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Simple Summary: In hepatocellular carcinoma (HCC), the clinical predictive factors for tumor mark-
ers are well-known. Although these factors are recognized as essential, recent attempts have been
made to predict treatment outcomes using radiomics based on imaging markers. We investigated
whether radiomic features extracted from three-phase dynamic contrast-enhanced computed tomog-
raphy (CECT) can be used to predict clinical outcomes, including objective treatment response (OR)
and in-field failure-free survival rate (IFFR), in 409 patients with HCC who received liver-directed
combined radiotherapy (LD-CRT). In predicting the OR and IFFR, clinical models and radiomics
models based on tumoral and peritumoral areas showed an acceptable performance, while combined
clinico-radiomics models (CCR) performed better. Therefore, CCR models have potential use in
clinical prediction. Moreover, the constructed nomograms based on these models may provide
valuable information on the OR and IFFR in patients with HCC undergoing LD-CRT.

Abstract: Purpose: We investigated whether radiomic features extracted from three-phase dynamic
contrast-enhanced computed tomography (CECT) can be used to predict clinical outcomes, including
objective treatment response (OR) and in-field failure-free survival rate (IFFR), in patients with
hepatocellular carcinoma (HCC) who received liver-directed combined radiotherapy (LD-CRT).
Methods: We included 409 patients, and they were randomly divided into training (n = 307) and
validation (n = 102) cohorts. For radiomics models, we extracted 116 radiomic features from the
region of interest on the CECT images. Significant clinical prognostic factors are identified to predict
the OR and IFFR in the clinical models. We developed clinical models, radiomics models, and a
combination of both features (CCR model). Results: Among the radiomic models evaluated for OR,
the OR-PVP-Peri-1cm model showed favorable predictive performance with an area under the curve
(AUC) of 0.647. The clinical model showed an AUC of 0.729, whereas the CCR model showed better
performance (AUC 0.759). For the IFFR, the IFFR-PVP-Peri-1cm model showed an AUC of 0.673,
clinical model showed 0.687, and the CCR model showed 0.736. We also developed and validated a
prognostic nomogram based on CCR models. Conclusion: In predicting the OR and IFFR in patients
with HCC undergoing LD-CRT, CCR models performed better than clinical and radiomics models.
Moreover, the constructed nomograms based on these models may provide valuable information on
the prognosis of these patients.

Keywords: hepatocellular carcinoma; liver-directed combined radiotherapy; radiomics; treatment
response; in-field failure-free survival rate
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver
and the fourth leading cause of cancer-related deaths worldwide [1]. Although treatment
modalities have developed and reached a certain degree, the prognosis of HCC remains
poor owing to tumor recurrence, and the 5 year overall survival is around 10–20% even
after curative treatment options [2–5] (surgical resection, ablation, or liver transplantation).

For the treatment of advanced HCC, systemic therapy has long been the preferred
option, which usually involves sorafenib and, more recently, atezolizumab plus beva-
cizumab [6,7]. However, in cases of locally advanced HCC, liver-directed combined radio-
therapy (LD-CRT) should receive more attention because of its effectiveness, which may
enable curative resection [8–10]. LD-CRT effectively reduces the size of locally advanced
HCC that is initially unsuitable for surgery, leading to improved patient survival rates [9,10].
Additionally, recent studies have shown that selected patients treated with LD-CRT can
convert tumors beyond the Milan criteria to those within the Milan criteria, indicating the
potential for conversion therapy to curative surgery [8].

Predicting the treatment response is clinically important for cancer treatment. In HCC,
the clinical predictive factors for tumor markers are well-known [11–14]. Although these
factors are recognized as essential, recent attempts have been made to predict treatment
outcomes using radiomics based on imaging markers. Radiomics has emerged as a new
approach to extracting quantitative radiological data from medical images (radiomic data).
This involves extracting complex information about the tumor and surrounding tissue
characteristics, such as density, texture, shape, borders, and blood flow, to understand the
nature of the tumor and explore its correlation with clinical outcomes, such as survival,
therapeutic response, and pathology. By building appropriate models with advanced
features, radiomic analysis has already proven to be helpful in various types of cancer
diagnosis and prognostic prediction and is expected to become increasingly crucial in
predicting cancer treatment outcomes in the future, particularly in the fields of radiology
and oncology.

We aimed to investigate whether radiomic features extracted from contrast-enhanced
dynamic liver computed tomography (CT) scans can correlate with prognostic factors and
predict clinical outcomes such as objective response (OR) and in-field failure-free survival
rate (IFFR) in patients with HCC undergoing LD-CRT. The predictive accuracy of the model
was assessed using an independent validation group. To the best of our knowledge, this
study is the first and largest to evaluate prognostic factors and clinical outcomes in patients
with HCC undergoing LD-CRT to develop a clinico-radiomics model.

2. Materials and Methods
2.1. Patients

This retrospective study was conducted by searching electronic medical records. We
identified 409 patients with inoperable HCC who underwent LD-CRT between November
2005 and December 2018. The inclusion criteria were as follows: (1) HCC patients who had
received LD-CRT; (2) pre-radiation contrast-enhanced three-phase CT performed within
two months before radiotherapy; (3) Child–Pugh class A or B disease; and (4) Eastern
Cooperative Oncology Group (ECOG) performance status of no more than 2. We excluded
patients meeting the following criteria: (1) presence of distant metastasis at the beginning of
radiotherapy, (2) previous or concurrent other malignancies, (3) history of radiation to the
abdominal area, and (4) incomplete radiotherapy (biologically effective dose [BED] < 40 Gy)
owing to patient refusal or poor general condition. The entire cohort was randomly divided
into training and validation datasets in a ratio of 7:3. The training dataset was used to
construct the models evaluated using the validation dataset. Baseline clinicopathological
data, including age, sex, Eastern Cooperative Oncology Group (ECOG) performance status,
Child–Pugh score, HCC etiology (hepatitis B, hepatitis C, or neither), diagnosis date, serum
alpha-fetoprotein (AFP), serum protein-induced vitamin K absence or antagonist-II (PIVKA-
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II), indocyanine green (ICG) R15, tumor size, clinical stage, portal vein tumor thrombosis
(PVTT), radiation dose, and treatment volume, were obtained from medical records.

Patients were consistently followed up every three months after radiotherapy based
on AFP, PIVKA-II, and imaging examinations, and the time of disease-specific progression
(in-field failure, out-field failure, nodal failure, or distant metastasis) or death was recorded.
Abdominal three-phase contrast-enhanced CT (CECT) was performed every three months.
Treatment response was evaluated using the modified response evaluation criteria in solid
tumors group (mRECIST) at the three-month visit after completing radiotherapy. Complete
response (CR) and partial response (PR) were considered objective responses (OR), whereas
stable disease (SD) and progressive disease (PD) were considered non-ORs.

2.2. Treatment Protocols

Five-mm margins around the gross tumor volume (GTV) and clinical target volume
(CTV) were defined as the CTV and planning target volume (PTV), respectively. Prior
to 2010, tumor movement was included in the PTV by adding a generous margin in the
craniocaudal direction. Four-dimensional computed-tomography-based planning was
adopted in 2010, and the internal target volume (ITV) was delineated considering the
tumor movement for every respiratory phase. Additional 5 mm margins around the ITV
and CTV were defined as the CTV and PTV, respectively.

The radiotherapy doses were customized to maximize the dose delivered to the
tumor while satisfying normal organ dose constraints. For three-dimensional conformal
radiotherapy, 45 Gy in 25 fractions is typically prescribed for the PTV. As IMRT was
implemented in more patients, our practice pattern shifted towards delivering higher doses
of radiation. The GTV or ITV received a radiation dose of 50–75 Gy in 20–25 fractions using
the central simultaneous integrated boost (SIB) technique, whereas the surrounding PTV
received a lower radiation dose of 45–60 Gy in 20–25 fractions. The GTV minus 1 cm was
treated with an SIB of 100 Gy in 25 fractions for selected tumors with sufficient distance
from the luminal organs. For equal comparisons of dose effects of various fractionations,
the maximum prescribed dose to the tumor was calculated as BED (α/β = 10).

In cases with multiple tumors, the primary and adjacent tumors were irradiated,
and lesions outside the target volume were treated with transarterial chemoembolization
(TACE) at the time of arterial port insertion. If portal vein tumor thrombosis or regional
nodal metastases were present, they were treated in the radiotherapy field.

Continuous hepatic arterial infusion chemotherapy with 5-fluorouracil (500 mg/m2/day)
during the first and last weeks of radiotherapy was administered using a percutaneous
hepatic arterial catheter inserted via hepatic arterial angiography. At 1 month after radio-
therapy, hepatic arterial infusion chemotherapy using 5-fluorouracil (500 mg/m2 on days
1–3) and cisplatin (60 mg/m2 on day 2) was administered every 4 weeks for 1–14 cycles in
accordance with the treatment response after radiotherapy and liver function.

2.3. CT Scan Protocols

Three-phase CECT was performed at our institute with one of the following machines:
a 64-detector row (Aquilion CXL, Toshiba Medical System, Tokyo, Japan) or a 320-detector
row CT machine (Aquilion One, Toshiba Medical System, Tokyo, Japan). The same scanning
parameters were used for both machines: tube voltage, 120 kV; tube current, 250 mA; and
slice thickness, 3 mm, and Br40d for the kernel. All images were reconstructed using
filtered back projection (FBP) algorithms. After a routine unenhanced scan, 1.5 mL/kg of
contrast medium was injected into the antecubital vein at a rate of 3.0 mL/s via a pump
injector. Hepatic arterial phase CT images were obtained at 20–25 s, and portal venous
phase CT images were obtained at 35–40 s after injection.

2.4. Radiomics Feature Extraction

The workflow of radiomics analysis are depicted in Figure 1. A radiation oncol-
ogy expert performed three-dimensional segmentation of the HCC using MIM Software
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Version 6.5.8 (MIM Software Inc., Cleveland, OH, USA). Regions of interest (ROI) were
manually delineated on 3 mm arterial phase and portal venous phase CT images to encom-
pass the entire tumor (ROI tumor). Based on the initial ROI, ROI were reconstructed at
1 cm and 2 cm from the tumor surface, resulting in the assignment of ROI 1cm and ROI
2cm, respectively.
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Figure 1. Workflow of radiomics analysis. The radiomics workflow started with three−dimensional
segmentation of tumor in three−phase CECT images. After segmentation, handcrafted radiomic
features including shape, intensity, and texture were extracted. Least absolute shrinkage and selection
operator (LASSO) were used for the radiomic feature selection and model building. Combining
radiomics model with clinical features, we obtained the CCR model. Nomogram building and
calibration was performed.

Radiomics features were extracted from the contour images of each ROI, including
ROI tumor, ROI 1cm, and ROI 2cm, using MATLAB. In the feature extraction process,
we utilized three 2D slice images from one image volume, which comprised the central
slice with the largest cross-section area of the tumor and its adjacent slices. During the
hand-crafted feature (HCF) extraction process (including original texture, shape, and
peritumoral texture), we included 116 texture features for each ROIs, such as histogram
characteristics (such as mean, skewness, kurtosis), histogram percentile intensities, gray
level co-occurrence matrices (GLCM) features (such as contrast, entropy), gray level run
length matrix (GLRLM) features (such as short and long run emphasis), and local binary
pattern (LBP) features. Additionally, we included shape features, such as the area/perimeter
ratio and eccentricity. The hand-crafted radiomics features are listed in Table 1.

2.5. Feature Selection, Model Building, and Model Evaluation

The least absolute shrinkage and selection operator (LASSO) method was used to select
useful predictive features from the ROIs and construct a combined clinico-radiomics (CCR)
model using multiscale clinical and radiomic features. The discrimination performance of
the model was evaluated using the area under the receiver operating characteristic (ROC)
curve (AUC) in the primary training and validation groups, with a value of 1 indicating
perfect discrimination and 0.5 representing randomness.

The Hosmer–Lemeshow test was applied to the prediction model. We further built a
nomogram for the model to provide a more direct method to determine the OR and IFFR.
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A calibration curve was plotted to analyze the prognostic performance of the nomogram
on both the training and validation datasets. The “rms” R package was used for Cox
proportional hazards regression, nomograms, and calibration curves. By filling in the
CheckList for EvaluAtion of Radiomics Research (CLEAR) checklist, we tried to improve
the quality, reliability, and, in turn, reproducibility of this study.

Table 1. List of hand-crafted radiomics features.

Categories (Number of Features):
Features (Feature Numbers)

Texture—histogram features (7):
Histogram mean (1), standard deviation (2), minimum (3)
and maximum (4) intensities, skewness (5), kurtosis (6),

and entropy (7)

Texture—GLRLM features (22):
Four direction mean and standard deviation of short run emphasis

(27,28), long run emphasis (29,30), gray-level non-uniformity (31,32),
run length non-uniformity (33,34), run percentage (35,36), low

gray-level run emphasis (37,38), high gray-level run emphasis (39,40),
short run low gray-level emphasis (41,42), short run high gray-level
emphasis (43,44), long run low gray-level emphasis (45,46), long run

high gray-level emphasis (47,48)

Texture—percentile intensities at (5):
5% (8), 25% (9), 50% (10), 75% (11), 95% (12)

Texture—GLCM features (14):
Four direction mean and standard deviation of angular
second moment (13,14), contrast (15,16), sum average

(17,18), sum variance (19,290), sum entropy (21,22),
entropy (23,24), and difference entropy (25,26)

Texture—LBP features (59):
10 uniform patterns in LBP histogram (49–107)

Shape features (9):
Area/perimeter ratio (108), convex area (109), eccentricity (110),
major axis length (111), minor axis length (112), perimeter (113),

solidity (114), Min curvature (115), Mean curvature (116)

2.6. Statistical Analysis

Multivariate binary logistic regression was used to identify significant predictive
factors of treatment response. For the IFFR, we used the Kaplan–Meier method to calculate
the actuarial curves. The Cox proportional hazards model was used for the univariate
and multivariate analyses of independent prognostic clinical factors for each survival rate.
Variables significantly associated with survival rates on univariate analysis were selected
as candidates for multivariate analysis. The candidate clinical variables included age, sex,
ECOG performance status, Child–Pugh score, HCC viral etiology (hepatitis B, hepatitis
C, or neither), serum AFP, serum PIVKA-II, tumor size, clinical stage, portal vein tumor
thrombosis (PVTT), and radiation dose.

We used SPSS ver. 25 (IBM, Armonk, NY, USA) for statistical analyses, and p-values < 0.05
were considered statistically significant.

3. Results
3.1. Clinical Characteristics

The patient characteristics in the training (n = 307) and validation (n = 102) groups are
summarized in Table 2. No significant difference is found in median age (p = 0.076), gender
(p = 0.527), viral etiology (p = 0.166), Child–Pugh class (p = 0.775), serum albumin level
(p = 0.187), serum bilirubin level (p = 0.516), INR (p = 0.401), serum AFP level (p = 0.441),
serum protein induced by vitamin K absence-II (PIVKA-II) level (p = 0.566), tumor size
(p = 0.737), number of tumors (p = 0.550), portal vein thrombosis (p = 0.096), and surgery
after radiotherapy (p = 0.872) between the training and validation groups, meaning the two
sets are similarly sampled, which justifies their use as training and validation cohorts.

3.2. Clinical Outcomes and Prognostic Factors

Treatment response using the mRECIST showed that 126 (30.8%) patients had CR,
187 (45.7%) had PR, 65 (15.9%) had SD, and 31 (7.6%) had PD. OR rates were 76.5%,
whereas local control rates were 92.4%. Using binary logistic regression, tumor multiplicity
(p = 0.020), AFP level (p = 0.009), and BED dose (p = 0.001) were considered significant
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for the OR rate (Table 3). Tumor size (p = 0.028), tumor multiplicity (p = 0.019), and
BED (p = 0.001) were significant prognostic factors in multivariate Cox regression analysis
(Table 3). These prognostic factors in each clinical outcome were used as clinical features to
construct the CCR model for each clinical outcome.

Table 2. Patient and tumor characteristics in training and validation sets.

Characteristics Training Set
(n = 307)

Validation Set
(n = 102) p

Age (years) 56 (ranges, 33–83) 60 (ranges, 28–85) 0.076

Sex

Male 260 (84.7) 89 (87.3)
0.527

Female 47 (15.3) 13 (12.7)

ECOG PS

0, 1 293 (95.4) 91 (89.2)
0.133

2 14 (4.6) 11 (10.8)

Viral etiology

HBV 254 (82.7) 79 (77.5)

0.166HCV 19 (6.2) 5 (4.9)

Non-B, non-C 34 (11.1) 18 (17.6)

Child–Pugh class

A 252 (82.1) 85 (83.3)
0.775

B 55 (17.9) 17 (16.7)

Serum albumin (g/dL) 3.5 (ranges, 2.1–4.8) 3.7 (ranges, 2.0–4.9) 0.187

Serum bilirubin (mg/dL) 0.70 (ranges, 0.20–5.5) 0.70 (ranges, 0.30–4.5) 0.516

INR 1.1 (ranges, 0.80–1.7) 1.1 (ranges, 0.80–1.6) 0.401

AFP (ng/mL) 280 (ranges, 1.70–12,000) 500 (ranges, 1.20–12,000) 0.441

PIVKA-II (mAU/mL) 2000 (ranges, 10–75,000) 1400 (ranges, 11–75,000) 0.566

Tumor size (cm) 9.2 (ranges, 2.0–21) 8.9 (ranges, 2.0–20) 0.737

Number of tumors

Solitary 161 (52.4) 50 (49.0)
0.550

Multiple 146 (47.6) 52 (51.0)

PVTT

Vp0 92 (30.0) 40 (39.3)

0.096
Vp1–2 70 (22.8) 18 (17.6)

Vp3 81 (26.4) 24 (23.5)

Vp4 64 (20.8) 20 (19.6)

Surgery after RT 55 (17.9) 19 (18.6) 0.872
ECOG PS, Eastern Cooperative Oncology Group performance score; HBV, hepatitis B virus; HCV, hepatitis C virus;
AFP, alpha-fetoprotein; PIVKA-II, protein induced by vitamin K absence-II; PVTT, portal vein tumor thrombosis;
RT, radiation therapy.

3.3. Performance of Radiomics and Combined Clinico-Radiomics Models

The LASSO method was used to select the most useful predictive features from
116 hand-crafted features (HCFs) extracted from the arterial phase (AP) CT or portal
venous phase (PVP) CT images of the ROI tumor, ROI 1cm, and ROI 2cm (Figure 2).
Among the OR-associated models, the OR-PVP-Peri-1cm model, built using the HCFs in
ROI 1cm on portal-venous phase CT, had the largest AUC of 0.647 (95% CI, 0.536–0.749)
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in the validation set. The OR-PVP-Peri-1cm radiomics model was constructed using
eight selected HCFs: entropy, Gray.level.non.uniformity.stdv (GLN.stdv), LBP19, LBP31,
Long.run.high.gray.level.emphasis.stdv (LRHGLE.stdv), min, Run.length.non.uniformity.mean
(RLN.mean), and Sum.Average.stdv. The clinical model had an AUC value of 0.729 (95%
CI, 0.628–0.830) in the validation set, and the combination of the two models (i.e., the CCR
model of OR-PVP-Peri-1cm) had a larger AUC of 0.759 (95% CI, 0.665–0.853) than both the
radiomic and clinical models. Among the IFFR-associated models, the clinical model had
an AUC of 0.687 (95% CI, 0.581–0.793), and the IFFR-PVP-Peri-1cm model had the largest
AUC of 0.673 (95% CI, 0.566–0.781) in the validation set. The IFFR-PVP-Peri-1cm model
was built using eight selected HCFs: GLN.stdv, Kurtosis, LBP 32, LBP50, LBP 52, LBP9,
LRHGLE.mean, and Max. Finally, the CCR model for IFFR-PVP-Peri-1cm had a larger
AUC of 0.736 (95% CI, 0.636–0.836) than the clinical and radiomic models. Table 4 shows
the AUC of each model with different ROIs, and the ROC curves of the radiomics and CCR
models for the objective response and in-field failure-free survival are shown in Figure 3.

Table 3. Significant prognostic factors of multivariate analysis on objective response rates and in-field
failure-free survival rates.

Objective Response Rates

Prognostic Factors HR 95% CI p

Multiple tumors 1.77 1.09–2.86 0.020

AFP 1.01 0.98–1.03 0.009

BED 0.97 0.95–0.99 0.001

In-field failure-free survival rates

Prognostic factors HR 95% CI p

Tumor size ≥ 10 cm 1.57 1.05–2.36 0.028

Multiple tumors 1.58 1.08–2.31 0.019

BED ≥ 62.5 Gy 0.51 0.35–0.76 0.001
HR, hazard ratio; AFP, alpha-fetoprotein; BED, biologically effective dose.

Table 4. Performance of radiomics, clinical, and CCR model on OR and IFFR.

Models
Radiomics Model

AUC
Clinical Model

AUC
CCR Model

AUC

Training Validation Training Validation Training Validation

Objective Rate

OR−AP−Tumor 0.500 0.500

0.622 0.729

0.622 0.729

OR−AP−Peri−1cm 0.615 0.614 0.668 0.743

OR−AP−Peri−2cm 0.608 0.600 0.665 0.742

OR−PVP−Tumor 0.748 0.495 0.761 0.710

OR−PVP−Peri−1cm 0.684 0.647 0.704 0.759

OR−PVP−Peri−2cm 0.653 0.610 0.686 0.739

In-field failure-free survival rate

IFFR−AP−Tumor 0.581 0.625

0.626 0.687

0.643 0.659

IFFR−AP−Peri−1cm 0.500 0.500 0.626 0.687

IFFR−AP−Peri−2cm 0.601 0.506 0.666 0.681

IFFR−PVP−Tumor 0.500 0.500 0.626 0.687

IFFR−PVP−Peri−1cm 0.691 0.673 0.718 0.736

IFFR−PVP−Peri−2cm 0.613 0.560 0.671 0.714
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Figure 2. Radiomics feature selection using the LASSO regression. Tuning parameter (λ) selection
in the LASSO logistic model for portal venous phase peritumor 1 cm model predicting (a) objective
response (OR−PVP−Peri−1cm) and (b) in−field failure−free survival rate (IFFR−PVP−Peri−1cm).
Coefficient profile plots generated by violating the log (λ) sequence for (c) OR−PVP−Peri−1cm
(8 radiomics features) and (d) IFFR−PVP−Peri−1cm (8 radiomics features).

3.4. Nomogram Construction and Evaluation

A nomogram was used to provide clinicians with a quantitative tool to predict the in-
dividual probabilities of OR and IFFR. As the combined model incorporating the PVP-Peri-
1cm radiomics model and clinicopathological factors had the best predictive performance
for OR and IFFR, we built a nomogram based on this final model (Figure 4a,b). Calibration
curves of the combined nomograms were plotted for the training and validation datasets
(Figure 4c,d). The Hosmer–Lemeshow test of the OR-PVP-Peri-1cm and IFFR-PVP-Peri-
1cm models show non-significant differences (p = 0.322 and p = 0.242, respectively) in the
validation sets, which demonstrates satisfactory agreement.
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Figure 3. Receiver operating curves (ROC) of the radiomics, clinical, and combined clinico−radiomics
model. Portal venous phase peritumor 1 cm model predicting (a) objective response
(OR−PVP−Peri−1cm) and (b) in−field failure−free survival rate (IFFR−PVP−Peri−1cm) in training
sets, as well as (c) OR−PVP−Peri−1cm, and (d) IFFR−PVP−Peri−1cm in validation sets.
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(c) OR-PVP-Peri-1cm and (d) IFFR−PVP−Peri−1cm are displayed.

4. Discussion

In this study, we divided patients with HCC undergoing LD-CRT into training and
validation groups. Using three-phase dynamic liver CT, we built radiomic models for
both tumoral and peritumoral areas to predict clinical outcomes such as OR and IFFR. The
OR-PVP-Peri-1cm and IFFR-PVP-Peri-1cm models show the best performance in predicting
the OR and IFFR, respectively. By combining these radiomics models with clinical outcome-
predicting prognostic factors obtained from statistical analyses, we developed two CCR
models that provide more accurate predictions of clinical outcomes. Two nomograms based
on the CCR models were built as a quantitative tool.

With the increasing number of studies on the application of radiomics in HCC, re-
searchers have been progressively investigating the strong predictive capabilities of ra-
diomics. Radiomics, based on various imaging technologies, has broad applications in
the diagnosis, treatment, and prognosis of HCC. These include the prognostic prediction,
identification, and classification of different HCC types based on disease risk, preoperative
diagnosis, treatment response prediction, postoperative recurrence prediction, and many
other aspects. Kloth et al. [15] suggested that significant correlations exist between CT
texture analysis parameters and those derived from liver perfusion CT computed tomog-
raphy texture analysis (CTTA). CTTA can aid in the prediction of response and treatment
monitoring following DEB-TACE treatment of HCC, complementary to perfusion CT. They
also suggested that the correlation between perfusion CT and CTTA parameters may be
best in the arterial phase. Park et al. [16] concluded that pre-therapeutic dynamic CT
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texture analysis can be valuable in predicting complete response (CR) to TACE in patients
with HCC, and higher arterial enhancement and gray-level co-occurrence matrix (GLCM)
moments, lower homogeneity, and smaller tumor size are significant predictors of CR after
TACE. In a study by Zhang et al. [17], texture analysis based on preoperative MRI was
a potential quantitative predictor of early recurrence in patients with HCC after hepatec-
tomy. Furthermore, combining the radiomic features of CT and the clinical characteristics
of HCC can be used to assess individualized preoperative prediction of OS in patients
with HCC portal vein tumor thrombosis undergoing stereotactic body radiotherapy [18].
Several studies have shown the potential utility of a separate peritumoral ROI in the liver
parenchyma to improve the diagnostic performance of radiomics for HCC [19]. The ra-
diomics nomogram is a valuable preoperative biomarker that can predict early recurrence
of HCC without invasive procedures [20]. Even in patients with small HCC tumors who
have undergone surgery or RFA, a radiomic nomogram can be used to predict early re-
currence [21]. Survival prediction is another important application in radiomics. Novel
deep radiological analysis can be employed to predict the overall survival of patients with
HCC undergoing stereotactic body radiotherapy [22]. By combining radiomics features, the
radiomics nomogram can deliver a more precise prediction of overall survival compared to
the clinicopathological nomogram for patients with HCC following hepatectomy [23].

To construct the radiomics signature, we reduced the 116 candidate radiomics fea-
tures to a smaller number of potential predictors using the LASSO method. This method
considers the predictor–outcome association and shrinks the regression coefficients to
select the most relevant factors. It is superior to selecting predictors based solely on their
univariate association with the outcome and allows the selected features to be combined
into a radiomic signature. However, given the large number of features assessed in ra-
diomics, overfitting poses a considerable risk to the development of radiomic models [24].
To mitigate this risk, a minimum of 10–15 patients per assessed feature is recommended for
radiomic studies [25].

In our OR-PVP-Peri-1cm and IFFR-PVP-Peri-1cm models, we selected eight HCFs from
the total number of HCFs. For the OR-PVP-Peri-1cm radiomics model, we selected Entropy,
GLN.stdv, LBP19, LBP31, LRHGLE.stdv, Min, RLN.mean, and Sum.Average.stdv. For
the IFFR-PVP-Peri-1cm radiomics model, we selected GLN.stdv, kurtosis, LBP 32, LBP50,
LBP 52, LBP9, LRHGLE.mean, and Max. Entropy specifies the uncertainty/randomness
in the image values, measures the average amount of information required to encode the
image values, and GLN measures the variability of the gray-level intensity values in the
image, with a lower value indicating greater homogeneity in the intensity values. LRHGLE
measures the joint distribution of long-run lengths with higher gray-level values, whereas
RLN measures the similarity of run lengths throughout the image, with a lower value
indicating greater homogeneity among the run lengths in the image. Sum.Average measures
the relationship between the occurrence of pairs with lower intensity values and occurrences
of pairs with higher intensity values. LBP is a simple grayscale-invariant texture descriptor
measure for classification. Max/Min is the maximum/minimum gray level intensity within
the ROI, and Kurtosis is a measure of the ‘peakedness’ of the distribution of values in the
image ROI. Entropy, GLN, LRHGLE, RLN, and Sum.average are texture features that can
be used to describe the spatial variation in intensity within an image and have been used
in various applications, such as image segmentation and classification. These features are
often calculated using a GLCM, which is a matrix that describes the relationship between
the intensity of a pixel and its surrounding pixels. These features are associated with
inhomogeneity. The selection of these features implies that radiologic inhomogeneity,
which encompasses various aspects of the tumor, such as tumor necrosis, portal vein
thrombosis, irregular tumor characteristics and borders, and dilation of the biliary duct by
the tumor, may predict the treatment response to radiotherapy and IFFR.

We assessed the relationship between extracted features and clinical outcomes using
LASSO regression. Only features with significant diagnostic performance in assessing the
prediction target were selected for further analysis. Yuan et al. [26] reported that combining
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clinicopathological factors with radiomics models resulted in the best predictive power
for recurrent-free survival in a validation dataset, with the combined model consisting of
portal venous phase radiomics signatures yielding the best results. In our study, combining
portal venous phase radiomics with clinical features yielded the best predictive power
for OR and IFFR. The AUC of radiomics models, clinical models, and CCR models were
0.647/0.729/0.759 for OR, and 0.673/0.687/0.736 for IFFR, respectively. Combining ra-
diomics features with clinical factors can provide additional information that may improve
the accuracy of predicting treatment response or prognosis. While radiomic features can
provide information about the tumor’s radiologic properties, clinical factors such as serum
AFP level (implying the overall tumor burden) and higher radiation dose (tumor cells are
better eradicated) can provide information about the patient’s overall disease status. By
integrating these two types of information with CCR model, we can predict outcomes and
treatment responses more accurately.

Several studies have shown the potential utility of a separate peritumoral ROI in the
liver parenchyma to improve the diagnostic performance of radiomics for HCC [19,27,28].
Shan et al. [19] developed a peritumoral (2 cm) radiomic model in which the prediction
accuracy in the validation cohort was fair (AUC 0.80 in the training set vs. 0.79 in the
validation set, p = 0.47) and significantly improved the accuracy of the preoperative model
for predicting early recurrence compared to the tumoral radiomic model. They used a
peritumoral ROI delineated with a 2 cm expansion from the lesion, which was based
on the current standard for resection margins for HCC. A randomized controlled trial
also reported that a margin of 2 cm could decrease the postoperative recurrence rate and
improve survival outcomes, indicating that there may be important information within
a 2 cm margin [29]. There are available studies [30,31] based on radiomics within the
tumoral area. However, these two studies lacked validation based on independent datasets,
which may lead to a risk of overfitting the analyses. In our study, the peritumoral radiomic
model with a 1 cm margin showed better performance for the OR, and the peritumoral
model with a 1 cm margin showed better performance for the IFFR. These results suggest
that microscopic disease within a 1 cm margin, which may not be visible, could provide
valuable information on tumor response and prognosis.

Despite its potential, the use of radiomics as a clinical biomarker requires further
improvements. Clear evidence and greater integration of radiomics and other data are
required to confidently accept the role of radiomics in patient management. The prediction
of various features using imaging remains challenging, and a more effective evaluation
should focus on both the radiomic features of the tumor and its periphery.

This study had several limitations. First, this was a retrospective, single-center study
with one radiation oncologist involved in segmentation, which could have introduced
bias or affected the analysis. Both inter-observer, and intra-observer agreement were not
assessed. Second, there was a class imbalance, with the number of patients in the OR group
being much higher than that in the non-OR group (3:1). This could have biased the model
towards the majority class (i.e., OR group). Third, we used internal rather than external
validity, which makes it difficult to generalize our results to other institutions. Fourth,
because liver-directed combined radiotherapy was performed using CT, and tumors were
delineated based on CT images at our institution, more information from other imaging
devices (e.g., MRI) could not be included in the radiomic evaluation of HCC patients
undergoing liver-directed combined RT. Therefore, although this study provides initial
evidence that the CCR model can be valuable in predicting OR and IFFR in patients with
HCC undergoing liver-directed combined RT, further prospective studies are required to
validate these results.

5. Conclusions

In conclusion, our findings suggested that radiomic models based on both tumoral
and peritumoral areas using pre-radiotherapy three-phase dynamic liver CT in patients
with HCC undergoing LD-CRT have favorable predictive performance for OR and IFFR.
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Furthermore, CCR models were better predictors than radiomic or clinical models alone
in predicting treatment outcomes. We constructed radiomic nomograms based on CCR
models to predict OR and IFFR, which can potentially aid in clinical decision-making for
the pretreatment of HCC patients undergoing liver-directed combined radiotherapy.
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