

Sex difference in effectiveness of early rhythm- over rate-control in patients with atrial fibrillation

Dongseon Kang

Department of Medicine

The Graduate School, Yonsei University

Sex difference in effectiveness of early rhythm- over rate-control in patients with atrial fibrillation

Dongseon Kang

Department of Medicine

The Graduate School, Yonsei University

Sex difference in effectiveness of early rhythm- over rate-control in patients with atrial fibrillation

Directed by Professor Boyoung Joung

Boyoury Jourg

The Master's Thesis submitted to the Department of Medicine, the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Master of Medical Science

Dongseon Kang

December 2022

This certifies that the Master's Thesis of Dongseon Kang is approved.

Thesis Supervisor : Boyoung Joung

[Signature]

Thesis Committee Member#1 : Hee Tae Yu

[Signature]

Thesis Committee Member#2 : Jung-Hoon Sung

The Graduate School Yonsei University

December 2022

ACKNOWLEDGEMENTS

The authors would like to thank the NHIS for their cooperation. We also would like to thank Na-hye Kim for her linguistic assistance

<TABLE OF CONTENTS>

ABSTRACT	iv
I. INTRODUCTION	1
II. MATERIALS AND METHODS	2
1. Study design and population	2
2. Outcome and follow-up	7
3. Statistical analysis	9
4. Sensitivity analysis	11
III. RESULTS	11
1. Baseline characteristics	11
2. Sex difference of the primary composite outcome according to the timing of	
rhythm control	17
3. Sensitivity analyses	21
IV. DISCUSSION	25
V. CONCLUSION	29
REFERENCES	- 30
ABSTRACT(IN KOREAN)	33
PUBLICATION LIST	35

<LIST OF FIGURES, LIST OF TABLES>

LIST OF FIGURES

Figure 1. Flow chart 4
Figure 2. Distributions of the propensity scores before and after overlap
weighting 10
Figure 3. Relationship between treatment timing and primary composite
outcome risk 17

LIST OF TABLES

Table 1. Summary of strategies for emulating target trial2
Table 2. Definitions and ICD–10 codes used for defining comorbidities,
rate- and rhythm-control methods for atrial fibrillation 6
Table 3. Definitions and ICD-10 codes used for defining study outcomes
7
Table 4. Baseline characteristics of men and women treated with
rhythm- or rate control before overlap weighting 12
Table 5. Baseline characteristics of men and women treated with
rhythm- or rate control after overlap weighting15
Table 6. Relative effect of rhythm control over rate control on primary

composite outcome after overlap weighting 18
Table 7. Relative effect of rhythm control over rate control on individual
components of the primary composite outcome after overlap
weighting 19
Table 8. Relative effect of rhythm over rate control on safety outcomes
after overlap weighting 20
Table 9. The relative effect of rhythm control over rate control on
primary composite outcome in men and women after 1:1 propensity
score matching 22
Table 10. The relative effect of anti–arrhythmic drugs over rate control
on primary composite outcome in men and women according to timing
of treatment initiation after overlap weighting 23
Table 11. Risk of 24 falsification endpoints in weighted male and female
patients undergoing rhythm control compared with rate control 24

ABSTRACT

Sex difference in effectiveness of early rhythm- over rate-control in patients with atrial fibrillation

Dongseon Kang

Department of Medicine The Graduate School, Yonsei University

(Directed by Professor Boyoung Joung)

Background: This study aimed to investigate the associations between sex and the relative effect of rhythm control over rate control in patients with atrial fibrillation. Methods: We used the National Health Insurance Service database to select patients treated for atrial fibrillation within one year after diagnosis. The primary composite outcome comprised cardiovascular death, ischemic stroke, heart failure hospitalization, or acute myocardial infarction. Results: During the mean follow-up (4.9 ± 3.2 years), the benefit of rhythm control over rate control on the primary composite outcome became statistically insignificant after 3 months from atrial fibrillation diagnosis in women while remained steadily until 12 months in men. The risk of primary composite outcome for rhythm control was lower than that for rate control in both sexes if it was initi-ated within 6 months (men: hazard ratio 0.86, 95% confidence interval 0.79-0.94; women: hazard ratio 0.85, 95% confidence interval 0.78-0.93; P for interaction = 0.84). However, there was significant interaction between sex and the relative effect of rhythm control if it was initiated after 6 months (men: hazard ratio 0.72, 95% confidence interval 0.52–0.99; women: hazard ratio 1.32, 95% confidence interval 0.92-1.88; P for interaction = 0.018). Conclusion: Rhythm control resulted in lower risk of primary composite outcome than rate control in both sexes; however, the treatment initiation at an earlier stage might be considered in women.

Key words : atrial fibrillation; early rhythm control; cardiovascular outcome

Sex difference in effectiveness of early rhythm- over rate-control in patients with atrial fibrillation

Dongseon Kang

Department of Medicine The Graduate School, Yonsei University

(Directed by Professor Boyoung Joung)

I. Introduction

Atrial fibrillation (AF) is associated with increased risks of stroke, congestive heart failure (HF), and mortality.¹ Rhythm control and rate control are representative treatment strategies for atrial fibrillation and previous randomized trials have attempted to demonstrate differences in long-term outcomes between the two strategies. The landmark Atrial Fibrillation Follow-up Investigation of Sinus Rhythm Management (AFFIRM) trial reported no significant differences between these two strategies with respect to mortality and stroke incidence.²⁻⁴ Similarly, a meta-analysis of randomized clinical trials com-paring rate and rhythm control showed no significant differences in the risk of all-cause death.⁵ In contrast, recent studies have demonstrated that early rhythm control (defined as rhythm control initiated ≤ 12 months from AF diagnosis) compared to rate control in patients with AF is associated with a lower risk of the first primary outcome, comprising stroke, HF hospitalization, acute coronary syndrome, and cardiovascular death.⁶⁻⁸

Many studies highlighten sex differences in the epidemiology, pathophysiology, and prognosis of AF.¹ In this regard, several studies have demonstrated that despite the tendency of women to be more symptomatic compared to men, they are less likely to undergo rhythm control.⁹⁻¹² In women with AF, the use of antiarrhythmic drugs (AADs) were associated with higher rate of life-threatening adverse events.¹³ Moreover, female sex was associated with higher AF recurrence rates after radiofrequency ablation compared to male sex, which

may influence the effectiveness of AF treatment.¹⁴ However, the effect of sex differences on outcomes of rhythm and rate control has not been well elucidated yet. Similarly, it is not clear whether the effect of timing of treatment initiation (duration from AF diagnosis to the first initiation of rhythm or rate control) on outcomes is affected by sex differences. Therefore, this study was designed to analyze the effect of sex on the compara-tive effectiveness of early rhythm control over rate control and clarify whether sex makes a difference in the timing of treatment initiation to improve cardiovascular outcomes.

II. Materials and methods

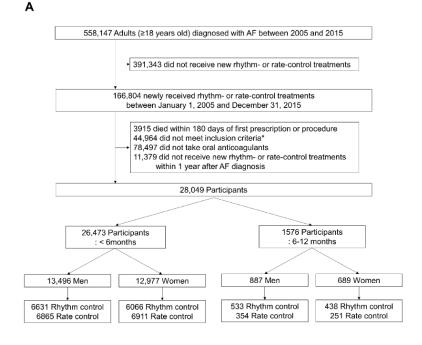
1. Study design and population

This retrospective cohort study was based on the National Health Claims Database established by the National Health Insurance Service (NHIS) of Korea, which incorporates the data of 558,147 participants recruited from a total of 5.5 million individuals aged ≥ 60 years included in the database.

Table 1 presents the details of this study design. Adults (age ≥ 18 years) who were treated for AF within one year after AF diagnosis between January 1, 2005 and December 31, 2015, were screened.

Components	Target trial (EAST-AFNET4)	This study
Inclusion period	28 July 2011 – 30 December 2016	1 January 2005 – 31 December 2015
Eligibility criteria	 Adults (≥18 years of age) who were older than 75 years of age, had had a previous transient ischemic attack or stroke, or met two of the following criteria: age greater than 65 years, female sex, heart failure, hypertension, diabetes mellitus, severe coronary artery disease, chronic kidney disease, and left ventricular hypertrophy Early AF (diagnosed ≤12 months before enrolment) 	 Selected adults (≥18 years of age) that received a rhythm-control or rate-control treatments within 12 months after AF diagnosis Participants have no prior history of prescriptions and no records of ablation in the database who were older than 75 years of age, had a previous transient ischemic attack or stroke, or met two of the following criteria: age greater than 65 years, female sex, heart failure, hypertension, diabetes mellitus, myocardial infarction, and chronic kidney disease Undergoing oral anticoagulation (>90 days of supply within 180 days after their first recorded prescription of rhythm- or rate-control medications or ablation procedure)

Table 1 Cummon	of atmatarias	for amulating	tomast trial
Table 1. Summary	of strategies	for emulating	larget that



Exposed group	Rhythm control: AADs, AF ablation, cardioversion of persistent AF, to be initiated early after randomization	Rhythm control: a prescription of more than a 90-day supply of any rhythm–control drugs in the 180-day period since the first prescription or the performance of an ablation procedure for AF.			
Unexposed group	Usual care: initially treated with rate-control therapy without rhythm-control therapy	Rate control: a prescription of more than a 90-day supply of any rate-control drugs in the 180-day period since the first prescription and with no prescription of rhythm-control drug and no ablation within this period. Patients prescribed rhythm-control drugs for more than 90 days or who underwent ablation within the 180-day period since the initiation of rate-control drugs were classified as intention-to-treat with rhythm control.			
Primary outcome	 A composite of death from cardiovascular causes, stroke, or hospitalization with worsening of heart failure or acute coronary syndrome The number of nights spent in the hospital per year. 	A composite of death from cardiovascular causes, ischemic stroke, hospitalization for heart failure, or acute myocardial infarction			
Secondary outcome	Each component of the primary outcome, rhythm, left ventricular function, quality of life, AF-related symptom	Each component of the primary outcome			
Safety outcome	A composite of death from any cause, stroke, or pre- specified serious adverse events of special interest capturing complications of rhythm-control therapy	A composite of death from any cause, intracranial or gastrointestinal bleeding requiring hospitalization, or pre-specified serious adverse events of special interest capturing complications of rhythm-control therapy			
Follow-up From randomization until the end of the tria or withdrawal from the trial.		From 180 days after their first recorded prescription or procedure to avoid immortal time bias until the end of follow-up of the database (31 December 2016) or death.			

AAD, antiarrhythmic drug; AF, atrial fibrillation.

Inclusion criteria were as follows: individuals aged \geq 75 years; individuals with a previous transient ischemic attack or stroke; and those who at least met two of the following criteria: age \geq 65 years, women, hypertension, diabetes mellitus, HF, previous myocardial infarction (MI), or chronic kidney disease.^{6,8} Accordingly, patients were excluded from the study if within a six-month period from the initiation of AF treatment, did not receive adequate oral anticoagulants (for at least three months) or died. (Figure 1A).

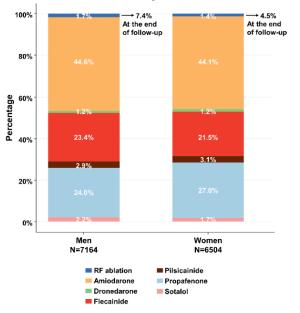


Figure 1. Flow chart. Selection of study participants (A) and initial rhythm control strategies ac-cording to sex and the timing of treatment initiation (B). *Age \geq 75 years, previous transient ischemic attack or stroke, or two of the following criteria: age \geq 65 years, women, hypertension, diabetes mellitus, heart failure, previous myocardial infarction, or chronic kidney disease. AF, atrial fibrillation.

The Tenth Revision of International Classification of Disease (ICD-10) code I48 was used to define AF. The positive predictive value for AF diagnosis was 94.1% in the NHS database.¹⁵ We adopted a new-user and intention-to-treat design to compare outcomes of rhythm- or rate control. Patients who have never been prescribed the drugs of interest or undergone radiofrequency ablation for AF were regarded as new users. Intention-to-treat with rhythm control was defined as performance of radiofrequency ablation or over threemonths' administration of any AADs within the six-month period since the first prescription. Intention to treat with rate control was defined as a prescription any rate control drugs for at least three months within a six-month period since the first prescription, without prescription of AADs and radiofrequency ablation. Accordingly, patients who had received both rhythm- and rate control simultaneously were regarded as the rhythm control group. Claim codes for antiarrhythmic- and rate control drugs, and radiofrequency ablation are demonstrated in Table 2. To assess the effect of the timing of treatment initiation, patients were divided into two groups as following: AF treatment initiation <6 months group and ≥ 6 months group after AF diagnosis.

Table 2. Definitions and ICD–10 codes used for defining comorbidities, rate- and rhythmcontrol methods for atrial fibrillation

Comorbidities	Definitions	ICD-10 codes or conditions				
Atrial fibrillation	Defined from diagnosis ^a	I48				
Heart failure	Defined from diagnosis ^a	ICD-10: I11.0, I50, I97.1				
Previous hospitalization	Defined from principal or first secondary	ICD-10: I11.0, I50, I97.1				
for heart failure	admission diagnoses of heart failure					
		110, 111, 112, 113, 115				
Hypertension	Defined from diagnosis ^a plus treatment	Treatment: all kinds of blood pressure lowering				
		medications (>1 month).				
Diabetes mellitus	Defined from diagnosis ^a plus treatment	E10, E11, E12, E13, E14 Treatment: all kinds of oral antidiabetics and insulin				
Dyslipidemia	Defined from diagnosis ^a	E78				
Ischemic stroke	Defined from diagnosis ^a	ICD-10: I63, I64				
Transient ischemic attack	Defined from diagnosis ^a	ICD-10: G45				
Hemorrhagic stroke	Defined from diagnosis ^a	ICD-10: I60, I61, I62				
Myocardial infarction	Defined from diagnosis ^a	ICD-10: I21, I22, I25.2				
Peripheral arterial disease	Defined from diagnosis ^a	I70, I71				
Valvular heart disease	Defined from diagnosisa mitral stenosis or	ICD-10: I05.0, I05.2, I34.2, Z95.2-4				
	claims for heart valve surgery	Claim for valve replacement or valvuloplasty: 01781, 01782, 01783, 01791, 01792, 01793, 01797, 01794,				
		01795, 01796, 01798				
Chronic kidney disease	Defined from eGFR (if laboratory value	eGFR <60 mL/min per 1.73 m ²				
5	was not available, diagnosis code was used)	N18, N19				
Rate- and rhythm control for						
fibrillation (available in South Korea)	Definitions	ICD-10 codes or conditions				
Rate control						
Kate control	standal bissonalal					
	atenolol, bisoprolol, carvedilol, metoprol,					
Beta-blocker	nebivolol, propranolol,					
	labetalol					
Calcium channel blocker	diltiazem, verapamil					
Cardiac glycosides	digoxin					
Rhythm control	digonii					
*	flecainide, pilsicainide,					
Class Ic	propafenone					
~ ~ ~	amiodarone, dronedarone,					
Class III	sotalol					
		ICD-10: I48				
	Defined from admission	Claim codes: M6542 (Conventional Radiofrequency				
Catheter ablation for AF	diagnosis of AF plus	Ablation of Atrial fibrillation) or M6547 (Radiofrequenc				
	claims for ablation	Ablation of Atrial fibrillation Through Intracardiac				
	procedures	Electrophysiologic 3-Dimensional Mapping)				
	Defined from diagnosis of	ICD-10: I48				
Cardioversion	AF plus claims for					
Curdio (Cibioli	cardioversion	Claim codes:M5880				

^aTo ensure accuracy, diagnosis was established based on one inpatient or two outpatient records of ICD-10 codes in the database.

AF, atrial fibrillation; ICD, International Classification of Diseases-10th revision; eGFR, estimated glomerular filtration rate

2. Outcome and follow-up

The primary composite outcome constituted of is chemic stroke, HF hospitalization, acute MI, and cardiovascular death. We also examined the risks of each component of the primary composite outcome. The definition of the outcomes is detailed in Table 3.

Outcomes	Definitions	Codes or conditions	PPV
Primary composite outcome			
Cardiovascular death ^a			
Ischemic stroke	Defined from admission diagnosis with concomitant imaging studies of the brain or related death	ICD-10: I63, I64	90.6% ^b (2347/2591)
Hospitalization for heart failure	Defined from principal or first secondary admission diagnoses of heart failure	ICD-10: I11.0, I50, I97.1	82.1% ^b (110/134)
Acute myocardial infarction	Defined from admission diagnosis of acute myocardial infarction concurrently with coronary angiography or related death	ICD-10: 121, 122	86.5% ^c (4054/4688)
Safety outcomes			
All-cause death ^d			
Intracranial bleeding	Defined from admission diagnosis with concomitant imaging studies of the brain or related death	ICD-10: I60–I62	87.5% ^b (286/327)
Gastrointestinal bleeding Defined from admission diagnosis or related death		ICD-10: K25–28 (subcodes 0–2 and 4–6 only), K62.5, K92.0, K92.1, K92.2, I85.0, I98.3	92.0% ^e (184/200)
Serious adverse events related to rhythm control			
Cardiac tamponade	Defined from claims for pericardiocentesis	Claim codes:C8060, C8061	_
Syncope	Defined from either one diagnosis during hospitalization or more than twice at outpatient clinics	ICD-10: R55.x	-
Sick sinus syndrome	Defined from either one diagnosis during hospitalization or more than twice at outpatient clinics	ICD-10: I495.	91.1% ^b (307/337)
Atrioventricular block Defined from either one diagnosis during hospitalization or more than twice at outpatient clinics		ICD-10: I44.1, I44.2, I44.3, I45.3, I45.8, I45.9	95.7% ^b (264/276)
Pacemaker implantation Defined from claims for pacemaker implantation		Claim codes: O2003, O2004, O0203, O0204, O0205, O0206, O0207	-
Sudden cardiac arrest	Defined from admission diagnosis or related death ^f	ICD-10: I46, I49.0	80.2% ^g (586/731)

Table 3. Definitions and ICD-10 codes used for defining study outcomes

PPV was represented as % (number of true positive cases / number of examined cases). ^aDefined as a death mainly due to ischemic stroke, heart failure, or acute myocardial infarction, similar to our previous studies (Kim, D. et al. Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: data from a population–based cohort. Eur Heart

J. 2019;40(28):2313–2323.; Yang, PS. et al. Changes in Cardiovascular Risk Factors and Cardiovascular Events in the Elderly Population. J Am Heart Assoc. 2021;10(11):e019482.). ^bAuthors conducted a validation study using hospital administrative data from two tertiary hospitals. ^cValidated in a study by Lee, HY. et al. (Atrial fibrillation and the risk of myocardial infarction: a nation-wide propensity-matched study. Sci Rep 2017;7(1):12716). ^dInformation on death (date and causes) was confirmed from the National Population Registry of the Korea National Statistical Office, which conducts central registration of death based on death certificates. It is a national agency covering the entire Korean population. "Validated in a study by Park, J. et al. (Validation of diagnostic codes of major clinical outcomes in a National Health Insurance database. Int J Arrhythm 2019;20:5). ^fTo avoid erroneous inclusion of the patients with non-cardiac arrest, we excluded the patient with sudden arrest diagnosis accompanied by respiratory arrest (R09.0, R09.2), gastrointestinal bleeding (I85.0, K25.0, K25.4, K26.0, K26.4, K27.0, K27.4, K92.0–K92.2), brain hemorrhage (I60.x–I62.x, S06.4–S06.6), septic shock (A41.9, R57.2), pregnancy and delivery (O00-O99), diabetic ketoacidosis (E14.1), anaphylaxis (T78.2), and accidents including suicide (T71, T75.1, T36-T65, V80-V89, W76.x, X60-X84). ^gValidated in a study by Kim, IJ. et al. (Relationship Between Anemia and the Risk of Sudden Cardiac Arrest - A Nationwide Cohort Study in South Korea. Circ J 2018;82(12):2962-9)

The composite safety outcome consisted of all-cause death, intracranial or gastrointestinal bleeding that required hospital admission, or prespecified serious adverse events related to rhythm control. Accordingly, cardiac tamponade, syncope, sick sinus syndrome, atrioventricular block, pacemaker implantation, and sudden cardiac arrest were defined as prespecified serious adverse events related to rhythm control. The study outcomes were followed up from 180 days after the first recorded prescription or procedure until December 31, 2016, or death. Details of the variables are also presented in Table 2.

3. Statistical analysis

Descriptive data were reported as means (standard deviations) for continuous variables and numbers (percentages) for categorical variables. After dividing into two groups according to treatment initiation, overlap weighting based on a propensity score (ps) was used to assess the differences in baseline characteristics between the rhythm- and rate control groups among men and women, respectively. The propensity score, which indicates the probability of being assigned to a rhythm control group, was calculated by lo-gistic regression analysis based on socio-demographic factors, AF duration, year in which treatment was initiated, level of care at which the AF treatment was provided, clinical risk scores, medical history, and concurrent medication use (variables in Table 4). Continuous variables were modelled as cubic spline functions. Figure 2 depicted the distribution of propensity scores before and after overlap weighting, respectively.

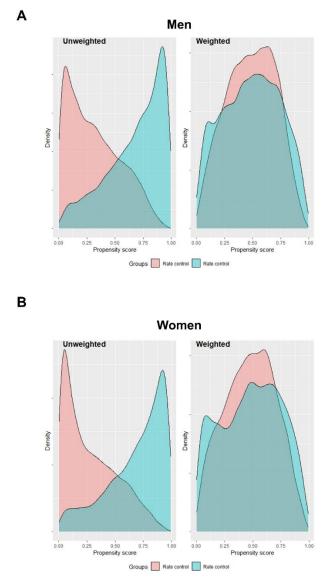


Figure 2. Distributions of the propensity scores in men (A) and women (B) before and after overlap weighting.

The overlap weight was calculated as '1-ps' in rhythm control groups and as 'ps' in rate control groups.¹⁶ A standardized mean difference < 0.1 was considered to indicate acceptable differences in all baseline variables between the two groups. Competing risk regression by the Fine and Gray method was used to consider all-cause death as a competing event when estimating the risks of clinical outcomes.¹⁷ Cofactors with a standardized mean difference of 0.1 or more after weighting were included as covariates in the competing risk regression analysis. Schoenfeld residuals were used to evaluate the proportional hazards assumption and violation of the assumption was not found. To explore the treatment timing-dependent effect of rhythm control on the out-comes, Cox proportional hazards models were fit to the entire weighted study population using an interac-tion term for the treatment timing after AF diagnosis (modelled as a natural spline) and treatment (rhythm- or rate control). Standard errors were estimated using 1,000 bootstrap replicates. Statistical analyses were performed by SAS, version 9.3 (SAS Institute, Cary, NC, USA) and R version 4.1.0 (The R Foundation, www.R-project.org (accessed on 1 September 2021)).

4. Sensitivity analyses

First, one-to-one ps matching (without replacement with a caliper of 0.01) was used instead of overlap weighting. Second, we performed an analysis after including patients treated with AADs as the initial choice of rhythm control. Third, we performed falsification analysis to measure systematic bias in this study by employing 24 prespecified falsification endpoints, with true hazard ratios of 1.

III. RESULTS

1. Baseline characteristics

Among 28,049 patients who underwent AF treatment within 1 year from AF diagnosis, 14,383 (51.3%) were men. Compared to men, women were older (68.5 ± 11.4 vs. 66.0 ± 11.2 years, p < 0.001) and had a higher CHA2DS2-VASc score (4.3 ± 1.7 vs. 3.4 ± 1.4 , p < 0.001) (Table 4).

	Men	Women			Me	en			Won	nen		
Treatment initiation*	<1 y		<1 year AF diagnosis P-value		since AF diagnosis since AF				<6 months since AF diagnosis		6–12 months since AF diagnosis	
	Over	rall	I value	Rhythm control	Rate control	Rhythm control	Rate control	Rhythm control	Rate control	Rhythm control	Rate control	
	N = 14383	N = 13666		N = 6631	N = 6865	N = 533	N = 354	N = 6066	N = 6911	N = 438	N = 251	
Sociodemographic												
Age, years	66.0 (11.2)	68.5 (11.4)	< 0.001	65.1 (11.1)	67.0 (11.2)	64.5 (10.5)	67.6 (11.4)	67.6 (11.0)	69.4 (11.6)	66.3 (10.9)	68.9 (11.9	
<65 years	5432 (37.8)	4167 (30.5)	< 0.001	2768 (41.7)	2325 (33.9)	228 (42.8)	111 (31.4)	2024 (33.4)	1912 (27.7)	153 (34.9)	78 (31.1	
65–74 year	5532 (38.5)	5064 (37.1)	0.016	2490 (37.6)	2677 (39.0)	223 (41.8)	142 (40.1)	2329 (38.4)	2457 (35.6)	191 (43.6)	87 (34.7	
≥75 years	3419 (23.8)	4435 (32.5)	< 0.001	1373 (20.7)	1863 (27.1)	82 (15.4)	101 (28.5)	1713 (28.2)	2542 (36.8)	94 (21.5)	86 (34.3	
AF duration, months	1.1 (2.3)	0.9 (2.2)	< 0.001	0.9 (1.4)	0.3 (0.9)	8.8 (1.7)	8.8 (1.8)	0.7 (1.3)	0.3 (0.9)	8.8 (1.8)	8.8 (1.8)	
Enroll year												
2005-2007	3082 (21.4)	3377 (24.7)	< 0.001	1066 (16.1)	1830 (26.7)	95 (17.8)	91 (25.7)	1030 (17.0)	2168 (31.4)	98 (22.4)	81 (32.3	
2008-2010	2814 (19.6)	2648 (19.4)	0.702	1150 (17.3)	1480 (21.6)	104 (19.5)	80 (22.6)	1090 (18.0)	1425 (20.6)	74 (16.9)	59 (23.5	
2011-2013	4163 (28.9)	3790 (27.7)	0.025	2035 (30.7)	1858 (27.1)	166 (31.1)	104 (29.4)	1879 (31.0)	1712 (24.8)	145 (33.1)	54 (21.5	
2014-2015	4324 (30.1)	3851 (28.2)	0.001	2380 (35.9)	1697 (24.7)	168 (31.5)	79 (22.3)	2067 (34.1)	1606 (23.2)	121 (27.6)	57 (22.7	
High tertile of income	6252 (43.5)	5412 (39.6)	< 0.001	5513 (83.1)	5098 (74.3)	458 (85.9)	270 (76.3)	5159 (85.0)	5293 (76.6)	379 (86.5)	202 (80.5	
Living in metropolitan areas	6600 (45.9)	6101 (44.6)	0.038	3260 (49.2)	2938 (42.8)	264 (49.5)	138 (39.0)	2936 (48.4)	2858 (41.4)	204 (46.6)	103 (41.0	
Level of care												
initiating treatment												
Tertiary	7590 (52.8)	6849 (50.1)	< 0.001	4148 (62.6)	2926 (42.6)	354 (66.4)	162 (45.8)	3647 (60.1)	2806 (40.6)	281 (64.2)	115 (45.8	
Secondary	6089 (42.3)	5961 (43.6)	0.031	2276 (34.3)	3494 (50.9)	159 (29.8)	160 (45.2)	2244 (37.0)	3463 (50.1)	144 (32.9)	110 (43.8	
Primary	704 (4.9)	856 (6.3)	< 0.001	207 (3.1)	445 (6.5)	20 (3.8)	32 (9.0)	175 (2.9)	642 (9.3)	13 (3.0)	26 (10.4	
Risk scores												
CHA2DS2-VASc score	3.4 (1.4)	4.3 (1.7)	< 0.001	3.4 (1.4)	3.3 (1.3)	3.6 (1.5)	3.8 (1.4)	4.4 (1.8)	4.2 (1.6)	4.7 (1.7)	4.7 (1.7)	
HAS-BLED score†	2.4 (1.1)	2.3 (1.1)	< 0.001	2.5 (1.1)	2.3 (1.0)	2.7 (1.1)	2.7 (1.1)	2.4 (1.1)	2.1 (1.1)	2.6 (1.1)	2.6 (1.1)	
Charlson comorbidity index	3.5 (2.8)	3.3 (2.8)	< 0.001	4.0 (2.8)	2.9 (2.6)	4.7 (2.8)	4.4 (2.9)	4.0 (2.8)	2.6 (2.5)	4.5 (2.7)	4.3 (2.9)	
Hospital Frailty Risk score	3.5 (4.8)	3.8 (5.3)	< 0.001	3.4 (4.6)	3.5 (4.8)	3.7 (5.1)	5.5 (6.7)	4.0 (5.4)	3.4 (5.1)	4.5 (5.5)	5.7 (7.6)	
Medical history												
Heart failure	7013 (48.8)	7258 (53.1)	< 0.001	3083 (46.5)	3482 (50.7)	290 (54.4)	158 (44.6)	3049 (50.3)	3820 (55.3)	262 (59.8)	127 (50.6	
Heart failure hospitalization	1974 (13.7)	2186 (16.0)	< 0.001	778 (11.7)	1100 (16.0)	65 (12.2)	31 (8.8)	852 (14.0)	1223 (17.7)	80 (18.3)	31 (12.4	
Hypertension	10748 (74.7)	10037 (73.4)	0.015	5574 (84.1)	4403 (64.1)	484 (90.8)	287 (81.1)	5107 (84.2)	4317 (62.5)	404 (92.2)	209 (83.	
Diabetes	4324 (30.1)	3130 (22.9)	< 0.001	2214 (33.4)	1840 (26.8)	181 (34.0)	89 (25.1)	1618 (26.7)	1343 (19.4)	111 (25.3)	58 (23.1	
Dyslipidemia	10376 (72.1)	9626 (70.4)	0.002	5340 (80.5)	4312 (62.8)	460 (86.3)	264 (74.6)	4875 (80.4)	4184 (60.5)	379 (86.5)	188 (74.9	
Ischemic stroke	5104 (35.5)	3822 (28.0)	< 0.001	2156 (32.5)	2568 (37.4)	183 (34.3)	197 (55.6)	1652 (27.2)	1906 (27.6)	148 (33.8)	116 (46.2	
Transient ischemic attack	1307 (9.1)	1070 (7.8)	< 0.001	699 (10.5)	508 (7.4)	70 (13.1)	30 (8.5)	587 (9.7)	396 (5.7)	58 (13.2)	29 (11.6	
Hemorrhagic stroke	301 (2.1)	256 (1.9)	0.203	146 (2.2)	127 (1.8)	15 (2.8)	13 (3.7)	120 (2.0)	120 (1.7)	6 (1.4)	10 (4.0)	
Myocardial infarction	1454 (10.1)	1003 (7.3)	< 0.001	757 (11.4)	603 (8.8)	64 (12.0)	30 (8.5)	520 (8.6)	413 (6.0)	54 (12.3)	16 (6.4)	
Peripheral arterial disease	1641 (11.4)	1442 (10.6)	0.023	937 (14.1)	567 (8.3)	82 (15.4)	55 (15.5)	838 (13.8)	514 (7.4)	68 (15.5)	22 (8.8)	

Table 4. Baseline charac	cteristics of men and wom	en treated with rhythm- or rate cont	rol before overlap weighting

Valvular heart disease	1388 (9.7)	2843 (20.8)	< 0.001	673 (10.1)	625 (9.1)	49 (9.2)	41 (11.6)	1082 (17.8)	1612 (23.3)	78 (17.8)	71 (28.3)
Chronic kidney disease	802 (5.6)	525 (3.8)	< 0.001	448 (6.8)	286 (4.2)	46 (8.6)	22 (6.2)	320 (5.3)	169 (2.4)	24 (5.5)	12 (4.8)
Hyperthyroidism	1205 (8.4)	1796 (13.1)	< 0.001	684 (10.3)	423 (6.2)	76 (14.3)	22 (6.2)	959 (15.8)	722 (10.4)	86 (19.6)	29 (11.6)
Hypothyroidism	1005 (7.0)	1801 (13.2)	< 0.001	553 (8.3)	368 (5.4)	66 (12.4)	18 (5.1)	1034 (17.0)	653 (9.4)	90 (20.5)	24 (9.6)
Malignancy	3032 (21.1)	2051 (15.0)	< 0.001	1496 (22.6)	1297 (18.9)	142 (26.6)	97 (27.4)	1072 (17.7)	858 (12.4)	78 (17.8)	43 (17.1)
Hypertrophic cardiomyopathy	260 (1.8)	256 (1.9)	0.716	146 (2.2)	95 (1.4)	14 (2.6)	5 (1.4)	160 (2.6)	76 (1.1)	19 (4.3)	1 (0.4)
Sleep apnea	86 (0.6)	17 (0.1)	< 0.001	58 (0.9)	24 (0.3)	3 (0.6)	1 (0.3)	10 (0.2)	7 (0.1)	438 (100.0)	251 (100.0)
Concurrent medication [‡]											
Oral anticoagulant	14383 (100.0)	13666 (100.0)	-	6631 (100.0)	6865 (100.0)	533 (100.0)	354 (100.0)	6066 (100.0)	6911 (100.0)	438 (100.0)	251 (100.0)
Warfarin	12778 (88.8)	12163 (89.0)	0.682	5724 (86.3)	6265 (91.3)	467 (87.6)	322 (91.0)	5175 (85.3)	6365 (92.1)	391 (89.3)	232 (92.4)
Direct oral anticoagulant	1734 (12.1)	1586 (11.6)	0.251	977 (14.7)	651 (9.5)	72 (13.5)	34 (9.6)	935 (15.4)	581 (8.4)	49 (11.2)	21 (8.4)
Beta-blocker	8271 (57.5)	7320 (53.6)	< 0.001	3093 (46.6)	4695 (68.4)	237 (44.5)	246 (69.5)	2674 (44.1)	4278 (61.9)	206 (47.0)	162 (64.5)
Non-dihydropyridine CCB	2149 (14.9)	2079 (15.2)	0.536	944 (14.2)	1065 (15.5)	88 (16.5)	52 (14.7)	779 (12.8)	1206 (17.5)	62 (14.2)	32 (12.7)
Digoxin	3659 (25.4)	4342 (31.8)	< 0.001	631 (9.5)	2863 (41.7)	59 (11.1)	106 (29.9)	667 (11.0)	3536 (51.2)	53 (12.1)	86 (34.3)
Aspirin	3482 (24.2)	2701 (19.8)	< 0.001	1627 (24.5)	1640 (23.9)	127 (23.8)	88 (24.9)	1245 (20.5)	1316 (19.0)	96 (21.9)	44 (17.5)
P2Y12 inhibitor	1372 (9.5)	827 (6.1)	< 0.001	672 (10.1)	616 (9.0)	46 (8.6)	38 (10.7)	389 (6.4)	395 (5.7)	30 (6.8)	13 (5.2)
Statin	5524 (38.4)	5002 (36.6)	0.002	2667 (40.2)	2511 (36.6)	211 (39.6)	135 (38.1)	2418 (39.9)	2293 (33.2)	200 (45.7)	91 (36.3)
Dihydropyridine CCB	2459 (17.1)	2147 (15.7)	0.002	1389 (20.9)	879 (12.8)	128 (24.0)	63 (17.8)	1251 (20.6)	781 (11.3)	73 (16.7)	42 (16.7)
ACEi/ARB	8352 (58.1)	7514 (55.0)	< 0.001	3746 (56.5)	4102 (59.8)	307 (57.6)	197 (55.6)	3317 (54.7)	3826 (55.4)	244 (55.7)	127 (50.6)
Loop/thiazide diuretics	6646 (46.2)	8029 (58.8)	< 0.001	2596 (39.1)	3678 (53.6)	209 (39.2)	163 (46.0)	3039 (50.1)	4605 (66.6)	237 (54.1)	148 (59.0)
K+ sparing diuretics	2844 (19.8)	3399 (24.9)	< 0.001	1001 (15.1)	1726 (25.1)	67 (12.6)	50 (14.1)	1128 (18.6)	2121 (30.7)	100 (22.8)	50 (19.9)
	1 .	. 1 1 1	•) (0()	* .	C 1 1	1	1	• •,• ,•	C 1 .1	

Data are presented as means (standard deviations) or n (%). *Duration from AF diagnosis to the first initiation of rhythm- or

rate control. †Modified HAS-BLED=hypertension, 1 point; age > 65 years, 1 point; previous stroke, 1 point; history of bleeding or predisposition, 1 point; liable in-ternational normalized ratio, not assessed; alcohol or drug abuse, 1 point; and drug predisposing to bleeding, 1 point. ‡Defined as a prescription supply of over three months within the six months after the first prescription for antiarrhythmic or rate control drugs or the performance of a radiofrequency ablation for AF. ACEi, angiotensin-converting enzyme inhibitor; AF, atrial fi-brillation; ARB, angiotensin II receptor blocker; CCB, calcium channel blocker.

Further, the time period between the treatment initiation and AF diagnosis was shorter for women (0.9 ± 2.2 vs. 1.1 ± 2.3 months, p < 0.001), and they were less treated with rhythm control (47.6% vs. 49.8%, p < 0.001).

Among the initial rhythm control strategies, amiodarone accounted for the largest portion $(2874 \ [44.1\%] \ of 6504 \ women and 3193 \ [44.6\%] \ of 7164 \ men)$, followed by propafenone and flecainide (Figure 1B). Radiofrequency ablation was performed in 88 (1.4%) of women and 120 (1.7%) of men at the time of enrollment and was eventually performed in 294 (4.5%) of women and 530 (7.4%) of men until the end of follow-up, respectively.

Baseline characteristics of men and women treated with rhythm- or rate control before and after overlap weighting are presented in Table 4 and Table 5. Compared to rate-control patients, rhythm-control patients were younger and tended to have a higher prevalence of comorbidities for both men and women. After weighting, all baseline characteristics were well-balanced between rhythm- and rate control group in both sexes.

		Me	n					Wome	en		
Treatment		months		2 months			months			2 months	
initiation*		AF diagnosis		AF diagnosis			AF diagnosis			AF diagnosis	
	Rhythm	Rate	Rhythm	Rate		Rhythm	Rate		Rhythm	Rate	
	control	control SMD	control	control 9	SMD	control	control	SMD	control	control	SMD
	N = 2123	N = 2123	N = 132	N = 132		N = 1912	N = 1912		N = 100	N = 100	
Sociodemographic											
Age, years	66.0 (11.1)	66.0 (11.5) <0.001	66.0 (11.2)	66.0 (12.0) <	< 0.001	68.7 (11.1)	68.7 (11.8)	< 0.001	67.5 (10.1)	67.5 (12.2)	< 0.001
<65	823.3 (38.8)	802.2 (37.8) 0.02	49.2 (37.1)	46.6 (35.2)	0.04	569.3 (29.8)	569.5 (29.8)	< 0.001	30.2 (30.3)	33.1 (33.2)	0.062
65–74	798.1 (37.6)	809.1 (38.1) 0.011	56.4 (42.6)	55.8 (42.1) (0.009	712.9 (37.3)	699.6 (36.6)	0.014	44.1 (44.2)	36.2 (36.3)	0.161
≥75	501.7 (23.6)	511.8 (24.1) 0.011	26.9 (20.3)	30.0 (22.7) (0.058	629.9 (32.9)	643.1 (33.6)	0.015	25.4 (25.5)	30.4 (30.5)	0.112
AF duration, months	0.6 (1.1)	0.6 (1.2) <0.001	8.8 (1.8)	8.8 (1.8) <	< 0.001	0.5 (1.1)	0.5 (1.2)	< 0.001	8.8 (1.7)	8.8 (1.8)	< 0.001
Enroll year											
2005-2007	412.0 (19.4)	412.0 (19.4) < 0.001	28.5 (21.5)	28.5 (21.5) <	< 0.001	417.0 (21.8)	417.0 (21.8)	< 0.001	25.8 (25.9)	25.8 (25.9)	< 0.001
2008-2010	404.1 (19.0)	404.1 (19.0) <0.001	29.2 (22.0)	29.2 (22.0) <	< 0.001	372.2 (19.5)	372.2 (19.5)	< 0.001	21.5 (21.5)	21.5 (21.5)	< 0.001
2011-2013	627.5 (29.6)	627.5 (29.6) < 0.001	39.3 (29.7)	39.3 (29.7) <	< 0.001	553.4 (28.9)	553.4 (28.9)	< 0.001	27.4 (27.5)	27.4 (27.5)	< 0.001
2014-2015	679.5 (32.0)	679.5 (32.0) < 0.001	35.5 (26.8)	35.5 (26.8) <	< 0.001	569.5 (29.8)	569.5 (29.8)	< 0.001	25.0 (25.1)	25.0 (25.1)	< 0.001
High tertile of income	915.0 (43.1)	915.0 (43.1) < 0.001	62.6 (47.2)	62.6 (47.2) <	< 0.001	785.1 (41.1)	785.1 (41.1)	< 0.001	37.6 (37.7)	37.6 (37.7)	< 0.001
Living in metropolitan areas	980.4 (46.2)	980.4 (46.2) < 0.001	61.6 (46.5)	61.6 (46.5) <	< 0.001	869.0 (45.4)	869.0 (45.4)	< 0.001	46.1 (46.2)	46.1 (46.2)	< 0.001
Level of care											
initiating treatment											
Tertiary	1102.7 (51.9)	1102.7 (51.9) <0.001	74.8 (56.5)	74.8 (56.5) <	< 0.001	966.1 (50.5)	966.1 (50.5)	< 0.001	55.2 (55.4)	55.2 (55.4)	< 0.001
Secondary	924.0 (43.5)	924.0 (43.5) < 0.001	49.1 (37.1)	49.1 (37.1) <	< 0.001	856.4 (44.8)	856.4 (44.8)	< 0.001	38.2 (38.3)	38.2 (38.3)	< 0.001
Primary	96.4 (4.5)	96.4 (4.5) <0.001	8.5 (6.4)	8.5 (6.4) <	< 0.001	89.6 (4.7)	89.6 (4.7)	< 0.001	6.3 (6.4)	6.3 (6.4)	< 0.001
Risk score											
CHA ₂ DS ₂ -VASc score	3.4 (1.4)	3.4 (1.4) <0.001	3.7 (1.5)	3.7 (1.4) <	< 0.001	4.4 (1.8)	4.4 (1.7)	< 0.001	4.7 (1.8)	4.7 (1.8)	< 0.001
HAS-BLED score†	2.5 (1.1)	2.5 (1.1) <0.001	2.7 (1.1)		< 0.001	2.3 (1.2)		< 0.001	2.6 (1.1)	2.6 (1.1)	< 0.001
Charlson comorbidity index	3.6 (2.6)	3.6 (2.9) <0.001	4.5 (2.8)	4.5 (2.9) <	< 0.001	3.5 (2.6)	3.5 (2.8)	< 0.001	4.3 (2.5)	4.3 (3.0)	< 0.001
Hospital Frailty Risk Score	3.6 (4.8)	3.6 (4.9) <0.001	4.4 (5.9)	4.4 (5.8) <	< 0.001	4.0 (5.4)	4.0 (5.4)	< 0.001	5.0 (6.1)	5.0 (6.3)	< 0.001
Medical history											
Heart failure	1030.7 (48.5)	1030.7 (48.5) < 0.001	68.6 (51.8)	68.6 (51.8) <	< 0.001	1003.6 (52.5)	1003.6 (52.5)	< 0.001	55.2 (55.4)	55.2 (55.4)	< 0.001
Heart failure hospitalization	294.9 (13.9)	294.9 (13.9) <0.001	16.0 (12.1)	16.0 (12.1) <	< 0.001	310.9 (16.3)	310.9 (16.3)	< 0.001	14.0 (14.0)	14.0 (14.0)	< 0.001
Hypertension	1653.9 (77.9)	1653.9 (77.9) <0.001	116.2 (87.7)	116.2 (87.7) <	< 0.001	1475.9 (77.2)	1475.9 (77.2)	< 0.001	88.1 (88.4)	88.1 (88.4)	< 0.001
Diabetes	659.6 (31.1)	659.6 (31.1) < 0.001	40.5 (30.6)	40.5 (30.6) <	< 0.001	468.1 (24.5)	468.1 (24.5)	< 0.001	22.3 (22.4)	22.3 (22.4)	< 0.001
Dyslipidemia	1592.2 (75.0)	1592.2 (75.0) < 0.001	106.2 (80.2)	106.2 (80.2) <	< 0.001	1401.3 (73.3)	1401.3 (73.3)	< 0.001	81.0 (81.2)	81.0 (81.2)	< 0.001
Ischemic stroke	767.8 (36.2)	767.8 (36.2) < 0.001	56.7 (42.8)	56.7 (42.8) <	< 0.001	557.3 (29.1)	557.3 (29.1)	< 0.001	39.6 (39.7)	39.6 (39.7)	< 0.001
Transient ischemic attack	194.9 (9.2)	194.9 (9.2) <0.001	14.7 (11.1)	14.7 (11.1) <	< 0.001	154.5 (8.1)	154.5 (8.1)	< 0.001	11.1 (11.1)	11.1 (11.1)	< 0.001
Hemorrhagic stroke	45.3 (2.1)	45.3 (2.1) <0.001	3.7 (2.8)	3.7 (2.8) <	< 0.001	38.4 (2.0)	38.4 (2.0)	< 0.001	2.0 (2.0)	2.0 (2.0)	< 0.001
Myocardial infarction	221.9 (10.5)	221.9 (10.5) < 0.001	13.6 (10.3)	13.6 (10.3) <	< 0.001	137.5 (7.2)	137.5 (7.2)	< 0.001	7.4 (7.5)	7.4 (7.5)	< 0.001
Peripheral arterial disease	244.0 (11.5)	244.0 (11.5) <0.001	22.6 (17.1)	22.6 (17.1) <	< 0.001	216.0 (11.3)	216.0 (11.3)	< 0.001	12.0 (12.0)	12.0 (12.0)	< 0.001
Valvular heart disease	207.6 (9.8)	207.6 (9.8) <0.001	15.4 (11.6)	15.4 (11.6) <	< 0.001	373.1 (19.5)	373.1 (19.5)	< 0.001	22.0 (22.1)	22.0 (22.1)	< 0.001
Chronic kidney disease	123.2 (5.8)	123.2 (5.8) <0.001	8.9 (6.7)	8.9 (6.7) <	< 0.001	73.7 (3.9)	73.7 (3.9)	< 0.001	4.4 (4.4)	4.4 (4.4)	< 0.001
Hyperthyroidism	172.7 (8.1)	172.7 (8.1) <0.001	11.5 (8.7)	11.5 (8.7) <	< 0.001	247.4 (12.9)	247.4 (12.9)	< 0.001	14.6 (14.6)	14.6 (14.6)	< 0.001
Hypothyroidism	146.4 (6.9)	146.4 (6.9) <0.001	9.6 (7.3)	9.6 (7.3) <	< 0.001	255.4 (13.4)	255.4 (13.4)	< 0.001	13.1 (13.2)	13.1 (13.2)	< 0.001

Table 5. Baseline characteristics of men and women treated with rhythm– or rate control after overlap weighting

Malignancy	459.7 (21.7)	459.7 (21.7) < 0.001	33.1 (25.0)	33.1 (25.0) < 0.001	301.8 (15.8)	301.8 (15.8) < 0.001	17.7 (17.8)	17.7 (17.8) < 0.001
Hypertrophic cardiomyopathy	39.5 (1.9)	39.5 (1.9) <0.001	2.0 (1.5)	2.0 (1.5) <0.001	32.6 (1.7)	32.6 (1.7) <0.001	0.6 (0.6)	0.6 (0.6) <0.001
Sleep apnea	12.6 (0.6)	12.6 (0.6) <0.001	0.2 (0.2)	0.2 (0.2) <0.001	2.7 (0.1)	2.7 (0.1) <0.001	99.7 (100.0)	99.7 (100.0) <0.001
Concurrent medication [‡]								
Oral anticoagulant	2123.1 (100.0)	2123.1 (100.0) < 0.001	132.4 (100.0)	132.4 (100.0) <0.001	1912.1 (100.0)	1912.1 (100.0) <0.001	99.7 (100.0)	99.7 (100.0) <0.001
Warfarin	1880.1 (88.6)	1880.1 (88.6) <0.001	117.4 (88.7)	117.4 (88.7) <0.001	1687.5 (88.3)	1687.5 (88.3) <0.001	90.1 (90.4)	90.1 (90.4) <0.001
Direct oral anticoagulant	267.0 (12.6)	267.0 (12.6) < 0.001	15.9 (12.0)	15.9 (12.0) <0.001	236.1 (12.3)	236.1 (12.3) < 0.001	10.1 (10.1)	10.1 (10.1) <0.001
Beta-blocker	1416.8 (66.7)	1416.8 (66.7) <0.001	82.0 (61.9)	82.0 (61.9) <0.001	1194.6 (62.5)	1194.6 (62.5) <0.001	63.5 (63.6)	63.5 (63.6) <0.001
Non-dihydropyridine CCB	370.2 (17.4)	370.2 (17.4) < 0.001	25.7 (19.4)	25.7 (19.4) < 0.001	338.3 (17.7)	338.3 (17.7) <0.001	16.7 (16.7)	16.7 (16.7) <0.001
Digoxin	445.0 (21.0)	445.0 (21.0) <0.001	31.5 (23.8)	31.5 (23.8) < 0.001	480.3 (25.1)	480.3 (25.1) <0.001	23.0 (23.1)	23.0 (23.1) < 0.001
Aspirin	535.3 (25.2)	535.3 (25.2) <0.001	33.2 (25.1)	33.2 (25.1) < 0.001	390.9 (20.4)	390.9 (20.4) <0.001	19.6 (19.6)	19.6 (19.6) <0.001
P2Y ₁₂ inhibitor	224.8 (10.6)	224.8 (10.6) < 0.001	13.4 (10.1)	13.4 (10.1) < 0.001	123.9 (6.5)	123.9 (6.5) <0.001	6.2 (6.2)	6.2 (6.2) <0.001
Statin	868.7 (40.9)	868.7 (40.9) <0.001	49.6 (37.4)	49.6 (37.4) <0.001	741.4 (38.8)	741.4 (38.8) <0.001	42.6 (42.7)	42.6 (42.7) <0.001
Dihydropyridine CCB	347.0 (16.3)	347.0 (16.3) < 0.001	25.0 (18.8)	25.0 (18.8) < 0.001	297.4 (15.6)	297.4 (15.6) <0.001	16.1 (16.1)	16.1 (16.1) <0.001
ACEI/ARB	1229.2 (57.9)	1229.2 (57.9) <0.001	75.3 (56.9)	75.3 (56.9) <0.001	1041.3 (54.5)	1041.3 (54.5) <0.001	52.3 (52.5)	52.3 (52.5) <0.001
Loop/thiazide diuretic	979.7 (46.1)	979.7 (46.1) <0.001	60.4 (45.6)	60.4 (45.6) <0.001	1096.7 (57.4)	1096.7 (57.4) <0.001	55.9 (56.1)	55.9 (56.1) <0.001
K+-sparing diuretic	419.4 (19.8)	419.4 (19.8) <0.001	19.8 (15.0)	19.8 (15.0) <0.001	447.4 (23.4)	447.4 (23.4) <0.001	20.7 (20.8)	20.7 (20.8) < 0.001

Data are presented as means (standard deviations) or n (%). *Duration from AF diagnosis to the first initiation of rhythm- or rate control. †Modified HAS-BLED=hypertension, 1 point; age > 65 years, 1 point; previous stroke, 1 point; history of bleeding or predisposition, 1 point; liable international normalized ratio, not assessed; alcohol or drug abuse, 1 point; and drug predisposing to bleeding, 1 point. ‡Defined as a prescription supply of over three months within the six months after the first prescription for antiarrhythmic or rate control drugs or the performance of a radiofrequency ablation for AF. ACEi, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin II receptor blocker; CCB, calcium channel blocker; SMD, standard mean difference.

2. Sex difference of the primary composite outcome according to the timing of rhythm control

The mean follow-up times were 4.9 ± 3.2 years. Cox proportional hazard models with an interaction term showed that women had a linear relationship, wherein the relative effect of rhythm control over rate control on the primary composite outcome became attenuated as the timing of treatment initiation was delayed (Figure 3A, B). Rhythm control was associated with a significantly lower risk of the primary composite outcome compared to rate control if it was initiated within 3 months from AF diagnosis; however, the benefit became statistically insignificant after 3 months. On the other hand, in men, relative effect of rhythm control over rate control on the primary composite outcome was maintained until 12 months after AF diagnosis.

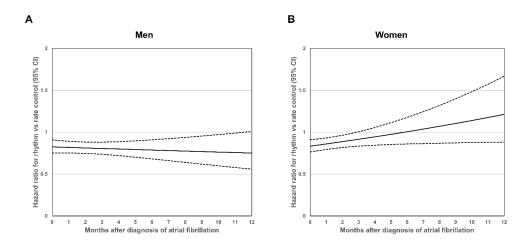


Figure 3. Relationship between treatment timing and primary composite outcome risk. Data shown are within 1 year after the first diagnosis of atrial fibrillation. (A) Men. (B) Women. Hazard ratio = 1 means an equal risk of outcomes in participants treated with rhythm- and rate-control. Dashed black lines show the 95% confidence interval.

In the group with AF treatment initiated within 6 months after the first diagnosis of AF, the risk of primary composite outcome for rhythm control tended to be lower than that of

rate control in both the sexes (men: HR = 0.86, 95% CI, 0.79–0.94, P = 0.001; women: HR = 0.85, 95% CI, 0.78–0.93, P < 0.001; P for interaction = 0.844) (Table 6). In the group with AF treatment initiated after 6 months, significant interaction was demonstrated between sex and the relative effect of rhythm control over rate control (men: HR = 0.72, 95% CI, 0.52–0.99, P = 0.045; women: HR = 1.32, 95% CI, 0.92–1.88, P = 0.134; P for interaction = 0.018).

Table 6. Relative effect of rhythm control over rate control on primary composite outcome after overlap weighting.

Primary Outcome	Composite	Number of Events	Person- Years	IR *	Number of Events	Person- Years	IR *	Absolute Rate Difference Per 100 Person-Years * (95% CI)	Hazard Ratio * (95% CI)	* <i>p</i> -Value	<i>p</i> for Interaction
AF treat	ment (<6 mon	ths since AF	diagnosis	5)							0.844
Me	en	Rhythm con	ntrol (N =	2123)	Rate cont	rol (N =	2123)				
		461	7905	5.83	521	7586	6.87	-1.03 (-1.83 to -0.24)	0.86 (0.79– 0.94)	0.001	
Wor	nen	Rhythm con	ntrol (N =	1912)	Rate cont	rol (N =	1912)				
		516	7200	7.17	590	6956	8.48	-1.31 (-2.24 to -0.39)	0.85 (0.78– 0.93)	< 0.001	
AF treatn	nent (6–12 mo	nths since Al	F diagnos	is)							0.018
Me	en	Rhythm co	ntrol (N =	= 132)	Rate con	trol (N =	132)	_			
		30	527	5.80	40	471	8.55	-2.75 (-6.09 to 0.59)	0.72 (0.52– 0.99)	0.043	
Wor	nen	Rhythm co	ntrol (N =	= 100)	Rate con	trol (N =	100)	_			
		33	392	8.40	26	404	6.46	1.94 (-1.85 to 5.73)	1.32 (0.92– 1.88)	0.134	

AF, atrial fibrillation; CI, confidence interval; HR, hazard ratio; IR, incidence rate.

The relative effects of rhythm control over rate control on the individual outcomes are presented in Table 7. Among the individual cardiovascular outcomes, there was a significant interaction between the relative effect of rhythm control over rate control on the prevention of ischemic stroke and sex.

		M	en				Wor	nen		
	IR	IR		ard Ratio 95% CI)	<i>p</i> -Value	IR	IR	Hazard Ratio (95% CI)	p-Value	p for Interaction
AF treatment (<6 months s	ince AF diagno	sis)								
	Rhythm contr	Rate control	l			Rhythm control	Rate control			
	ol (N = 2123)	(N = 2123))			(N = 1912)	(N = 1912)			
Cardiovascular death	1.63	1.93	0.86	(0.73-1.00)	0.053	2.38	2.29	1.05 (0.91-1.21)	0.517	0.063
Ischemic stroke	2.51	2.94	0.87	(0.77-0.99)	0.035	2.65	3.69	0.72 (0.63-0.82)	< 0.001	0.036
Hospitalization for HF	2.25	2.81	0.82	(0.71-0.94)	0.004	3.67	4.08	0.90 (0.81-1.01)	0.086	0.271
Acute myocardial infarction	0.30	0.44	0.70	(0.49-0.99)	0.049	0.20	0.29	0.70 (0.46-1.06)	0.091	0.989
AF treatment (6-12 months	since AF diag	nosis)								
	Rhythm contr	Rate control	l			Rhythm control	Rate control			
	ol (N = 132)	(N = 132)				(N = 100)	(N = 100)			
Cardiovascular death	1.67	2.60	0.68	(0.39-1.18)	0.171	1.81	2.03	0.91 (0.48-1.73)	0.772	0.512
Ischemic stroke	2.44	3.46	0.74	(0.47-1.18)	0.208	3.91	2.48	1.63 (0.97-2.73)	0.063	0.027
Hospitalization for HF	2.51	3.94	0.68	(0.43-1.10)	0.114	3.49	3.23	1.08 (0.64-1.81)	0.770	0.196
Acute myocardial infarction	0.22	0.45	0.54	(0.13-2.13)	0.376	0.54	0.70	0.79 (0.23-2.74)	0.716	0.677

Table 7. Relative effect of rhythm control over rate control on individual components of the primary composite outcome after overlap weighting.

AF, atrial fibrillation; CI, confidence interval; HF, heart failure; IR, incidence rate.

The relative effects of rhythm control over rate control on safety outcomes are presented in Table 8. There was a trend of the composite safety outcome to-wards an increased risk in women and reduced risk in men, irrespective of timing of treatment initiation (<6 months: HR = 0.97 in men, HR = 1.10 in women, p for interaction = 0.040; \geq 6 months: HR = 0.85in men, HR = 1.27 in women, p for interaction = 0.093).

Table 8. Relative effect of rhythm over rate control on safety outcomes after overlap weighting.

		Men				Wome	n		
			Hazard ratio				Hazard ratio		P for
	IR	IR	(95% CI)	P-value	IR	IR	(95% CI)	P-value	interaction
AF treatment (<6 mor	nths since the f	irst diagnosis o	,				CI)		
	Rhythm	Rate			Rhythm	Rate			
	control	control			control	control			
	(N=2123)	(N=2123)			(N=1912)	(N=1912)			
Composite safety		0.00	0.97	0.451	0.04	5.62	1.10	0.005	0.040
outcome	7.97	8.20	(0.90 - 1.05)	0.471	8.36	7.62	(1.01-	0.027	0.040
			1.05) 0.87				1.19) 0.96		
All-cause death	4.60	5.27	(0.79-	0.005	4.38	4.56	(0.87–	0.443	0.175
rin eduse dedui		0.27	0.96)	0.000		1100	1.06)	01110	01170
Y., 1			0.78				0.99		
Intracranial	0.59	0.78	(0.60-	0.057	0.74	0.75	(0.77-	0.954	0.185
bleeding			1.01)				1.27)		
Gastrointestinal			0.85				0.89		
bleeding	1.67	2.01	(0.72-	0.042	1.74	1.97	(0.76–	0.156	0.671
5			0.99)				1.05)		
Serious adverse event related to	2.91	2.15	1.37 (1.20-	< 0.001	3.36	2.00	1.68 (1.46–	< 0.001	0.041
rhythm control	2.91	2.15	(1.20-	<0.001	5.50	2.00	(1.46–	< 0.001	0.041
Illyullii colluoi			1.68				2.64		
Cardiac tamponade	0.09	0.06	(0.76–	0.199	0.07	0.03	(1.02-	0.046	0.511
· · · · · · · · ·			3.72)				6.83)		
			1.20				1.34		
Syncope	1.23	1.04	(0.98–	0.071	1.30	0.97	(1.09-	0.005	0.445
			1.47)				1.65)		
Sick sinus			4.44				2.86		
syndrome	0.67	0.15	(2.97-	< 0.001	1.05	0.37	(2.12-	< 0.001	0.083
			6.64) 2.51				3.86)		
Atrioventricular	0.47	0.19	(1.70–	< 0.001	0.43	0.24	(1.25-	0.002	0.252
block	0.47	0.17	3.72)	<0.001	0.45	0.24	2.67)	0.002	0.252
N 1			3.75				2.12		
Pacemaker	0.39	0.11	(2.26-	< 0.001	0.49	0.23	(1.44-	< 0.001	0.078
implantation			6.22)				3.11)		
Sudden cardiac			0.81				1.29		
arrest	0.50	0.63	(0.61–	0.126	0.56	0.43	(0.95–	0.099	0.024
		<u>.</u>	1.06)				1.75)		
AF treatment (6-12 n			s of AF)		D1 (1	D.			
	Rhythm control	Rate control			Rhythm control	Rate control			
	(N=132)	(N=132)			(N=100)	(N=100)			
	(11-152)	(11-132)	0.85		(11-100)	(11-100)	1.27		
Composite safety	7.82	9.26	(0.63-	0.279	7.67	6.04	(0.89-	0.196	0.093
outcome			1.14)				1.82)		
			0.67				0.82		
All-cause death	4.50	6.66	(0.47–	0.025	2.82	3.43	(0.50-	0.427	0.525
							1.34)		
Intracranial	0.01	0.00		0.025	1.12	0.01		0.424	0.541
bleeding	0.81	0.90		0.925	1.13	0.81		0.424	0.541
a			(0.24–	0.005	1.42	1.19	(0.56–	0.658	0.034
Gastrointestinal bleeding	1.26	3.05	$(0)^{1}$						
All-cause death Intracranial bleeding	4.50 0.81	0.90	$\begin{array}{c} 0.67 \\ (0.47- \\ 0.95) \\ 0.96 \\ (0.40- \\ 2.28) \\ 0.44 \end{array}$	0.925	1.13	0.81	$\begin{array}{r} 0.82 \\ (0.50- \\ 1.34) \\ 1.41 \\ (0.61- \\ 3.26) \\ 1.18 \end{array}$	0.424	0.541

Serious adverse event related to rhythm control	3.60	2.51	1.55 (0.94– 2.55)	0.087	2.70	1.80	1.52 (0.79– 2.91)	0.211	0.959
Cardiac tamponade	0.06	0.12	0.50 (0.04– 5.66)	0.572	0.05	0	-	-	-
Syncope	1.69	1.13	1.60 (0.77– 3.33)	0.207	1.57	0.86	1.87 (0.76– 4.63)	0.176	0.799
Sick sinus syndrome	0.40	0.21	2.05 (0.57– 7.40)	0.274	1.23	0.54	2.35 (0.76– 7.29)	0.139	0.888
Atrioventricular block	0.49	0.15	3.42 (0.70– 16.78)	0.129	0.33	0.49	0.69 (0.13– 3.57)	0.661	0.174
Pacemaker implantation	0.39	0.03	16.81 (1.95– 144.90)	0.010	0.32	0.28	1.14 (0.25– 5.23)	0.862	0.047
Sudden cardiac arrest	0.83	0.88	1.00 (0.42– 2.41)	0.997	0.08	0.12	0.66 (0.10– 4.27)	0.661	0.692

AF, atrial fibrillation; CI, confidence interval; IR, incidence rate.

3. Sensitivity analyses

Among the patients in whom AF treatment was initiated ≥ 6 months, significant interaction between sex and the relative effect of rhythm control over rate control on the primary composite outcome was consistently observed in one-to-one ps matching analysis (Table 9).

Primary composite outcome	Number of events	Person- years	IR	Number of events	Person- years	IR	Absolute rate difference per 100 person-years (95% CI)	Hazard ratio (95% CI)	<i>P</i> -value	<i>P</i> for interaction
AF treatment AF)	(<6 months since	e the first dia	gnosis of							0.935
Men	Rhythm	control (N=3	097)	Rate co	ontrol (N=30	97)				
	676	11558	5.85	752	11093	6.78	-0.93 (-1.59 to -0.27)	0.89 (0.80– 0.98)	0.014	
Women	Rhythm	control (N=2	(711)	Rate co	ontrol (N=27	11)	_			
	735	10175	7.22	813	10013	8.12	-0.90 (-1.66 to -0.13)	0.89 (0.81– 0.98)	0.025	
AF treatment of AF)	(6–12 months sin	nce the first o	liagnosis							0.007
Men	Rhythm	control (N=	158)	Rate c	ontrol (N=15	8)				
	30	615	4.88	48	556	8.63	-3.75 (-6.76 to -0.75)	0.62 (0.39– 0.98)	0.040	
Women	Rhythm	control (N=	109)	Rate c	ontrol (N=10	19)		,		
	35	409	8.56	25	459	5.45	3.11 (-0.44 to 6.66)	1.59 (0.95– 2.66)	0.077	

Table 9. The relative effect of rhythm control over rate control on primary composite outcome in men and women after 1:1 propensity score matching

AF, atrial fibrillation; CI, confidence interval; HR, hazard ratio; IR, incidence rate.

Enrollment of patients taking AADs as the initial strategy of rhythm control showed consistent results (Table 10).

Table 10. The relative effect of anti–arrhythmic drugs over rate control on primary composite outcome in men and women according to timing of treatment initiation after overlap weighting

Primary composite outcome	Number of events	Person– years	IR	Number of events	Person– years	IR	Absolute rate difference per 100 person-years (95% CI)	Hazard rati * (95% CI)	P-value	<i>P</i> for interaction
AF treatment AF)	(<6 months sinc	e the first dia	gnosis of							0.819
Men	Rhythm	control (N=2	119)	Rate co	ontrol (N=21	19)				
	461	7875	5.86	520	7567	6.87	-1.01 (-1.81 to -0.22)	0.87 (0.79– 0.94)	0.001	
Women	Rhythm	control (N=1	910)	Rate co	ontrol (N=19	10)	_			
	516	7187	7.18	590	6946	8.49	-1.30 (-2.23 to -0.38)	0.85 (0.79– 0.93)	< 0.001	
AF treatment of AF)	(6~12 months si	ince the first of	liagnosis							0.023
Men	Rhythm	control (N=1	130)	Rate c	ontrol (N=13	30)				
	30	513	5.91	39	460	8.42	-2.50 (-5.89 to 0.88)	0.74 (0.54– 1.03)	0.074	
Women	Rhythn	n control (N=	99)	Rate c	control (N=9	9)	-			
	33	390	8.44	26	402	6.50	1.94 (-1.87 to 5.75)	1.32 (0.92– 1.88)	0.137	

AF, atrial fibrillation; CI, confidence interval; HR, hazard ratio; IR, incidence rate.

In the analyses of 24 falsification endpoints, the 95% CIs of the associations of rhythm control with each end-point covered 1 in 24 (100%) endpoints (Table 11).

Table 11. Risk of 24 falsification endpoints in weighted male and female patients undergoing rhythm control compared with

rate control

		<6n	nonths			6–12 mor	nths	
	Men		Wome	en	Men		Women	
Endpoints	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	<i>P</i> -value	Hazard ratio (95% CI)	P-value
Influenza	0.76 (0.57-1.01)	0.054	0.83 (0.64-1.09)	0.180	0.57 (0.15-2.07)	0.389	1.64 (0.43-6.28)	0.470
Major fracture	0.98 (0.79-1.21)	0.838	1.08 (0.94–1.24)	0.257	0.76 (0.34-1.70)	0.510	0.78 (0.41-1.45)	0.428
Urinary tract infection	1.04 (0.94–1.14)	0.451	0.98 (0.92-1.06)	0.679	1.33 (0.97-1.84)	0.079	1.04 (0.77-1.41)	0.810
Syphilis	0.82 (0.49-1.35)	0.429	0.79 (0.48-1.29)	0.348	3.94 (0.46-34.01)	0.212	7.06 (0.81-61.74)	0.077
Viral enteritis	1.20 (0.80-1.82)	0.380	0.88 (0.61-1.27)	0.496	0.94 (0.27-3.25)	0.923	1.91 (0.47-7.73)	0.366
Warts	1.46 (0.85-2.50)	0.172	0.93 (0.52-1.66)	0.809	0.54 (0.09-3.21)	0.496	0.41 (0.04-4.85)	0.483
Acute hepatitis A	1.17 (0.63-2.16)	0.620	1.09 (0.59-2.01)	0.785	2.18 (0.27-17.44)	0.462	0.55 (0.10-3.02)	0.488
Stomach cancer	0.81 (0.64-1.04)	0.092	0.89 (0.63-1.27)	0.524	0.58 (0.25-1.34)	0.201	1.01 (0.22-4.58)	0.988
Lipoma	1.14 (0.80–1.64)	0.473	1.34 (0.86–2.09)	0.195	0.80 (0.22-2.89)	0.729	0.69 (0.12-3.84)	0.669
Carpal tunnel syndrome	1.30 (0.84-2.00)	0.240	0.93 (0.68-1.29)	0.674	0.74 (0.14-3.89)	0.720	0.52 (0.13-2.08)	0.358
Pterygium	1.08 (0.78-1.48)	0.651	1.15 (0.86–1.54)	0.354	0.90 (0.24-3.40)	0.877	1.05 (0.31-3.60)	0.940
Meniere's disease	1.15 (0.87–1.51)	0.328	1.06 (0.84–1.34)	0.633	1.51 (0.56-4.10)	0.416	2.87 (0.92-8.97)	0.069
Benign paroxysmal positional vertigo	1.16 (0.93–1.45)	0.197	1.11 (0.94–1.33)	0.224	1.13 (0.54-2.38)	0.748	0.80 (0.38-1.71)	0.570
Varicose veins of lower extremities	0.99 (0.70-1.38)	0.937	0.74 (0.50-1.11)	0.147	0.50 (0.14-1.78)	0.287	1.08 (0.26-4.46)	0.920
Acute appendicitis	1.41 (0.88–2.27)	0.154	1.15 (0.75–1.76)	0.536	0.42 (0.09-1.96)	0.272	0.80 (0.17-3.67)	0.770
Diverticulitis of intestine	1.35 (0.89-2.06)	0.160	1.04 (0.66–1.62)	0.873	0.52 (0.16-1.70)	0.279	0.51 (0.09-2.99)	0.456
Cellulitis	1.11 (0.99–1.23)	0.060	1.05 (0.93-1.17)	0.435	0.98 (0.65-1.48)	0.916	0.63 (0.40-1.01)	0.053
Urticaria	1.05 (0.96-1.15)	0.330	1.05 (0.96-1.15)	0.292	1.02 (0.72-1.44)	0.911	0.80 (0.56-1.16)	0.245
Ingrowing nail	1.33 (0.96–1.83)	0.083	1.12 (0.84–1.50)	0.423	0.43 (0.09-1.91)	0.265	1.18 (0.20-7.10)	0.855
Frozen shoulder	1.06 (0.94–1.20)	0.346	0.94 (0.84–1.05)	0.278	1.21 (0.73–1.99)	0.467	0.97 (0.61-1.56)	0.907
Osteomyelitis	0.79 (0.46–1.38)	0.415	0.76 (0.36-1.60)	0.468	3.16 (0.29-34.3)	0.345	6.78 (0.44–105.4)	0.171
Dysuria	1.02 (0.87-1.19)	0.828	0.94 (0.80–1.11)	0.448	0.92 (0.53-1.58)	0.753	0.67 (0.34-1.29)	0.230
Burns	1.15 (0.90–1.48)	0.270	0.78 (0.79–1.21)	0.839	2.05 (0.83-5.05)	0.121	0.86 (0.40-1.88)	0.712
Anaphylaxis/Allergic reaction	1.02 (0.73-1.43)	0.900	0.77 (0.54–1.12)	0.170	1.29 (0.33-5.12)	0.713	1.08 (0.26-4.50)	0.916

CI, confidence interval

IV. DISCUSSION

1. Main findings

The principal findings of this nationwide cohort study that categorized patients according to sex and the timing of treatment initiation were as follows. First, as treatment initiation was delayed, the relative effect of rhythm control over rate control on primary composite outcome was attenuated gradually in women while remained steadily until 12 months in men. Second, among patients who received AF treatment after 6 months from AF diagnosis, there were significant interactions between sex and relative effects of rhythm control over rate control on the primary composite outcome. Third, compared to rate control, rhythm control showed a trend towards an increased risk of the composite safety outcome in women, irrespective of timing of treatment initiation.

2. Sex differences in benefits and harms of rhythm control

AF is a common arrhythmic disease with a higher prevalence in men than in women; however, stroke and mortality risk are significantly higher in women than in men.^{18,19} Sex differences in outcomes of rhythm control over rate control were investigated in subgroup analyses of previous trials. The AFFIRM trial showed that mortality rates between rhythmand rate control did not differ by sex.³ In comparison, the RACE trial showed that rhythm control was associated with a higher incidence of the primary outcome compared to rate control in women, not in men.¹³ Recently, the EAST-AFNET 4 and Kim et al. reported that in comparison with usual care or rate control irrespective of sex, rhythm control initiated within 12 months from AF diagnosis lowered the risk of the first primary outcome (i.e., ischemic stroke, HF hospitalization, acute MI, and cardiovascular death).^{6,8} However, the aforementioned trials did not show the relationship between the out-come of rhythm control and timing of AF treatment initiation in men and women, respectively.

3. Earlier rhythm control therapy is needed in women

The present study's findings show that the relative effects of rhythm control over rate

control on the primary composite outcome was reversed in women after 6 months from AF diagnosis. Significant interactions in the group that received AF treatment within 6–12 months from AF diagnosis mainly originated from the interaction between sex and relative effect of rhythm control over rate control on ischemic stroke. In a previous randomized controlled trial, which showed that rhythm control offered no advantage or significant disadvantage for ischemic stroke over rate control irrespective of sex, most patients already had AF for >2 years.²⁰ In the RACE trial, rhythm control led to more thromboembolic complications in women, whereas the opposite trend was observed in men. However, a recent large cohort study reported that rhythm control was associated with a reduced risk of ischemic stroke when it was prescribed within 7 days from AF diagnosis regardless of sex.²¹ This finding also supported the results of this study in the group that received AF treatment <6 months from AF diagnosis.

Precise mechanisms of sex differences in outcomes of rhythm over rate control have not been fully elucidated yet. The possible explanation for the waning of relative efficacy of early rhythm-control therapy is that women are older than men at the initial treatment for AF. This finding is consistent with those of previous reports, although women's symptoms and quality of life were poorer than those of men. Further, they were referred later and were less likely to undergo rhythm control.⁹⁻¹² However, a significant interaction between sex and the primary composite outcome was still noted even after weighing age and comorbidities. Among patients treated with catheter ablation, women had a significantly smaller mean voltage, slow conduction velocity, and greater proportion of complex fractionated signals in the left atrium compared to men.²² Since atrial remodeling progresses gradually over time, women may have a narrower window to obtain benefits from rhythm control because they already have more advanced atrial remodeling at the time of AF treatment initiation.

4. Increased safety outcome by rhythm control in women

In this study, compared with men, women had a higher risk of the composite safety

outcome and adverse event related to rhythm control. Previous studies have reported comparable results for adverse events related to rhythm control. One study demonstrated that AADs tended to increase risks of torsades de pointes and sick sinus syndrome more in women compared to men.²³ Additionally, as use of catheter ablation has been increased during the last few decades, female sex has become a predictor of in-hospital complications for any cardiac arrhythmia.²⁴ A large retrospective study reported that women tended to have higher risks of access site complications, cardiac tamponade and pericardial effusions, and postoperative bleeding requiring transfusions.²⁵⁻²⁷ Therefore, even if rhythm control can be initiated at an earlier stage, the benefit of rhythm control in women with AF must be balanced against the risk of adverse event related to rhythm control.

5. Study limitations

This study has several limitations. First, a claims-based database was used; hence, it is not possible to evaluate the changes in AF burden before and after AF treatment, the target heart rate for rate control, and the number of patients who had reached the target heart rate. Moreover, AF diagnosis and treatment strategies were defined by ICD-10 or claim codes only; therefore, it was not possible to obtain the data regarding the AF type (paroxysmal vs. non-paroxysmal), and the presence of symptoms (symptomatic vs. asymptomatic); thus, the role of AF type and the symptom status as contributors to long-term outcomes remain unknown. Second, the findings from this observational study cannot establish causality due to unmeasured or residual confounding factors. In this study, the vast majority of patients received warfarin. Among patients treated with warfarin, the higher incidence of stroke in women could be related to a lower time in therapeutic range compared to men.^{28,29} The frequency of warfarin use and labile international normalized ratio values also can explain the trend towards higher bleeding events in women in the rhythm control group.²⁸ Therefore, results in population treated with direct anticoagulants are additionally required. Moreover, uncontrolled lifestyle factors (such as obesity, alcohol intake, and exercise habit) might lead to the detrimental long-term outcomes in patients with AF, and it was not possible to

determine their effect. Third, radiofrequency ablation was performed as an initial rhythm control strategy in only 1.7% of men and 1.4% of women, which were significantly lower compared to the 7% in the EAST-AFNET 4 trial. The cause of this phenomenon was that the national health insurance had reimbursed the cost of treatment only to patients who were diagnosed as drug-refractory AF or could not maintain AADs due to drug-related side effects, tachycardia-bradycardia syndrome, or other conditions.⁶ Considering the superiority of radiofrequency ablation over AADs for maintenance of sinus rhythm, the absence of a reasonable portion of patients treated with ablation might have significantly limited the impact of the outcomes of this study. In addition, the reduced benefit of "rhythm control therapy" in women might be attributable to AAD therapy issues rather than rhythm control strategy, as AADs carries higher risk of proarrhythmia and toxicity compared to both ablation and rate control therapy, particularly in women Therefore, further randomized trials are necessary to reflect the long-term efficacy of ablation strategy.^{30,31} Fourth, the specific reasons for choosing rhythm control over rate control, and immediate over delayed initiation of treatment are difficult to be evaluated because these decisions vary by physicians. Accordingly, this ambiguity might have caused potential bias. Nevertheless, the results of the falsification analysis showed that systematic bias was less likely to exist, and sufficient overlap of propensity scores were identified between rhythm- and rate control groups, which proves the balance between the two therapies. Fifth, since we excluded patients with AF who did not undergo therapy or who had a history of AF treatment, the proportions of treatment strategies in this study may not reflect the preferences in real-world practice. Sixth, this study enrolled only high-risk patients with a mean CHA2DS2-VASc score of 3.3 using inclusion criteria similar to that of EAST-AFNET 4. Thus, further investigation is warranted to elucidate sex differences in effects of rhythm control over rate control in low-risk patients. Finally, in this study, the mean period between treatment initiation and AF diagnosis was 1.0 ± 2.2 month and only 5% of the patients were treated between 6 and 12 months after AF diagnosis. Therefore, repeated studies will be required to solidify the conclusion that sex differences influence the outcomes if AF treatment is

delayed.

V. CONCLUSION

Among patients who underwent rhythm or rate control within one year after AF diagnosis, lower risk tendency of primary composite outcome was shown in rhythm control than rate control in both sexes. However, as treatment initiation was delayed, the benefit of early rhythm control was attenuated gradually in women, while it was maintained in men. Therefore, in women, rhythm control might be taken into consideration at an earlier stage with a careful assessment of the balance between its benefit and risk of adverse event.

영 연세대학교 YONSEI UNIVERSITY

REFERENCES

- 1. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C *et al.* 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. *Eur Heart J* 2021;**42**:373-498.
- 2. Van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T *et al.* A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. *N Engl J Med* 2002;**347**:1834-40.
- 3. Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB *et al.* A comparison of rate control and rhythm control in patients with atrial fibrillation. *N Engl J Med* 2002;**347**:1825-33.
- 4. Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL *et al.* Rhythm control versus rate control for atrial fibrillation and heart failure. *N Engl J Med* 2008;**358**:2667-77.
- 5. Testa L, Biondi-Zoccai GG, Dello Russo A, Bellocci F, Andreotti F, Crea F. Ratecontrol vs. rhythm-control in patients with atrial fibrillation: a meta-analysis. *Eur Heart J* 2005;**26**:2000-6.
- 6. Kirchhof P, Camm AJ, Goette A, Brandes A, Eckardt L, Elvan A *et al.* Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. *N Engl J Med* 2020;**383**:1305-16.
- 7. Kim D, Yang PS, You SC, Jang E, Yu HT, Kim TH *et al.* Comparative Effectiveness of Early Rhythm Control Versus Rate Control for Cardiovascular Outcomes in Patients With Atrial Fibrillation. *J Am Heart Assoc* 2021;**10**:e023055.
- 8. Kim D, Yang PS, You SC, Sung JH, Jang E, Yu HT *et al.* Treatment timing and the effects of rhythm control strategy in patients with atrial fibrillation: nationwide cohort study. *Bmj* 2021;**373**:n991.
- 9. Piccini JP, Simon DN, Steinberg BA, Thomas L, Allen LA, Fonarow GC *et al.* Differences in Clinical and Functional Outcomes of Atrial Fibrillation in Women and Men: Two-Year Results From the ORBIT-AF Registry. *JAMA Cardiol* 2016;**1**:282-91.
- 10. Schnabel RB, Pecen L, Ojeda FM, Lucerna M, Rzayeva N, Blankenberg S *et al.* Gender differences in clinical presentation and 1-year outcomes in atrial fibrillation. *Heart* 2017;**103**:1024-30.
- 11. Lee JM, Kim TH, Cha MJ, Park J, Park JK, Kang KW *et al.* Gender-related Differences in Management of Nonvalvular Atrial Fibrillation in an Asian Population. *Korean Circ J* 2018;**48**:519-28.
- 12. Kim MH, You SC, Sung JH, Jang E, Yu HT, Kim TH *et al.* Safety and long-term outcomes of catheter ablation according to sex in patients with atrial fibrillation: A nationwide cohort study. *Int J Cardiol* 2021;**338**:95-101.

- 13. Rienstra M, Van Veldhuisen DJ, Hagens VE, Ranchor AV, Veeger NJ, Crijns HJ *et al.* Gender-related differences in rhythm control treatment in persistent atrial fibrillation: data of the Rate Control Versus Electrical Cardioversion (RACE) study. *J Am Coll Cardiol* 2005;**46**:1298-306.
- 14. Zylla MM, Brachmann J, Lewalter T, Hoffmann E, Kuck KH, Andresen D *et al.* Sex-related outcome of atrial fibrillation ablation: Insights from the German Ablation Registry. *Heart Rhythm* 2016;**13**:1837-44.
- 15. Lee SS, Ae Kong K, Kim D, Lim YM, Yang PS, Yi JE *et al.* Clinical implication of an impaired fasting glucose and prehypertension related to new onset atrial fibrillation in a healthy Asian population without underlying disease: a nationwide cohort study in Korea. *Eur Heart J* 2017;**38**:2599-607.
- 16. Li F, Morgan KL, Zaslavsky AM. Balancing covariates via propensity score weighting. *Journal of the American Statistical Association* 2018;**113**:390-400.
- 17. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. *Journal of the American statistical association* 1999;**94**:496-509.
- 18. Bushnell C, McCullough LD, Awad IA, Chireau MV, Fedder WN, Furie KL *et al.* Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke* 2014;**45**:1545-88.
- 19. Emdin CA, Wong CX, Hsiao AJ, Altman DG, Peters SA, Woodward M *et al.* Atrial fibrillation as risk factor for cardiovascular disease and death in women compared with men: systematic review and meta-analysis of cohort studies. *Bmj* 2016;**532**:h7013.
- 20. Connolly SJ, Camm AJ, Halperin JL, Joyner C, Alings M, Amerena J *et al.* Dronedarone in high-risk permanent atrial fibrillation. *N Engl J Med* 2011;**365**:2268-76.
- 21. Tsadok MA, Jackevicius CA, Essebag V, Eisenberg MJ, Rahme E, Humphries KH *et al.* Rhythm versus rate control therapy and subsequent stroke or transient ischemic attack in patients with atrial fibrillation. *Circulation* 2012;**126**:2680-7.
- 22. Patel D, Mohanty P, Di Biase L, Sanchez JE, Shaheen MH, Burkhardt JD *et al.* Outcomes and complications of catheter ablation for atrial fibrillation in females. *Heart Rhythm* 2010;7:167-72.
- 23. Makkar RR, Fromm BS, Steinman RT, Meissner MD, Lehmann MH. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. *Jama* 1993;**270**:2590-7.
- 24. Hosseini SM, Rozen G, Saleh A, Vaid J, Biton Y, Moazzami K *et al.* Catheter Ablation for Cardiac Arrhythmias: Utilization and In-Hospital Complications, 2000 to 2013. *JACC Clin Electrophysiol* 2017;**3**:1240-8.
- 25. Bollmann A, Ueberham L, Schuler E, Wiedemann M, Reithmann C, Sause A *et al.* Cardiac tamponade in catheter ablation of atrial fibrillation: German-wide analysis of 21 141 procedures in the Helios atrial fibrillation ablation registry (SAFER). *Europace* 2018;**20**:1944-51.

- 26. Elayi CS, Darrat Y, Suffredini JM, Misumida N, Shah J, Morales G *et al.* Sex differences in complications of catheter ablation for atrial fibrillation: results on 85,977 patients. *J Interv Card Electrophysiol* 2018;**53**:333-9.
- 27. Yao RJR, Macle L, Deyell MW, Tang L, Hawkins NM, Sedlak T *et al.* Impact of Female Sex on Clinical Presentation and Ablation Outcomes in the CIRCA-DOSE Study. *JACC Clin Electrophysiol* 2020;**6**:945-54.
- 28. Pancholy SB, Sharma PS, Pancholy DS, Patel TM, Callans DJ, Marchlinski FE. Meta-analysis of gender differences in residual stroke risk and major bleeding in patients with nonvalvular atrial fibrillation treated with oral anticoagulants. *Am J Cardiol* 2014;**113**:485-90.
- 29. Pokorney SD, Simon DN, Thomas L, Fonarow GC, Kowey PR, Chang P *et al.* Patients' time in therapeutic range on warfarin among US patients with atrial fibrillation: Results from ORBIT-AF registry. *Am Heart J* 2015;**170**:141-8, 8.e1.
- 30. Jaïs P, Cauchemez B, Macle L, Daoud E, Khairy P, Subbiah R *et al.* Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. *Circulation* 2008;**118**:2498-505.
- 31. Mont L, Bisbal F, Hernández-Madrid A, Pérez-Castellano N, Viñolas X, Arenal A *et al.* Catheter ablation vs. antiarrhythmic drug treatment of persistent atrial fibrillation: a multicentre, randomized, controlled trial (SARA study). *Eur Heart J* 2014;**35**:501-7.

ABSTRACT

심방 세동에 이환된 환자에 대한 맥박 수 조절 대비 조기 리듬 조절 치료

효과의 성별에 따른 차이

<지도교수 정보영 >

연세대학교 대학원 의학과

강동선

내용

3 3

배경: 이 연구는 심방 세동 환자에 대해 맥박 수 조절 치료를 진행하는 것 대비 리듬 조절 치료를 조기 진행할 때의 상대적인 효과가 성별에 따라 달라지는 지에 대해 확인하고자 하였다. 방법: 본 연구자들은 국민건강보험 공단의 자료를 이용하여 심방 세동을 진단 받은 지 1년 이내에 이에 대한 치료를 진행한 환자들을 모집하였다. 주요 복합 결과는 심혈관계 질환에 의한 사망, 허혈성 뇌졸중의 발생, 심부전으로 인한 입원, 그리고 급성 심근 경색으로 구성되었다. 결과: 평균 4.9년의 추적 기간 동안, 여성에서는 맥박 수 조절 대비 리듬 조절 치료의 주요 복합 결과에 대한 이점이 심방 세동 진단 3개월 이내 통계적으로 유의하지 않게 되었으나 남성에서는 12개월 동안 리듬 조절 치료의 상대적인 이점이 유의하게 유지되는 경향을 보였다. 심방 세동 진단일로부터 6개월 이내 리듬 조절 치료를 시행한 경우, 두 성별에서 모두 맥박 수 조절 치료를 시행한 것 대비 더 낮은 주요 복합 결과의 위험성을 보였다 (남자: hazard ratio 0.86, 95% confidence interval 0.79-0.94; 여자: hazard ratio 0.85, 95% confidence interval 0.78-0.93; P for interaction = 0.844). 하지만, 6개월 이후 리듬 조절 치료를 시행하였을 때는, 남성에서는 맥박 수 조절 치료를 시행하는 것 대비 유의한 이점을 보였으나 여성에서는 두 치료 사이 주요 복합 결과에 대한 이점의 차이를 보이지 못했다 (남자: hazard ratio 0.72, 95% confidence interval 0.52–0.99; 여자: hazard ratio 1.32, 95% confidence interval 0.92–1.88; P for interaction = 0.018). 결론: 리듬 조절 치료를 시행한 경우, 주요 복합 결과의 위험도가 맥박 수 조절 치료 대비 더 낮은 경향을 보였으나.

여성에서는 더 이른 시점에서의 치료 개시가 필요함을 이 연구의 결과를 통해 알 수 있었다.

핵심되는 말 : 심방 세동, 조기 리듬 조절, 심혈관계 질환

PUBLICATION LIST

Kang DS, Kim D, Jang E, Yu HT, Kim TH, Joung BY et al. Sex Difference in Effectiveness of Early Rhythm- over Rate-Control in Patients with Atrial Fibrillation. J Clin Med 2022;11.