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ABSTRACT 

 

Development of an artificial intelligence model to evaluate and predict the 

severity of postoperative scars 
 

Jemin Kim 
 

Department of Medicine 

The Graduate School, Yonsei University  
 

(Directed by Professor Ju Hee Lee) 
 

 

 

Although most postoperative scars are inevitable sequelae after the surgical procedures, 

they cause significant cosmetic problems and functional impairments. The appropriate 

evaluation of the severity of the scar is crucial for determining the proper treatment 

modalities, yet there is no gold standard in assessing the scars. Our objective of the study 

was to develop and evaluate an artificial intelligence (AI) model using the image and 

clinical data to predict the severity of postoperative scars.  

 Deep neural network models were trained and validated using images and clinical data 

from 1,283 patients (main dataset: 1,043, external dataset: 240) with post-thyroidectomy 

scars. The Model’s performance in classifying the scar severity was externally validated on 

patients of another hospital and tested against 16 dermatologists. With the internal test set, 

the area under the receiver operating characteristic curve (ROC-AUC) of the image-based 

model was 0.931 (95% CI 0.910-0.949), and increased to 0.938 (0.916-0.955) when 

combined with clinical data. With the external test set, the ROC-AUC of the image-based 

and combined prediction model were 0.896 (0.874-0.916) and 0.912 (0.892-0.932), 

respectively. The tested algorithm performance with images of the internal test set was 

comparable to that of 16 dermatologists. Regression model for VSS score prediction 

showed the mean absolute error of 1.075 (95% CI 0.960-1.184) in the internal testing set, 
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and 1.183 (95% CI 1.080-1.283) in the external testing set.  

 In conclusion, this study revealed that deep neural network model derived from image 

and clinical data could predict the severity of postoperative scar. We anticipate that the 

proposed AI model may utilize in the clinical practice of scar management, especially for 

deciding severity and treatment initiation. 

                                                                   

Key words : postoperative scar, hypertrophic scar, dataset, artificial intelligence, 

deep learning
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I. INTRODUCTION 

 

Scars are one of the most common medical problems that affect a patient not only 

cosmetically but also cause functional impairment and psychosocial burdens. 

Significantly, after surgical procedures, hypertrophic scars and even keloids frequently 

develop. The incidence of hypertrophic scars after a surgical procedure is estimated to be 

40-70% in the absence of adequate management1, and they significantly impair the 

quality of life (QoL) of patients2. The post-thyroidectomy scar is particularly problematic 

because of the location (exposed area of neck), relatively young age of the affected 

patients, and rapidly increasing incidence of thyroid cancer3. Furthermore, since the 

underlying molecular mechanism of wound healing and scarring formation is quite 

complex4, predisposing factors or prognostic markers for hypertrophic scarring are also 

not wholly understood5. For post-thyroidectomy scar, several clinical risk factors related 

to hypertrophic scarring were reported, such as young age, high body mass index (BMI), 

scar-related symptoms, incision site near the sternal notch, prominent 

sternocleidomastoid muscles, and history of abnormal wound healing or pathologic 

scarring3,5,6.   

 In the era of artificial intelligence (AI), a convolutional neural network (CNN) has been 

successfully introduced and formed the basis for various emerging applications in the field 
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of dermatology7. Current studies using CNN in dermatology mainly focused on classifying 

skin diseases, especially skin cancer8-11, or lesion identification and quantification via 

segmentation algorithm12,13. However, recent studies in radiology revealed that 

implementing a deep learning model combining imaging and clinical data could predict 

disease severity, risk of progression, or treatment response14-16. 

 In this study, we aimed to develop an artificial intelligence model that predicts the 

severity of postoperative scars using medical images and clinical data. We also aimed to 

compare the performance of the AI model to that of dermatologists.    

 

II. MATERIALS AND METHODS 

 

1. Study design and participants 

  A. Patient cohorts 

We did a retrospective study and identified patients with a post-thyroidectomy scar 

who presented to the scar laser and plastic surgery center within the Yonsei cancer hospital, 

Seoul, Republic of Korea, between September 2015 and December 2021. The study was 

approved by the institutional review board of Yonsei University Severance Hospital 

(approval number 4-2022-0741). In this main dataset, we randomly assigned these patients 

to model training, validation, and internal testing datasets (7:1:2). Also, we independently 

collected the post-thyroidectomy patients who presented to the department of dermatology 

at Severance Hospital, Seoul, Republic of Korea, between December 2010 and July 2015 

who were assigned to the external testing dataset. All patients underwent conventional 

thyroidectomy, minimally invasive thyroidectomy (MIS), modified radical neck dissection 

(MRND), or transaxillary robotic thyroidectomy and were referred to the dermatology 

clinic for scar minimization treatments. Medical images of the anterior neck or axilla were 

taken with high-resolution (≥ 6 million pixels) digital cameras at the initial visit, 3, 6, and 

12 months of follow-up. We additionally collected the photographs of patients without 

scars in the anterior neck region at the same intuition to set as a control (‘normal’) group. 

In total, 2,727 images from 1,043 patients were included in the main dataset, and 234 
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images from 185 patients were obtained from the external dataset (Table 1).  

  B. Data acquisition and preprocessing 

For each patient’s visits, clinical data were collected, including age, sex, BMI, date 

after surgery (scar age), past keloid history, operation site, clinical scar characteristics 

(itching, pain, adhesion, tightening, induration, or edema), number of treatment sessions, 

and treatment response (for follow-up visits). The digital images of the anterior neck or 

axilla included in the study were de-identified and minimally cropped to contain adjacent 

anatomical structure around scar; for example, we cut off the photos of the anterior neck to 

include from the adam's apple to the sternal notch. Then these images were independently 

scored for scar severity by three board-certified dermatologists who specialized in scar 

treatment, using the Vancouver scar scale (VSS)17. Based on the VSS score and the required 

scar treatment modalities judged by the scar-specialized dermatologists, we classified the 

scars into four categories by their severity: normal, mild, moderate, and severe (Figure 1)18. 

Treatment response was defined as ≥50% of VSS score or ≥ 2 decrements of severity 

grade, compared to the initial visit. 

 

2. Neural network structure and training  

For the image-based severity prediction model, we adopted the convolutional block 

attention module (CBAM) integrated with a ResNet-50. CBAM consists of a channel and 

spatial attention submodules, which allows focusing on meaningful features and 

suppressing unwanted ones19. All images were resized to 224 x 224 pixels and normalized 

to the ranged from -1 to 1 for training. Also, to adjust the data imbalance between classes 

and avoid overfitting, data augmentation techniques such as random image cropping and 

white balance were adopted20. The cross entrophy loss was used to train the network, and 

softmax operation was applied to model output. A stochastic gradient descent (SGD) 

optimizer was used with a learning rate of 0.01 and batch size 16. For the clinical-data-

based severity prediction, a multilayer perceptron (MLP) model was trained to distinguish 

each severity class based on 11 collected clinical variables. Finally, the combined model  
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Table 1. Summary of the main and external dataset and the corresponding demographic 

information 

    Dataset 

Characteristics Main External  

Data collection period 2015. 9 - 2021. 12 2010. 12 - 2015. 7 

Location (Hospital) 

Scar laser and plastic 

surgery center, Yonsei 

cancer hospital 

Department of 

dermatology, Severance 

Hospital 

Dataset allocation  

Training (70%) 

Validation (20%) 

(Internal) Testing (10%) 

External testing (100%) 

Patient demographics    

 Unique individuals, n 1043 240 

 Female sex, % 88.7 87.9 

 Age at diagnosis, mean ± SD 40.5 ± 11.5 42.2 ± 11.2 

Number of images, n 2727 374 

 Normal  332 50 

 Mild  688 74 

 Moderate  1289 201 

  Severe 418 49 

Abbreviations: SD; standard deviation 
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Figure 1. Description and representative images of scar severity classification according to morphologic features and 

treatment requirements.   

Abbreviations : VSS, vancouver scar scale  
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of severity prediction was obtained from the 6:4 ratio of the weighted sum of the image-

based and clinical-data-based prediction models. Furthermore, we developed an image-

based regression model to estimate the VSS score based on the score labeled on each image 

(Figure 2). The neural network structure was implemented in Python, using Pytorch 

backend (Python 3.9.0, Pytorch 1.9.0). 

 

3. Evaluation of algorithm performance 

The trained model was evaluated using the test dataset, both from the internal and 

external testing datasets. For the best-fitted model, five-fold stratified cross-validation was 

performed to verify the robustness of the model. Then, the classification performance of 

the image-based severity prediction model was compared against that of eight board-

certified dermatologists and eight dermatology residents. We randomly selected 240 

images from the internal test dataset (60 images from each severity class), presented them 

as original resolution photographs, and asked them to choose the best appropriate 

classification (single choice). Furthermore, a class activation map (Grad-CAM and Guided 

Grad-CAM), which allows visualizing the important features via gradient-based 

localization21, was implemented to understand the prediction made by the deep network 

model qualitatively. 

 

4. Statistics  

 The performance of each model was calculated by Top-1 accuracy, sensitivity, 

specificity, and F1 score. Receiver operating characteristic (ROC) curves were drawn via 

sensitivity and specificity for each threshold, with areas under the curve (AUC) calculated. 

95% Confidence intervals (CI) were calculated using the bootstrap resampling of the test 

dataset with the replacement N = 1000 times22. 

 Also, we examined the internal features learned by the models using t-distributed 

stochastic neighbor embedding (t-SNE), which reduces the 2048-dimensional vectors 

obtained using the classification models to a 2-dimensional map.  
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Figure 2. Illustration of severity prediction model’s pipeline.  

Abbreviations: CBAM, convolutional block attention module; CNN, convolutional neural network; MLP, multilayer 

perceptron
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 Clinical characteristics of the three severity groups (mild, moderate, severe) were 

compared using the Fisher’s exact or chi-square test with adjusted residuals if variables 

were in 2x3 categorical tables. Otherwise, one-way analysis of variance (ANOVA) test was 

used to compare continuous variables. All variables with P<0.10 in the analyses were 

selected for multinomial logistic regression analysis (reference group: moderate severity). 

Statistical analyses were performed using Python version 3.9.0, and all P values are two-

sided and less than .05 were considered statistically significant.  

 

III. RESULTS 

 

1. Patients and clinical characteristics  

 A total of 1043 patients were included in the main dataset, and 109 (10.5%) had mild, 

705 (67.6%) had moderate, and 229 (22.0%) had severe degrees of scar severity, according 

to the initial clinical presentation. When comparing clinical variables between these 

severity groups, the factors listed below showed significant differences; BMI, date after 

surgery, minimally invasive thyroidectomy (MIT), modified radical neck dissection 

(MRND), transaxillary approach, itching/pain, adhesion/tightening, and induration/edema 

(Table 2). 

 To identify predictive factors associated with scar severity, we performed multinomial 

logistic regression with the significant variables (P<0.10) shown in Table 2, setting the 

moderate group as the reference group. In the multivariate model, MIT (OR: 2.18, 95% CI: 

1.32-3.60) and the date after surgery (OR: 1.04, 95% CI: 1.03-1.06) were positively 

correlated with the mild scar severity. Transaxillary approach (OR: 3.11, 95% CI: 1.75-

5.50), date after surgery (OR: 1.07, 95% CI: 1.05-1.09), and itching/pain (OR: 1.52, 95% 

CI: 1.03-2.24) were positively correlated with the severe scar severity, yet 

adhesion/tightening (OR: 0.69, 95% CI: 0.50-0.97) and induration/edema (OR: 0.55, 95% 

CI: 0.34-0.89) were negatively associated with the severe group (Table 3).  

 

2. Performance of the model  
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Table 2. Baseline patient characteristics and comparison of features stratified by initial scar severity  

  Mild  Moderate  Severe  Total  
P value  

Feature (N=109) (N=705) (N=229) (N=1043) 

Female sex 102 (93.6) 625 (88.7) 198 (86.5) 925 (88.7) 0.15 

Age at diagnosis  42.2 ± 12.1 40.6 ± 11.2 39.2 ± 12.2 40.5 ± 11.5 0.077 

Body mass index (BMI) 22.8 ± 3.50 23.2 ± 3.76 23.8 ± 4.36 23.3 ± 3.89 0.046* 

Date after surgery (months) 10.9 ± 18.9 4.14 ± 7.59 10.7 ± 13.8 6.29 ± 11.3 <0.001* 

Past keloid history 1 (0.9) 17 (2.4) 8 (3.5) 26 (2.5) 0.38 

Location of surgery      

 Conventional 68 (62.4) 473 (67.1) 149 (65.1) 690 (66.2) 0.59 

 MIT 29 (26.6)† 105 (14.9) 24 (10.5) 158 (15.1) 0.001* 

 MRND 6 (5.5) 92 (13.0) 34 (14.8) 132 (12.7) 0.047* 

 Transaxillary 6 (5.5) 34 (4.8) 27 (11.8)† 67 (6.4) 0.001* 

Clinical scar characteristics      

 Itching/pain 19 (17.4) 123 (17.4) 60 (26.2)† 202 (19.4) 0.012* 

 Adhesion/Tightening 54 (49.5) 346 (49.1)† 84 (36.7) 484 (46.4) 0.004* 

  Induration/Edema 17 (15.6) 171 (24.3)† 26 (11.4) 214 (20.5) <0.001* 

*Statistically significant P values (<0.05) 

†Statistically significant adjusted standardized residuals (>2.1) 

Abbreviations: MIT; Minimally invasive thyroidectomy, MRND; modified radical neck dissection 
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Table 3. Multinomial logistic regression analysis by scar severity groups1 

Independant variables Mild Severe 

    OR (95% CI) P value OR (95% CI) P value 

Age at diagnosis  1.02 (0.99-1.04) 0.077 0.99 (0.98-1.01) 0.63 

Body mass index (BMI) 0.97 (0.91-1.03) 0.34 1.04 (0.99-1.08) 0.064 

Date after surgery (months) 1.04 (1.03-1.06) <0.001* 1.07 (1.05-1.09) <0.001* 

Location of surgery     

 Conventional Ref  Ref - 

 MIT 2.18 (1.32-3.60) 0.002* 0.69 (0.42-1.16) 0.16 

 MRND 0.41 (0.16-1.04) 0.061 1.31 (0.81-2.13) 0.27 

 Transaxillary 1.31 (0.51-3.36) 0.58 3.11 (1.75-5.50) <0.001* 

Clinical scar characteristics     

 Itching/pain 1.10 (0.63-1.92) 0.74 1.52 (1.03-2.24) 0.034* 

 Adhesion/Tightening 1.10 (0.71-1.69) 0.67 0.69 (0.50-0.97) 0.032* 

  Induration/Edema 0.65 (0.37-1.17) 0.15 0.55 (0.34-0.89) 0.014* 

*Statistically significant P values (<0.05) 

1Individual effect sizes (ORs) and 95% CIs refer to the comparison of the mild and severe severity group with the moderate 

scar severity group as reference group for the outcome 
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We developed and validated three severity prediction models and one VSS score regression 

model: (i) image-based severity prediction model, which integrated CBAM with CNN 

architecture, (ii) clinical-data-based severity prediction model which uses MLP model with 

clinical variables, (iii) combined severity prediction model, which is derived from the 

weighted sum of the model (i) and (ii), and (iv) image-based regression model to predict 

VSS score. The results for the sensitivity, specificity, ROC-AUC, and Top-1 accuracy of 

the severity prediction models are listed in Table 4. In the internal test dataset, the image-

based model had a ROC-AUC of 0.931 (95% CI 0.910-0.949), the clinical-data-based 

model had a ROC-AUC of 0.905 (95% CI 0.877-0.928), and combination of these two 

model yields ROC-AUC of 0.938 (0.916-0.955). The combined severity prediction model 

significantly improved (P = 0·042) compared with the clinical-data-based model but was 

statistically insignificant compared to the image-based model (P = 0.633). Trends were 

similar in the external test dataset, yet slightly lower ROC-AUC and Top-1 accuracy was 

noted than the corresponding values in the internal test set (Figure 3).  

 The sensitivity, specificity, F1-score, and ROC-AUC of each severity class in the 

internal testing set was shown in Table 5. ROC-AUC was highest in the normal (0.998, 95% 

CI 0.994-0.999), followed by severe (0.925, 95% CI 0.884-0.954), mild (0.919, 95% CI 

0.880-0.951), and moderate (0.833, 95% CI 0.781-0.878) class in the image-based model. 

The trend and value was similar in the combined severity prediction model; highest in the 

normal (0.996, 95% CI 0.988-1.000) and lowest in the moderate (0.834, 95% CI 0.781-

0.882) group. In combined model, specificity of each classification were highest at normal 

grade (0.983, 95% CI 0.962-1.000), followed by severe (0.950, 95% CI 0.914-0.979), mild 

(0.944, 95% CI 0.909-0.977), and moderate (0.761, 95% CI 0.699-0.823) grade. The 

sensitivity of each grade tends to be lower than those of specificity, especially in the mild 

(0.650, 95% CI 0.518-0.762) and severe (0.617, 95% CI 0.500-0.731) groups. 

 In the case of the regression model for VSS score prediction, we obtained the mean 

absolute error (MAE), root mean square error (RMSE), and the Bland-Altman plot 

depicting the association between the predicted and measured VSS. The MAE of the  
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Table 4. Performance of severity prediction models1 

   Sensitivity Specificity ROC-AUC Top-1 accuracy 
 

Model (class)  (95% CI) (95% CI) (95% CI)  (95% CI) 
P value2 

Internal testing set      

 
Image-based model  

0.725  

(0.672-0.774) 

0.908  

(0.888-0.926) 

0.931  

(0.910-0.949) 

0.725  

(0.667-0.780) 
0.633 

 
Clinical-data-based model  

0.692 

(0.638-0.750) 

0.897 

(0.879-0.917) 

0.905 

(0.877-0.928) 

0.692 

(0.638-0.750) 
0.042 

 
Combined model 

0.730 

(0.675-0.783) 

0.910 

(0.892-0.928) 

0.938 

(0.916-0.955) 

0.729 

(0.675-0.783) 
ref 

External testing set       

 Image-based model  
0.695 

(0.652-0.741) 

0.898 

(0.884-0.914) 

0.896 

(0.874-0.916) 

0.695 

(0.652-0.741) 
0.260 

 
Clinical-data-based model  

0.658 

(0.610-0.706) 

0.886 

 (0.870-0.902) 

0.875 

(0.848-0.899) 

0.658 

(0.610-0.706) 
0.023 

  Combined model 
0.733 

(0.687-0.775) 

0.911 

(0.896-0.925) 

0.912 

(0.892-0.932) 

0.733 

(0.687-0.775) 
ref 

1Calculated by the micro-averaged value of each severity class for the given model, using bootstrap resampling (N=1000) 

of the test dataset.  

2The p-value from the binomial test measures the difference in performance between the combined model and image- or 

clinical-data-based model in terms of ROC-AUC.   

Abbreviations: ROC-AUC; area under the receiver operating characteristic curve, Ref; reference model.  
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Figure 3. Receiver operating characteristic (ROC) curves for the three classification models in (A) internal testing set 

and (B) external testing set. Blue curve: image-based model by convolutional block attention module (CBAM) integrated 

Resnet-50, Green curve: clinical-data-based model by multilayer perceptron (MLP), Red curve: combined model from the 

weighted sum of the image-based and clinical-data-based models.   
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Table 5. Performance of prediction model according to each severity class in the internal testing set  

   Sensitivity Specificity F1-score ROC-AUC 

Model (class)  (95% CI) (95% CI)  (95% CI) (95% CI) 

Image-based model      

 
Normal  0.950 (0.889-1.000) 0.983 (0.961-1.000) 0.950 (0.906-0.984) 0.998 (0.994-0.999) 

 
Mild  0.617 (0.500-0.729) 0.944 (0.904-0.976) 0.692 (0.593-0.781) 0.919 (0.880-0.951) 

 Moderate  0.817 (0.712-0.914) 0.728 (0.667-0.788) 0.620 (0.525-0.703) 0.833 (0.781-0.878) 

 
Severe 0.517 (0.390-0.638) 0.978 (0.954-0.995) 0.653 (0.530-0.750) 0.925 (0.884-0.954) 

Clinical-data-based model       

 
Normal  1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (0.999-1.000) 

 
Mild  0.817 (0.714-0.911) 0.811 (0.757-0.865) 0.685 (0.590-0.770) 0.889 (0.840-0.928) 

 Moderate  0.467 (0.333-0.593) 0.900 (0.853-0.944) 0.528 (0.404-0.644) 0.808 (0.745-0.862) 

 
Severe 0.483 (0.362-0.614) 0.878 (0.828-0.922) 0.522 (0.409-0.632) 0.805 (0.747-0.858) 

Combined model      

 
Normal  0.967 (0.918-1.000) 0.983 (0.962-1.000) 0.959 (0.917-0.991) 0.996 (0.988-1.000) 

 
Mild  0.650 (0.518-0.762) 0.944(0.909-0.977) 0.716 (0.608-0.797) 0.932 (0.894-0.962) 

 
Moderate  0.683 (0.571-0.797) 0.761 (0.699-0.823) 0.569 (0.470-0.671) 0.834 (0.781-0.882) 

  Severe 0.617 (0.500-0.731) 0.950 (0.914-0.979) 0.698 (0.600-0.790) 0.928 (0.895-0.959) 
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internal testing set was 1.075 (CI 0.960-1.184), and RMSE was 1.418 (CI 1.269-1.563). 

These values were slightly higher in the external testing set, 1.183 (CI 1.080-1.283) for 

MAE and 1.561 (CI 1.431-1.680) for RMSE. Bland-Altman plot showed a positive linear 

slope, indicating a positive proportional bias (Figure 4). 

 Five-fold stratified cross-validation was done, and the Top-1 accuracy of the image-

based and combined model fluctuated in the range of ± 1.6% and ± 4.0%, respectively, 

showing the robustness of the models. 

 

3. Comparison between the neural network vs. dermatologists  

 Our model is tested against eight board-certified dermatologists and eight dermatology 

residents to compare performances. The overall Top-1 accuracy of the board-certified 

dermatologist and dermatology resident was 0.746 and 0.729, respectably. Both image-

based and combined models were able to classify four scar severity groups with a level of 

competence comparable to that of dermatologists (Figure 5). Confusion matrices of neural 

network models and dermatologists over the four severity classes were shown in Figure 6. 

Both AI models and the dermatologists significantly confused mild and moderate scar 

lesions with each other; The model had a slight higher rate of misclassifying mild severity 

as moderate (7.9% vs. 4.4%) than human, whereas humans had a higher rate of 

misclassifying moderate as mild (7.9% vs. 3.5%). Also, both models and dermatologists 

tended to misclassify severe lesions into moderate class (10.8% and 11.0%, respectably). 

 

4. Visualization of the explanatory model    

We adopted two visualization methods for image-based model, dimensionality 

reduction via t-SNE and class activation mapping (Grad-CAM). The two-dimensional 

expression of the internal features extracted from the image-based classification model is 

shown in Figure 7. Neural network model could extract distinct features for scar severity 

classification, and the cluster represented in each class occupied relative regions in the two-  
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Figure 4. A Bland-Altman plot shows the association between the measured and 

predicted VSS score in the regression model. The shaded areas correspond to 95% 

confidence intervals. MAE, mean absolute error; RMSE, root mean square error. 
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Figure 5. Scar severity classification performance of the CNN and dermatologists. 

ROC (receiver operating characteristic) curves for each severity class were drawn for the 

image-based (dotted curve) and combined prediction model (black curve). Also, the 

prediction value of the 16 dermatologists was plotted; red dot = 8 board-certified 

dermatologists; blue dot = 8 dermatology residents; black cross = average value of 16 

dermatologists. 
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Figure 6. Confusion matrix comparison between prediction models and 

dermatologists. Confusion matrices were drawn for (A) image-based model, (B) combined 

prediction model, (C) board-certified dermatologists, and (D) dermatology residents. All 

matrices are computed using the 240 images from the internal test set. True label in y axis 

refers to ground truth label, and predicted label in x axis refers to classification output by 

AI models or dermatologists.  
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Figure 7. t-SNE visualization of the last hidden layer representations in the image-

based prediction model. The output of the neural network’s last hidden layer projected 

onto a 2-dimensional map using the t-distributed Stochastic Neighbor Embedding (t-SNE) 

method. Colored point clouds represent different severity classifications, showing how the 

algorithm clusters the postoperative scars.  
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dimensional map corresponding to clinical features. For example, the cluster of the mild 

class is located between normal and moderate severity, and the moderate class is 

sandwiched between mild and severe classes with some overlapping.  

Figure 8 shows the results from the class activation mapping, in which heatmaps 

represent the pixel areas activated by the deep neural network. The CBAM integrated CNN 

model successfully distinguished postoperative scars from the wrinkles of the surrounding 

skin. Also, it can detect coarse and hypertrophic portions of the lesion in the moderate or 

severe degree scar.  

 Also, to elucidate significant variables in predicting the outcome of the clinical-data-

based model, we introduced the SHAP (SHapley Additive exPlanations) method for 

visualizing the importance ranking of the features23. Figure 9 shows the importance ranking 

of all variables used in the clinical-data-based model evaluated by the average absolute 

SHAP value. Operation site, induration/edema, date after surgery, BMI, and itching/pain 

were considered the Top-5 dominating features for predicting the severity of the scar. 

 

IV. DISCUSSION 

 

All undesirable scars are undesirable in different ways24; thus, it is hard to differentiate 

'undesirable' scars on a clinical basis easily. Various scar assessment scales for clinicians 

have been emerged to assist the evaluation of scar severity, progression, and treatment 

response, yet a “gold standard” scar scale still does not exist25. In this study, we aimed to 

evaluate the postoperative scars using the deep neural network models by the scar severity. 

Using the AI model based on the patients' digital images and clinical information, we 

successfully classified the postoperative scars according to their severity, and the 

performance of the models was comparable to those of dermatologists.  

It should be noted that we intentionally collected and cropped digital images to include 

not only scar but also adjacent skin structure and even artifacts like clothes or ruler (Figure 

1). Intensive preprocessing, including resizing and cropping the clinical image to include  
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Figure 8. Visual explanations of postoperative scar cases via class activation mapping. 

Clinical images of each scar severity grade and corresponding heatmaps via gradient-based 

localization (Grad-CAM). The activation was focused on the hypertrophied region of the 

scar.  
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Figure 9. Interpretation of the clinical-data-based model via SHAP analysis. The 

importance ranking of variables used in clinical-date-based model according to the mean 

(|SHAP value|).  
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only lesions of interest for analysis, may help to improve classification performance. 

However, this is not only such a laborious and exhausting task but also far from the actual 

clinician’s viewpoint of scar, which usually incorporates broader adjacent anatomical 

structures6,26. Thus, we integrated the convolutional block attention module (CBAM) into 

the CNN architecture, which selectively and automatically  focuses on the salient lesion 

like the human visual perception mechanism19,27. Therefore, our image-based model 

successfully classified scar severity while appropriately concentrating on the lesion of 

interest (Figure 7) without direct human labeling or cropping of the scar lesion. 

To construct image-based AI model, we classified the postoperative scar into four 

classes mainly based on the Vancouver scar scale (VSS), which was the first validated and 

most widely used scar scale to date17. The VSS consisted of four parameters related to scar 

characteristics : height, pliability, pigmentation, and vascularity, to generate a semi-

quantitative score ranging from 0 - 13 points28. However, the VSS has a significant 

limitation: it does not reflect various factors that determine scar severity other than the 

morphological characteristics of the scar17,25. Therefore, we planned to develop a neural 

network model trained with eleven clinical variables related to postoperative scars, 

including patient’s demographic factors, subject symptoms, local complications, and scar 

age. The AI model based on clinical variables showed considerable performance in 

predicting the severity of post-operative scars; however, significantly lower than those with 

the combination of clinical variables and medical images. These results imply the 

importance of utilizing both scar-related clinical characteristics and morphological features 

when predicting the severity of the postoperative scar. Furthermore, we adopted SHAP 

analysis to clarify the influential clinical features for predicting the severity of the 

postoperative scar, and to give a plausible interpretation of the model's decision-making 

process. The SHAP method showed the most critical risk factors for post-operative 

hypertrophic scarring, such as the location of the scar, increased BMI, and presence of 

subjective symptoms. These results are in line with the multinomial logistic regression 

analysis and previous studies of risk factors of post-operative scars3,6,29. 
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AI has performed at least equal to or superior to dermatologists for the diagnosis or 

classification tasks for various skin diseases8,9,30,31. Our deep neural network model also 

showed comparable performance to board-certified dermatologists or dermatology 

residents for classifying postoperative scars by their severity. We need to take into account 

the nature of the classification task in this study; not to distinguish the different diseases, 

but to grade the severity of the same disorder. Considering the semi-quantitative, rater-

dependent, and subjective nature of current scar-grading system24, significant ambiguity 

and overlap were expected between the classification classes used in this study. 

Interestingly, the confusion matrices revealed striking similarities in misclassification 

between human and neural network models. Both AI models and dermatologists tend to 

misclassify mild or severe classes into moderate severity. One plausible reason for this 

phenomenon is insufficiently distinctive features of an intermediate grade than other 

severity groups32, the other lies in the central tendency bias of visual perception, which is 

likely to estimate towards the mean of the stimuli33.  

There are several limitations in our study. First, the AI model in our study showed 

decreased performance on the external testing set, compared to the internal testing set. This 

could have been due to different image acquisition settings between the different hospitals. 

Since the VSS has two components directly related to the color of the image (pigmentation 

and vascularity), slight differences in input in the color (RGB) channels by individual 

camera settings might create substantial changes to the output of the model34. Second, due 

to the study's retrospective design, data imbalance in the training dataset and possible 

selection bias might disturb the application of this study to the broader general population 

who have the postoperative scar. Moreover, although several studies assess scar scales with 

a photograph-based examination by scar-specialized clinicians24,35,36, some components of 

VSS (i.e., pliability or height) might have difficulty being evaluated only by the clinical 

images without examination of live scars.  

A third limitation is that we included the post-operative scar at two different 

anatomical sites, anterior neck and axillary area. Since anatomical location is one of the 
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major predisposing factors for hypertrophic scarring26, though axillary scars were included 

as small as 6.4% of the main dataset, it could affect the model's overall performance as a 

confounding factor. However, we believe that the involvement of different anatomical 

backgrounds and directions of scar could prevent the overfitting of the model and enhance 

generalization to other types of scar. 

Lastly, our study cohorts exclusively included Korean patients; hence subjects only 

with Fitzpatrick skin type III and IV were included in the dataset. Since darker skin type is 

known to be one of the predisposing factors for hypertrophic scar26, future studies with 

larger-scale datasets from different ethnic groups with various etiology of the scar will be 

warranted.   

 

V. CONCLUSION 

 

In conclusion, artificial intelligence model based on image and clinical data could predict 

the severity of postoperative scar. Though our neural network models were trained with a 

relatively small (< 5000) number of images, they efficiently classified the severity of 

postoperative scar lesions with the comparable performance of dermatologists. These 

models could aid clinicians, both specialized or not-specialized in scar management, in 

determining the severity of scars and setting the treatment decision. Moreover, our 

established dataset of post-operative scar is expected to extend to the other types of scars 

(i.e., burn, trauma, post-infectious, etc.) in the future study. 
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ABSTRACT(IN KOREAN) 

흉터의 중증도 평가 및 예후를 예측하는 인공지능모델 개발 

 

<지도교수  이 주 희> 

 

연세대학교 대학원 의학과 

 

김 제 민  

 

 

 

대부분의 수술 후 흉터는 수술 이후의 불가피한 휴유증이지만 심각한 

미용적 문제와 기능적 손상을 유발할 수 있다. 흉터 중증도에 대한 

적절한 평가가 적절한 치료 방법을 결정하는 데 중요하지만, 흉터를 

평가하는 데 있어 표준적인 방법은 없는 실정이다. 따라서 본 연구는 

수술 후 흉터의 중증도를 예측하기 위하여 이미지 및 임상 데이터를 

기반으로 한 인공지능 모델을 개발하고 평가하고자 하였다.  

 갑상선 절제술 후 흉터가 있어 내원한 1,283명의 환자 (주 데이터셋: 

1,043, 외부 데이터셋: 240)로부터 사진 및 임상 정보를 수집하여 심층 

신경망 모델 (deep neural network) 을 훈련하고 검증하였다. 흉터 

중증도를 분류하는 인공지능 모델의 성능은 다른 병원 환자군의 자료를 

대상으로 외부적으로 검증하였으며, 16명의 피부과 의사에게 흉터 

사진을 평가받아 성능을 비교하였다. 내부 테스트 세트 (external test set) 

에서 이미지 기반 모델의 ROC-AUC (Receiver Operating Characteristic 

Curve) 면적은 0.931 (95% 신뢰구간 0.910-0.949) 이었고, 임상 데이터와 

결합하면 0.938 (0.916-0.955)으로 증가하였다. 외부 테스트 세트 (external 

test set) 에서 이미지 기반 및 결합 예측 모델의 ROC-AUC 면적은 각각 

0.896 (0.874-0.916) 및 0.912 (0.892-0.932)으로 계산되었다. 내부 테스트 

세트의 이미지를 기반으로 평가한 알고리즘의 성능은 16명의 피부과 

의사와 비교하였을 때 유사하였다. 밴쿠버 흉터 지수 (Vancouver scar 

scale)를 기준으로 한 회귀 예측 모델의 경우 평균 절대 오차 (mean 
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absolute error) 가 내부 테스트 세트에서 1.075 (95% 신뢰구간 0.960-1.184), 

내부 테스트 세트에서 1.183 (95% CI 1.080-1.283)으로 측정되었다.  

 결론적으로, 본 연구는 이미지 및 임상 자료로부터 도출된 심층 

신경망 모델이 수술 후 흉터의 중증도를 예측할 수 있음을 보여주었다. 

본 연구에서 제안하는 인공지능 모델은 추후 흉터 관리의 임상 분야, 

특히 흉터 중증도를 평가하여 치료 시점을 결정하는 데 활용할 수 있을 

것으로 기대한다.  

 

                                                           

핵심되는 말 : 수술 후 흉터, 비후성 흉터, 데이터 세트, 인공지능, 딥러닝 

(deep learning)    

 


