase
inhibitors (Sigma-Aldrich, St. Louis, MO, USA) on ice. Proteins (20 mg) were subjected
to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
electrophoresed, and transferred onto a nitrocellulose membrane. After blocking with 5%
non-fat milk in Tris-buffered saline, the membrane was washed and incubated with the

indicated primary antibody (MTA-1, Invitrogen, PA5-79699, rabbit; FGD1 Invitrogen,



PA5-40416, rabbit; MSI-1, thermos, 14-9896-82, rat) and subsequently incubated with
anti-mouse, anti-rabbit, or anti-rat 1gG coupled with horseradish peroxidase. All

experiments were repeated at least three times.

3. sScCRNA-seq analysis
A. scRNA-seq data collection from public databases.

The scRNA-seq data were downloaded from the National Center for Biotechnology
Information/Gene Expression Omnibus (GEO) with accession number GSE134174,% the
Genome Sequence Archive of the Beijing Institute of Genomics Data Center under
accession number HRA000154,'" and Sequence Read Archive (SRA) under the accession
number PRINA773987.18 Tumor-adjacent normal paired lung tissues from three current
smokers and three never smokers were obtained from GSE134174. Tumor tissues of one
current smoker and one never-smoker were obtained from HRAQ000154. Tumor-adjacent
normal paired lung tissue of three never smokers and tumor tissue of one never-smoker
were retrieved from our previously published ScCRNA-seq dataset (PRINA773987). A total
of 21 samples (4 tumor lung tissues of current smokers, 3 normal lung tissues of current
smokers, 8 tumor lung tissues of never smokers, and 6 normal lung tissues of never smokers)
were collected; the details of the collected samples are shown in Table 1. The histological

type of all the tumor samples was adenocarcinoma.

Table 1. Characteristics of the study samples.

Patient Tissue )
Samples Source . Age Sex Smoking Stage
ID origins
Case_08 Case 08 NL GSE134174 NL NA NA Nev IB



Case_19 Case_19 NL GSE134174 NL NA NA Cur 1A
Case_20 Case_20 NL GSE134174 NL NA NA Cur 1A
Case_28 Case_28 NL  GSE134174 NL NA NA Cur A
Case 30 Case 30 NL GSE134174 NL NA NA Nev IA
Case_34 Case 34 NL GSE134174 NL NA NA Nev 1A3

Case 08 Case 08 Tu  GSE134174 Tu NA NA Nev 1B
Case 19 Case 19 Tu  GSE134174 Tu NA NA Cur 1A
Case 20 Case 20 Tu  GSE134174 Tu NA NA Cur 1A

Case 28 Case 28 Tu  GSE134174 Tu NA NA Cur A
Case 30 Case 30 Tu  GSE134174 Tu NA NA Nev 1A
Case 34 Case 34 Tu  GSE134174 Tu NA NA Nev 1A3

Case 24 Case 24 Tu HRAO000154 Tu 67 M Cur 1B
Case 27 Case 27 Tu HRAO000154 Tu 66 M Nev 1A2
Case_03 Case_03_NL PRINA773987 NL 71 F Nev 1A2
Case 04 Case 04 NL PRINA773987 NL 73 M Nev 1AL
Case_05 Case_05 NL PRJINA773987 NL 68 F Nev 1A2
Case 03 Case 03 Tu PRJINA773987 Tu 71 F Nev 1A2
Case 04 Case 04 Tu PRINA773987 Tu 73 M Nev 1Al
Case 05 Case 05 Tu PRJINA773987 Tu 68 F Nev 1A2
Case 06 Case 06 Tu PRJINA773987 Tu 67 F Nev 1Al

Cur, current; NA, not accessible; Nev, never; NL, normal; Tu, tumor

B. Data quality control
Raw FASTQ files were collected for all 21 samples. Gene expression matrices were
generated per sample using CellRanger (v6.1.2), and the output-filtered gene expression
matrices were converted to a Seurat object using the R package Seurat version 4.0.6.1°

Low-quality cells were removed if they fell within the following criteria: (i) > 10% unique



molecular identifiers derived from the mitochondrial gene, (ii) ribosomal percentage (<
5%), and (iii) gene count (< 200). The presence of a doublet was identified using the

DoubletFinder R package.?

C. Integration
After normalizing the individual datasets, we used integration methods described in the
tutorial on the Seurat website to assemble distinct SCRNA-seq datasets into an unbatched
dataset (https://satijalab.org/seurat/articles/integration_introduction.html). Briefly,
FindVariableFeatures, FindIntegrationAnchor, and IntegrateData functions were adopted

serially to create a “batch-corrected” expression matrix for all cells.

D. Clustering and annotation

Scaling and principal component analyses were performed using an integration slot. The
ElbowPlot and JackStrawPlot functions were used to identify the true dimensionality of the
dataset, as recommended by Seurat developers. The FindNeighbors and FindClusters
functions were employed to identify clusters and perform nonlinear dimensional reduction
with the RunUMAP function. The FindAllIMarkers function in Seurat was used to identify
markers for each identified cluster. Clusters were then classified and annotated based on
the expression of canonical markers in particular cell types (Table 2).

Clusters expressing high levels of CD68 and LYZ were annotated as myeloid clusters.
Only cells with expression levels of CD68 and LY Z exceeding 2 (log. Fold Change) were
selected as the final myeloid lineage to minimize the possibility of including nonspecific

cells.


https://satijalab.org/seurat/articles/integration_introduction.html

Table 2. Canonical marker genes of major cell clusters

Major cell type Canonical marker gene
Epithelial cell (EP) EPCAM, KRT18, SLPI
Fibroblast (FB) LUM DCN, COL1A2
Endothelial cell (EC) CLDNS5, EPAS1, VWF

T cell (TC) CCL5, NKG7, GNLY

B cell (BC) MZB1, IGHG1, JCHAIN
Myeloid cell (MY) LYZ, CD68, AlF1

Mast cell (MA) MS4A2, TPSAB1, TPSB2

E. Subclustering of myeloid lineage
Subclustering of myeloid cells was performed as described in our previous publication.®
Briefly, by adjusting the dims and resolution parameters of Seurat’s FindNeighbors and
FindCluster functions, approximately 1.2 multiples of the number of clinically explainable
subclusters was obtained. The subclusters were annotated by checking the enrichment of
the identified genes described in Table 3 and referring to panglacDB
(https://panglaodb.se/search.html). The similarity between each cluster was evaluated

using Seurat’s BuildClusterTree function and Jaccard Index.

Table 3. Signature genes used for the nomenclature of each subcluster.

Cluster Number of

Annotated cell type Marker gene
number cells
) FCN1, S100A8, S100A12,
Clacciscal monocyte 5 1517
IL1B
Nonclassical monocyte 6 1287 CDKNI1C, ZNF703, FCGR3A



Mono-mac 1 2 3337 RNASEL, LYZ, CCL3, VCAN
LGMN, SELENOP, CCL13,

Mono-mac 2 4 1849

CCL2, RNASE1
M2-like Macrophage 1 0 5109 RBP4, GCHFR, CES1, C1QB
M2-like Macrophage 2 1 4674 INHBA, FABP4, LPL
Proinflammatory mac 11 432 CXCL10, CXCL9
Proliferating mac 8 722 MKI167, TOP2A, NUSAP1
cDC1 10 438 CPVL, CLEC9A
cDC2 3 2408 CD1C, FCER1A, CD1A
Activated DC 12 163 FSCN1, LAMP3, CCR7
NK cell 9 521 NKG7, GNLY, CCL5
Nonspecific 7 975

DC, dendritic cell; NK, natural Killer; Mac, macrophage; Mono-mac, monocyte-derived
macrophage
F. Trajectory analysis
Trajectories with pseudotime were computed using the slingshot R package (version
2.4.0).% The inputs were the Uniform Manifold Approximation and Projection (UMAP)

coordinates and cluster annotations.

II1. RESULTS
1. Analysis of The Cancer Genome Atlas (TCGA) data
A. Study cohort
Data from 481 LUSCs and 493 LUADs in stages -1V that had not received any treatment
for lung cancer were collected from the TCGA database. Demographic characteristics are
summarized in Table 4.

Table 4. Demographic characteristics of the TCGA study cases.
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LUSC (n=481)

LUAD (n=493)

Age (years)
Sex
Male
Female
Smoking status
Ever-smoker
Never-smoker
Unknown
Pack-years
Tumor stage
I
II
III
v
Unknown
Number of subclones

EGFR
KRAS

o O A WO N B

68.6 (62.3-73.9) (n=471)

356 (74.0%)
125 (26.0%)

453 (94.2%)
18 (3.7%)
10 (2.1%)
54.0 (21.0-70.0) (n=407)

232 (48.2%)

157 (32.6%)

81 (16.8%)
7 (1.4%)
4 (0.8%)

143 (29.7%)

182 (37.8%)

107 (22.2%)
37 (7.7%)
12 (2.5%)
3 (0.6%)
7 (1.5%)

66.0(59.0-72.5) (n=475)

229 (46.5%)
264 (53.5%)

413 (83.8%)
67 (13.6%)
13 (2.6%)
41.8 (21.0-50.0) (n=341)

266 (54.0%)

113 (22.9%)

82 (16.6%)
25 (5.1%)
7 (1.4%)

200 (40.6%)
162 (32.9%)
97 (19.7%)
29 (5.9%)
4 (0.8%)
1 (0.2%)
40 (8.1%)
73 (14.8%)

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma viral oncogene

Values are expressed as median (interquartile range) or number (%).

B. The number of subclones and their association with genomic mutations
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Whole exome sequencing of 481 LUSCs identified a total of 117,869 variants with a
median of 209.0 (128.0-319.0) variants per tumor, and those of 493 LUADs identified a
total of 84,796 variants with a median of 1172.0 (59.0-354.0) (Fig. 1A, Fig. 1B). The total
variation in a tumor showed a significant positive correlation with the number of subclones
in a tumor in both the LUSC and LUAD cohorts (o = 0.388, P-value < 0.001, Fig. 1C; 6 =
0.352, P-value < 0.001, Fig. 1D). When these variations were classified into SNVs and

indels, they showed a significant positive correlation with the number of subclones (Table

A B
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Figure 1. Relationship between mutations and subclones that constituted a tumor. (A)
Distribution of total mutations in TCGA-LUSC. (B) Distribution of total mutations in
TCGA-LUAD. (C) A violin plot showing the total number of mutations according to the
number of subclones in TCGA-LUSC. The total number of mutations and the number of
subclones were positively correlated (Pearson’s correlation efficiency, 6 = 0.376, P-value
< 0.001). (D) A violin plot showing the total number of mutations according to the number
of subclones in TCGA-LUAD. The total number of mutations and the number of subclones

were positively correlated (Pearson’s correlation efficiency, o = 0.352, P-value < 0.001).
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Table 5. Relationship between the number of subclones and variants.

Number of subclones

Correlation
2 3 4 5 coefficienc
LUSC P-value”
(n=143) (n=182) (n=107) (n=37) (n=12) y (o)
Subtypes of mutations
126 183 266 314 318.5
SNV (685~ (1235~ (200.5- (210.0- (261.8- 0.389 <0.001
205.5) 287.3) 373.0) 378.0) 436.0)
3.0
1.0(0.0- 1.0(0.0- 1.0(0.0-
Indel (1.0 (1.0- 0.241 <0.001
1.5) 2.0) 3.0)
3.0) 4.0)
2 3 4 5and 6
LUAD
(n=200) (n=162) (n=97) (n=29) (n=5)
85.5 142 303 402 496
SNV (31.0- (67.3— (176— (261- (359- 0.351 <0.001
225.5) 280.8) 460) 713) 594)
10 (6~ 14(9- 21(17-
Indel 4(2-8) 5(3-10) 0.266 <0.001
16) 29) 28)

“P-value obtained using the Kruskal-Wallis test.

SNV, single nucleotide variants

C. The number of subclones and their association with clinical characteristics

(1) Tumor stage

The staging system is still the most useful parameter for predicting the clinical outcome

in patients with lung cancer. We compared the number of subclones with the lung cancer

stage and discovered that there was a significant positive correlation between the number

of subclones and stage in both LUSC and LUAD (o = 0.099, P-value = 0.030, Fig. 2A; 6 =
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0.091, P-value = 0.044, Fig. 2B). The fact that the number of subclones comprising a
primary tumor is positively related to the number of variants and the stage of the
corresponding tumor suggests that the number of subclones reflects the biological aspect

of a tumor.

p-value=0.030 p-value=0.044
0=0.099 " ) . 0=0.091

'
Number of subclones

Number of subclones
1)

? Tumor stage ’ ‘ ) Tumor stage
Figure 2. Scatter plot showing the relationship between the tumor stage and the number of
subclones. (A) The tumor stage and the number of subclones were positively correlated in
LUSC (Pearson’s correlation efficiency, o = 0.099, P-value = 0.030). (B) The tumor stage
and the number of subclones were positively correlated in LUAD (Pearson’s correlation

efficiency, 6 = 0.091, P-value = 0.044).

(2) Smoking
Since smoking is one of the leading causes of lung cancer induced by C>A transversions
of DNA, we divided the patients into never smokers and ever-smokers and compared the

number of subclones between the two groups. Tumors of ever-smokers comprised a
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significantly larger number of subclones than never smokers in both LUSC and LUAD (Fig.

3A, Fig. 3B, and Table 6).

ol p =0.0005
N p = 0.0420

&

Number of subclones
w

Number of subclones
w

Never smoker Ever Smoker Never smoker Ever Smoker
Smoking history Smoking history

Figure 3. The relationship between smoking and the number of subclones.
(A) A box plot showing the difference in the number of subclones according to smoking
history in LUSC. (B) A box plot showing the difference in the number of subclones

according to smoking history in LUAD.

Table 6. The relationship between smoking and the number of subclones.

LUSC LUAD
Number
Never- Never- Ever-
of Ever-smoker P- P-
smoker . smoker smoker .
subclones (n=453) value value
(n=18) (n=67) (n=413)
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11 156
1 128 (28.3%) 0.037 39 (58.2%) <0.001

(61.1%) (37.8%)
2 136
2 177 (39.1%) 20 (29.9%)
(11.1%) (32.9%)
4
3 100 (22.1%) 5(7.5%) 90 (21.8%)
(22.2%)
4 1(56%) 36 (7.9%) 3(45%) 26 (6.3%)
5 0(0.0%) 12 (2.6%) 0(0.0%) 4 (1.0%)
6 - - 0(0.0%)  1(0.2%)

Values are expressed as numbers (%)

“P-value was obtained using the Kruskal-Wallis test.

(3) Age
As age-related mutations were observed in most malignancies, including lung cancer, and
there was a significant positive correlation between lung cancer incidence and age %, the
relationship between age at diagnosis of lung cancer and the number of subclones was
investigated. Age at diagnosis and the number of subclones did not show a significant

correlation with either LUSC or LUAD (Fig. 4).
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Figure 4. The relationship between age and the number of subclones.
(A) A violin plot showing age according to the number of subclones in LUSC. (B) A
violin plot showing age according to the number of subclones in LUAD.
(4) Sex
Finally, the influence of sex on the increase in the number of subclones was investigated.
The number of subclones constituting a tumor was significantly higher in male patients

than in female patients with both LUSC and LUAD (P = 0.001, Fig. 5A; P = 0.005, Fig.

5B).
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Figure 5. The relationship between sex and the number of subclones.
(A) A box plot illustrating the difference in the number of subclones according to sex in
LUSC. (B) A box plot illustrating the difference in the number of subclones according to

Sex in LUSC

D. Inferring clonal expansion via DEG

An additional analysis was performed using RNA sequencing data to uncover the possible
etiology by increasing the number of subclones that constituted a tumor. Using propensity
score matching of the “Matchlt” R package, the cases in which tumors were composed of
five or more subclones were matched with those in which the tumor was composed of a
single subclone by age, sex, pack-years, and stage. After performing three independent
matching and DEG analyses, we obtained a set of intersections from the results of each
analysis and performed gene ontology analysis using ToppGene. DEG analysis revealed

707 genes upregulated in tumors composed of five subclones compared to single subclone
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tumors in LUSC and 851 genes upregulated in tumors composed of five and six subclones
compared to single subclone tumors in LUAD. Among these genes, 49 were upregulated
in LUSC and LUAD. Three genes commonly having a low p-value and a high log 2-fold
change value in the DEG analysis of LUSC and LUAD were selected as candidate genes
involved in clonal expansion: MTAL, which is involved in the cellular component
organization or biogenesis; FGD1, which is involved in cell death; and MSI1, which is

involved in developmental processes.

Table 7. Gene ontology of high-ranked commonly upregulated genes in LUSC and LUAD

Gene ontology of biological process Gene

Metabolic process FOLH1, NAT8L
Developmental process FBN2, HOXB9, MSI1, HOXDS8
Regulation of secretion by cell RAB3B, STXBP5L, NOS1
Regulation of cell signal transduction FRRSI1L, GNG4, OTX2

Cell component organization or biogenesis MTA1

Cell death FGD1

E. Clinical implications of three candidate genes
Survival correlations with these genes were evaluated using oncolLnc

(http://www.oncolnc.org). The upper 25% and lower 25% of patients were extracted from

TCGA-LUSC and LUAD cohorts, respectively.
In LUSC, the upper and lower 25% of patients were matched by age, sex, pack-years, and
stage. Patients with high expression of MTAL1 showed significantly better survival

probability (log-rank p-value = 0.042). In contrast, FGD1 and MSI1 did not show
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differences between the high and low gene expression groups (Fig. 6). However, although
not statistically significant, the high gene expression group tended to have a better survival
probability in both FGD1 and MSIL1.

In LUAD, the upper and lower 25% of patients were matched by age, sex, pack-years, stage,
and major driver mutations (EGFR and KRAS). There was no significant difference
between the high and low expression groups for all three candidate genes, i.e., MTAL,

FGD1, and MSI1 (Fig. 7).
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Figure 6. Survival probability of TCGA-LUSC patients, stratified by MTA1, FGD10. and

MSI1 expression level.
(A-C) Distribution of propensity scores of the high (> 25%) and low (< 25%) gene
expression groups (MTAL, FGD1, and MSI1).

(D—F) Kaplan—Meier survival plot stratified by gene expression levels.
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Figure 7. Survival probability of TCGA-LUAD patients, stratified by MTA1, FGD1, and
MSI1 expression level.

(A—C) Distribution of propensity scores of the high (>25%) and low (<25%) gene
expression groups (MTAL, FGDL1, and MSI1).

(D-F) Kaplan—Meier survival plot stratified by gene expression levels.

2. In vitro cell culture experiment
A. Immunohistochemistry (IHC)
To confirm whether the three genes selected as candidate biomarkers involved in the clonal
expansion were expressed in NSCLC tissues, IHC analysis was performed on formalin-
fixed paraffin-embedded NSCLC tissues. FGD1 and MSI1 were well expressed in the

cytoplasm of tumor cells, and MTA1 was well expressed in the nucleus (Fig. 8).
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Figure 8. Representative photographs of IHC staining in NSCLC tissues.

B. Culture of gene-transfected NSCLC cell
MTAL, FGD1, and MSI1 genes were transfected into NSCLC cell lines (H460 and A549),
and the expression of specific proteins was confirmed by western blotting (Fig. 9).

However, the cells were not viable in three repetitive culture experiments.

H460 A549 H460 H460 A549
- — - MTA1 . & FoD1 “ e s s
— S @ (-ACTIN w—— (-ACTIN S @~ B-ACTIN

Figure 9. Western blot analysis showing the expression of three candidate genes in H460

and A549 cells.
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The results of cell culture experiments showed that cells do not survive after the
transfection of candidate genes. Survival analysis of TCGA-LUSC data showed better
survival trends in patients with higher expression levels of candidate genes. We speculated
that cancers with high clonality might induce more inflammation to promote cancer
immune surveillance. In this process, we hypothesized that innate immunity, which serves
as the first-line host defense against neoantigens, plays an important role. Therefore, we
analyzed the scRNA-seq data to depict the myeloid lineage and determine the influence of
smoking exposure, which was found to be associated with clonal expansion through TCGA

data analysis.

3. sScCRNA-seq analysis
A. Single-cell transcriptomic profiling of LUAD in relation to smoking

A total of 21 samples were obtained from the 12 patients (Fig. 10A). After quality control,
109,962 cells were initially divided into seven major cell groups: epithelial, endothelial,
myeloid, B cell, T cell, fibroblast, and mast cells (Fig. 10B, Fig. 10C).

To refine cancer cells and determine the proportion of myeloid cells in the tumor
microenvironment, the proportion of myeloid cells was evaluated in all six major cell types,
except for clusters with epithelial features (high expression of EPCAM and KRT18). T cells
account for the largest portion of the TME, followed by myeloid cells. Myeloid cells were
more frequently detected in current smokers than in never smokers in both normal and
tumor lungs (Fig. 10D-G). In normal lungs, the proportion of myeloid cells was 29% higher
in current smokers than in never smokers. In contrast, in the tumor lung, the proportion of
myeloid cells was 14% higher in current smokers than in never smokers. These results

suggest that the increase in the proportion of myeloid cells caused by smoking was more
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pronounced in the normal lung than in the tumor-affected lung.
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Figure 10. Overview of the dataset, single-cell RNA sequencing analysis, and clustering of

major cell types. (A) Overview of dataset construction. (B) UMAP (Uniform Manifold

Approximation and Projection) embedding of 109,962 cells clustered by major lung cell

lineages (C) Heatmap showing representative marker genes of the major cell lineages (D)
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Horizontal bar plots showing the number of cells belonging to each cluster by tissue origin
(E-G) Stacked column chart and table showing the proportion of cells belonging to the

major cell cluster by smoking status (from left to right total, normal, tumor)

B. Cellular diversity in the myeloid lineage

Overall, 23,432 myeloid cells were clustered into 12 subclusters (Fig. 11). Classic
monocytes express high levels of alarmins (S100A8 and S100A12) and proinflammatory
cytokines (IL1B), which play a significant role in inflammation. Nonclassical monocytes
express high levels of cyclin-dependent kinase inhibitor 1C (CDKNI1C), a potent inhibitor
of Glcyclin/cdk complexes, which negatively regulate cell proliferation. CDKNI1C acts as
a tumor suppressor gene.” The adjacent ““monocyte-derived macrophage (mono-mac)”
population showed a less distinct phenotype, which is indicative of a transitory
differentiation state.
We identified four different types of macrophages. M2-like Macrophage-1 expresses high
levels of the scavenger receptor macrophage receptor with collagenous structure
(MARCO), which regulates macrophage polarization toward the immunosuppressive M2
phenotype.?*? M2-like Macrophage-2 expressed high levels of ‘inhibin beta A” (INHBA),
amember of the TGF-f family that also contributes to the M2 phenotype. Pro-inflammatory
macrophages express pro-inflammatory cytokines (CXCL10). Finally, “proliferating
macrophages” express cell-cycle-related genes (MKI167, TOP2A, and NUSAP1).

We identified three types of dendritic cells (DCs). The conventional DC (cDC) 1 highly
expressed CLEC9A. In contrast, cDC2 highly expressed CD1 and CLEC10A. CLEC9A
and CLEC10A belong to the family of C-type lectin-like receptors (CTLR), responsible for

recognizing sugar structures in bacteria and cancer cells. After capturing antigens, DCs are
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activated, express higher levels of chemokine receptors, such as CCR7, and secrete
cytokines, which are essential for T cell activation.?® DCs expressing high levels of CCR7
are referred to as activated DCs.?’

We also found NK cells that highly expressed cytotoxic genes (NKG7, GNLY,
GZMA, GZMB, and GZMH) and chemokine gene CCLS5, which recruit T cells and other

immune cells by binding to CCR5.%
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Figure 11. Subclustering of myeloid cell lineages. (A) UMAP visualization of myeloid cell

lineages colored by cell type. (B) Heatmap showing representative marker genes of the
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myeloid subclusters. (C—E) Stacked column chart showing the proportion of cells
belonging to the major cell cluster by smoking status (from left to the right, total, normal,

tumor)

C. Effect of smoking on the myeloid cells in tumorigenesis

To understand the effect of smoking on the myeloid cell population during tumorigenesis,
we explored the myeloid cell proportion shift in tumors compared to normal tissues by
smoking status. Among the 12 subclusters in myeloid cells, classical monocytes, non-
classical monocytes, M2-like macrophages 1, and pro-inflammatory macrophages showed
significant differences between current smokers and never smokers in the myeloid cell
proportion shift during tumorigenesis (Fig. 12).

The level of M2-like Macrophage 1 decreased during tumorigenesis in smokers. In
contrast, no significant change was observed in never smokers. Classical monocytes
increased during tumorigenesis in smokers, while those in never smokers were unaffected
by tumorigenesis. The proportion of non-classical monocytes and pro-inflammatory
macrophages in smokers was unaffected by tumorigenesis, whereas that of never smokers

decreased during tumorigenesis.
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Figure 12. The relative proportion of myeloid cell population shift during tumorigenesis
(A) M2-like Macrophage 1, (B) Classical monocyte, (C) Nonclassical monocyte, (D)

Proinflammatory macrophage.

IV. DISCUSSION

In this study, we discovered that intratumor heterogeneity inferred from the number of

subclones constituted a tumor positively correlated with the number of somatic variants
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and cancer stage. The number of subclones was significantly higher in males (vs. females)
and smokers (vs. never smokers), whereas age did not significantly correlate with the
number of subclones. Through DEG analysis, we selected MTAL, FDG1, and MSI1 as
candidate genes for inferring clonal expansion. We could not determine whether these
genes induced ITH in NSCLC cell lines because of the inviability of the gene-transfected
cell lines. With the speculation that high clonality of cancer could act as neoantigens that
increase the inflammatory response, we further analyzed myeloid lineage in sSCRNA-seq
data. We found that the proportion shift during tumorigenesis of monocytes and pro-
inflammatory macrophages increased in smokers, a clinical characteristic associated with
high clonality.

Inflammation is involved in cancer development and progression, as well as in anti-
cancer treatment.?**° Inflammation has two opposing roles in cancer: promotion and
inhibition. Chronic inflammation induces immunosuppression, creating a favorable
microenvironment for tumorigenesis. Epidemiologic studies have reported that up to 25%
of cancers are related to chronic inflammatory disease.3 In contrast, acute inflammation
contributes to cancer cell death.®® The immune system can recognize and destroy tumor
cells in cancer surveillance, and acute inflammation can promote this process.

The tumor cell heterogeneity could be associated with treatment failure and drug
resistance. However, from the perspective of the TME, the heterogeneity of tumor cells
acts as neoantigens, causing inflammation in the tumor microenvironment and promoting
cancer immune surveillance, leading to better survival outcomes. 3032

Our results of TCGA-LUSC survival analysis suggest that a better survival outcome in
high clonality cancer might be explained by the inflammatory response caused by innate

immunity that serves as an initial defense against nascent tumor neoantigens. Further
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scCRNA-seq analysis revealed that pro-inflammatory myeloid subclusters significantly
increased and anti-inflammatory myeloid subclusters significantly decreased during
tumorigenesis in current smokers. Such crosstalk between inflammatory processes in the
tumor microenvironment and cancer cells may explain the better survival outcome in high
clonality cancers.

Moreover, upon analyzing the survival of the TCGA-LUAD cohort according to FCN1
expression level, which is highly expressed in classical monocytes, mortality was found to
be significantly lower in patients with high expression of FCN1. Classical monocytes have
a high expression of pro-inflammatory cytokine genes, such as IL-B, and are immature
cells with high plasticity that can differentiate into DCs and macrophages.? Further
research is needed to determine whether the enhancement of the pro-inflammatory response

can be used as a treatment with antitumor effects.

V. CONCLUSION

Our study revealed that intratumor heterogeneity inferred from the number of subclones
was positively correlated with the number of somatic variants and cancer stage. Male sex
and smoking were found to be associated with high clonality. ITH may induce
inflammation in the microenvironment. However, the association between ITH and better
survival outcomes should be interpreted cautiously, and further studies are warranted to

clarify the theoretical basis of ITH and inflammation.
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