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Highly accelerated knee magnetic 
resonance imaging using deep 
neural network (DNN)–based 
reconstruction: prospective, 
multi‑reader, multi‑vendor study
Joohee Lee 1, Min Jung 2, Jiwoo Park 1, Sungjun Kim 1, Yunjin Im 1, Nim Lee 1, Ho‑Taek Song 1 & 
Young Han Lee 1*

In this prospective, multi‑reader, multi‑vendor study, we evaluated the performance of a commercially 
available deep neural network (DNN)–based MR image reconstruction in enabling accelerated 2D 
fast spin‑echo (FSE) knee imaging. Forty‑five subjects were prospectively enrolled and randomly 
divided into three 3T MRIs. Conventional 2D FSE and accelerated 2D FSE sequences were acquired 
for each subject, and the accelerated FSE images were reconstructed and enhanced with DNN–based 
reconstruction software (FSE‑DNN). Quantitative assessments and diagnostic performances were 
independently evaluated by three musculoskeletal radiologists. For statistical analyses, paired t‑tests, 
and Pearson’s correlation were used for image quality comparison and inter‑reader agreements. 
Accelerated FSE‑DNN reduced scan times by 41.0% on average. FSE‑DNN showed better SNR 
and CNR (p < 0.001). Overall image quality of FSE‑DNN was comparable (p > 0.05), and diagnostic 
performances of FSE‑DNN showed comparable lesion detection. Two of cartilage lesions were under‑
graded or over‑graded (n = 2) while there was no significant difference in other image sets (n = 43). 
Overall inter‑reader agreement between FSE‑conventional and FSE‑DNN showed good agreement 
 (R2 = 0.76; p < 0.001). In conclusion, DNN‑based reconstruction can be applied to accelerated knee 
imaging in multi‑vendor MRI scanners, with reduced scan time and comparable image quality. This 
study suggests the potential for DNN‑accelerated knee MRI in clinical practice.

Abbreviations
Acc  Accuracy
ACL  Anterior cruciate ligament
AUC   Area under curve
Ax T1W  Axial T1-weighted images
Ax T2W FS  Axial T2-weighted fat-saturated images
BM  Bone Marrow
CNN  Convolutional neural network
Cor T2W FS  Coronal T2-weighted fat-saturated images
CS  Compressed sensing
DNN  Deep neural network
FCL  Fibular collateral ligament
FSE  Fast spin-echo
HIPAA  Health insurance portability and accountability act
LM  Lateral meniscus
MCL  Medial collateral ligament
MM  Medial meniscus
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MRI  Magnetic resonance imaging
PACS  Picture archiving and communication system
PCL  Posterior cruciate ligament
PI  Parallel imaging
ROI  Region of interest
Sag T2W  Sagittal T2-weighted images
SD  Standard deviation
Sen  Sensitivity
SNR  Signal-to-noise ratio
Spe  Specificity
SSIM  Structural similarity index
TSE  Turbo spin-echo

It is reported that about 25% of adults experience knee pain, resulting in limitations to their functional capa-
bilities and mobility, and causing a negative impact on their quality of life, and the prevalence of knee pain has 
shown an upward trend over time, regardless of  age1. Magnetic resonance imaging (MRI) plays an important 
role in evaluating internal derangements in patients with knee  pain2. Common indications of knee MRI are 
trauma, overuse, degeneration, and knee pain. Commonly used knee MRI protocols are parallel image based MR 
sequences with multi-channel phased array  coil3,4. Typical sequences are triplane fat-suppressed fluid-sensitive, 
sagittal PD-weighted, and coronal or axial T1-weighted image with 15–25 min scan time. 3D sequence or deep 
learning reconstructions may be  added5. Common MRI protocols consisting of four to five separately acquired 
2D fast spin-echo (FSE) or 2D turbo spin-echo (TSE) pulse sequences are commonly used as a standard in clinical 
practice, providing excellent tissue contrast and high spatial resolution, enabling good assessment of meniscal, 
ligamentous, and cartilaginous  injuries6. Accurate and noninvasive imaging evaluation requires three planes 
of axial, coronal, and sagittal fat-saturated proton density-weighted or intermediate-weighted images, which 
require repetitive scans with relatively long scan times. Accelerated MRI is essential in knee imaging because 
patients with knee pain tend to move, causing motion artifacts, especially when scan time is prolonged. Long scan 
time of MRI scans can result in reduced productivity per MRI scanner and elevated MRI  cost7. Implementing 
accelerated MRI techniques can alleviate patient discomfort and enhance the cost-effectiveness of the process.

Recent advances in various accelerated imaging methods have shown the feasibility of accelerated knee MRI, 
in some cases enabling a 5-min knee imaging  protocol8–10. Parallel imaging (PI) is one approach to accelerate 
MRI data acquisition, and it is based on the principle of acquiring spatial encoding data from overlapping 
phased-array coil elements that sample the MR signal in  parallel11. Although disadvantages of PI include reduced 
signal-to-noise ratio (SNR), aliasing, and reconstruction-related artifacts, acceleration with PI allows for rapid 
imaging due to the advancement of multi-channel phased-array coil  technology12. In the knee, 2D FSE with PI 
has been widely utilized for routine 2D FSE  protocols9. However, PI acceleration factors higher than 2 cannot 
be reliably achieved in clinical settings without compromising image  quality13. Compressed sensing (CS) was 
developed on the premise of reconstructing an image from an under-sampled k-space, since the number of 
data segments in the k-space is a direct determinant of image acquisition  time14. The combination of CS and PI 
allows even faster imaging, with the resultant image quality deemed  acceptable15. However, they require a high 
computational burden during the image reconstruction process with long iteration times, limiting their use in 
routine clinical practice.

Recently, deep neural network (DNN)–based MRI reconstructions have been proposed, showing great poten-
tial to reduce MRI acquisition  time16,17. Deep learning-based MRI reconstruction techniques have been approved 
and are being evaluated in clinical  practice18. Currently, the software requires to be evaluated and monitored from 
its premarket development to post-market performance in real-world  radiology19. However, to date, there has 
been only a few multi-vendor  studies20–22 that evaluated the image quality and performances with commercially 
available DNN–based magnetic resonance imaging (MRI) reconstruction.

The purpose of this prospective, multi-reader, multi-vendor study was to evaluate the performance of com-
mercially available DNN-based MR image reconstruction software in enabling accelerated 2D FSE knee imag-
ing in a clinical environment. We hypothesized that highly accelerated 2D FSE knee imaging combined with 
DNN–based reconstruction would allow a decrease in scan time while yielding comparable image quality and 
diagnostic performance for ligamentous, meniscal, and cartilaginous lesions against conventional 2D FSE knee 
MRI.

Materials and methods
AIRS Medical provided financial support for this prospective study. The authors had control of the data and the 
information submitted for publication.

Study population
This prospective study from a single tertiary center was approved by the Institutional Review Board of Yonsei 
University’s Health System (IRB No: 1-2022-0017). Written informed consent was obtained from all enrolled 
participants. Our study complied with both the Declaration of Helsinki and the Health Insurance Portability 
and Accountability Act.

Study recruitment commenced from August 2022 to October 2022. Inclusion criteria were: (1) clinically 
indicated patient for knee MRI; (2) an agreement to participate in DNN accelerated knee MRI; (3) age of 
30 years or older; (4) the ability to position the knee in MRI; and (5) symptomatic knees associated with pain 
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and dysfunction knee. Exclusion criteria consisted of (1) orthopedic implants in the knee region and (2) other 
general contraindications for MRI. The flow chart for prospective study enrollment is shown in Fig. 1.

MR imaging protocol
All enrolled patients were randomly assigned to MRI exams with three different 3.0 T MR scanners, and 
they underwent knee MRI with both conventional and DNN-accelerated MRI sequences: axial fat-saturated 
T2-weighted image, coronal fat-saturated T2-weighted image, sagittal T2-weighted image, and axial T1-weighted 
image. MR imaging was performed on three 3.0 T MR scanners (Ellition X, Philips Healthcare, Best, The Neth-
erlands; Prisma Fit, Siemens Healthineers, Erlangen, Germany; Discovery MR750, GE Healthcare, Waukesha, 
WI, USA) with a dedicated 16-channel knee coil (Philips Healthcare), a dedicated 16-channel knee coil (Siemens 
Healthineers), and a dedicated 8-channel HD transmit/receive knee coil (GE Healthcare), respectively. Conven-
tional image acquisition utilized knee imaging protocols routinely used at our institution, and the accelerated 
protocols were achieved by modifying scan time-related MRI parameters. Overall scan time reductions of the 
DNN-accelerated MRI sequences were 41.0% (43.1%, Philips Healthcare; 38.1%, Siemens Healthineers, 41.72%, 
GE Healthcare). Accelerated 2D FSE utilized parallel imaging alone such as Sensitivity Encoding (SENSE), 
Array coil Spatial Sensitivity Encoding (ASSET), and Generalized Autocalibrating Partial Parallel Acquisition 
(GRAPPA) depending on vendor’s technique. Conventional 2D FSE images utilized combination of compressed 
sensing (CS) and parallel imaging such as CS-SENSE. A detailed summary of both acquisition methods of MRI 
parameters is shown in Table 1.

Deep neural network (DNN)–based image reconstruction
Commercially available deep neural network (DNN)–based MR image reconstruction software was used to 
reconstruct the accelerated acquisition images (SwiftMR, v2.0.1.0. AIRS medical, Seoul, Korea). The software 
algorithm was based on the popular 2D U-net  structure23 widely used in deep learning architectures in various 
medical imaging applications. In this model, 18 convolutional blocks, 4 max-pooling layers, 4 up-sampling lay-
ers, 4 feature concatenations, and 3 convolutional layers were incorporated in a cascade, with each layer enforc-
ing data consistency. The model was trained and internally validated with 31,865 series and 3540 series of MR 
images, respectively. The model underwent training using images from the entire body, considering also the 
musculoskeletal images including the knee. All imaging sequences with different contrasts commonly used in the 
clinical practice were are included as well. Additionally, the model’s loss function was defined as the structural 
similarity index (SSIM) between the input and the label image, and the model was optimized with  Adam24 over 
20 epochs using batch size of 4 at a learning rate of  10–3, decaying to  10–4. The network was trained using four 

Figure 1.  Flow chart for prospective study enrollment to evaluate conventional FSE (FSE-conventional) and 
accelerated MR sequences with DNN reconstruction (FSE-DNN).
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Table 1.  MRI parameters of FSE-conventional and FSE-DNN in three MRI scanners. Ax T2W FS Axial 
T2-weighted fat-saturated FSE, Ax T1W Axial T1-weighted FSE, Sag T2W Sag T2-weighted FSE, Cor T2W FS 
Cor T2-weighted fat-saturated FSE.

Philips (Ellition CX) GE (Discovery MR750) Siemens (Prisma Fit)

FSE-conventional FSE-DNN FSE-conventional FSE-DNN FSE-conventional FSE-DNN

Ax T2W FS

TR/TE (ms) 5570/60 5569/60 5193/69 5193/69 4230/63 4230/63

FOV (cm) 14 14 14 14 14 14

Matrix 320 × 320 320 × 239 384 × 320 384 × 320 448/403 448/417

Acceleration CS-SENSE 2 SENSE 3 ASSET 1 ASSET 2 NEX 2 NEX 1

Scan time (sec) 108 57 217 111 156 97

Time reduction 47.22% Time reduction 48.85% Time reduction 37.82%

Ax T1W

TR/TE (ms) 636/15 630/15 650/12.382 650/12.376 520/15 520/15

FOV (cm) 14 14 14 14 14 14

Matrix 320 × 320 320 × 239 512 × 320 512 × 320 640/448 640/448

Acceleration CS-SENSE 2 SENSE 3 ASSET 1 ASSET 2 GRAPPA 2 GRAPPA 3

Scan time (sec) 51 27 219 114 180 105

Time reduction 47.06% Time reduction 47.95% Time reduction 41.67%

Sag T2W

TR/TE (ms) 3590/100 3590/100 3265/69 3262/60 3690/86 3690/86

FOV (cm) 14 14 14 14 14 14

Matrix 512 × 396 512 × 337 320 224 512 × 461 512 × 476

Acceleration CS-SENSE 2 SENSE 3 512 × 320 512 × 224 GRAPPA 2 GRAPPA 3

Scan time (sec) 156 108 190 139 214 146

Time reduction 30.77% Time reduction 26.84% Time reduction 31.78%

Cor T2W FS

TR/TE (ms) 6855/60 6855/60 6414/72.6 6414/72.63 4520/57 4520/57

FOV (cm) 14 14 14 14 14 14

Matrix 320 × 320 320 × 239 384 × 288 384 × 288 384 × 288 284 × 288

Acceleration CS-SENSE 2 SENSE 3 ASSET 1 ASSET 2 NEX 2 NEX 1

Scan time (sec) 135 71 229 130 122 72

Time reduction 47.41% Time reduction 43.23% Time reduction 40.98%

Time reduction (Per MRI) 43.11% 41.72% 38.06%

Overall time 
reduction 40.96%

Figure 2.  Schematic diagram of FSE-DNN architecture. Input data is DICOM image acquired by accelerated 
MRI sequence, and output data is enhanced image with denoising.
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NVIDIA Tesla V100 GPUs with 32 GB memory (NVIDIA Corporation, CA, USA). to evaluate FSE-conventional 
and accelerated MR sequences with FSE-DNN. Schematic diagram of FSE-DNN architecture was in Fig. 2.

The algorithm includes a deep convolutional neural network (CNN) component that removes noise in the 
image domain and estimates the truncated high-frequency image data. This pipeline can be applied to 2D and 3D 
acquisitions in multiple anatomic regions and for various pulse sequences, contrast weightings, field strengths, 
and coil configurations. The amount of noise reduction could be controlled, owing to the model’s training process 
incorporating varying levels of noise amount on the input side. For this study, noise reduction level of low (51% 
reduction) was used because this level had been found to yield the most similar perceived image quality when 
compared to the standard images.

Quantitative image quality analysis
For a quantitative comparison of image quality, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) 
were calculated for all images acquired for this study (conventional, accelerated, and DNN-reconstructed). The 
femoral bone marrow signal shown in the representative center slice in each image was calculated from a circular 
region of interest (ROI) placed in the same location for all images, and the mean standard deviation (SD) of the 
background noise was used for SNR calculation. For CNR, three different imaging plane-landmark combina-
tions were considered—(1) for axial T1-weighted and T2-weighted fat saturated images, marrow-to-muscle 
signal difference (medial femoral condyle and biceps femoris muscle) and mean SD of background noise were 
used; (2) for coronal T2-weighted fat saturated images, marrow-to-meniscus signal difference (medial femoral 
condyle and medial meniscus) and mean SD of background noise were used; (3) for sagittal T2-weighted images, 
marrow-to-tendon signal difference(distal femur and patellar tendon) and mean SD of background noise were 
used to calculate the CNR.

Subjective image quality analysis
Three board-certified musculoskeletal radiologists with six years (J.L.), one year (N.L.), and one year (Y.L.) of 
subspecialty experience individually assessed the conventional and DNN-reconstructed image sets of the 45 
knee MRI, using picture archiving and communication system (PACS) monitors (Totoku, Tokyo, Japan). The 
radiologists were blind to whether the image was FSE-conventional or FSE-DNN. Each image was assigned a 
unique random number, and the images were evaluated in a random order. The reviewers scored the images 
independently based on clarity of overall image quality of anatomical structures, perceived image noise, presence 
of imaging artifacts using a five-point scale. The clear visibility of the medial meniscus and lateral meniscus; 
ligamentous structures including anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), and medial 
collateral ligament (MCL); and cartilage grading were estimated separately.

Diagnostic performance for ligamentous, meniscal, and cartilaginous lesions
The three radiologists (J.L., N.L., and Y.L.) formed a consensus on grading meniscal lesions, detecting ligamen-
tous lesions, and grading cartilage by reviewing MR images of non-enrolled patients together before evaluation. 
The radiologists were blinded to the medical records associated with the images acquired for this study. Three 
radiologists independently evaluated the knee MRI studies for meniscal, tendinous, ligamentous, and osseo-
cartilaginous injuries. For diagnostic performance analysis, all MRI findings and clinical medical records were 
reviewed to form a reference standard by two additional reviewers (Y.H.L. and M.J.).

The diagnostic criteria for meniscal tears were the presence of abnormal signal intensity within the meniscus 
extending to the meniscal articular surface and abnormal morphology of the meniscus (0, normal; 1, tear)25,26. 
The diagnostic criteria for ACL are grade 1, minimal lesion with T2 hyperintensities; grade 2, 50% or less injury 
with T2 hyperintensities; grade 3, complete injury (0, normal; 1, grade 1; 2, grade 2; 3, grade 3)27. The diagnostic 
criteria for PCL tear are an abnormal T2 hyperintensity combined with a discontinuous appearance of the PCL 
and FCL fibers (0, normal; 1, tear)28,29. Intraligamentous ganglion were recorded as grade 1 in ACL and PCL. The 
diagnostic criteria for MCL tear are grade 1, periligamentous T2 hyperintense with no fiber discontinuity; grade 
2, partial discontinuity of the fibers; grade 3, complete ligament (0, normal; 1, grade 1; 2, grade 2; 3, grade 3)29.

For qualitative analyses of cartilage grading, the radiologists used the Outerbridge classification  system30,31 : 
cartilage grade, Grade 0 = intact cartilage; grade 1 = signal change on T2-weighted MR images; grade 2 = cartilage 
defect less than 50 percent of the depth; grade 3 = cartilage defect 50% or more of the depth; and grade 4 = full-
thickness cartilage defect with exposure of subchondral bone. When multiple cartilage lesions were present, the 
cartilage lesion with the highest grade was recorded.

Statistical analysis
Paired t-tests were performed to assess the statistical significance of the difference in the quantitative evalua-
tion of SNR and CNR. For the subjective analysis, we calculated the difference in the qualitative image quality 
score of anatomical structures, perceived image noise, presence of imaging artifacts by using a paired t-test, and 
inter-reader agreement was assessed using Pearson’s correlation. Diagnostic performances of the FSE-DNN 
were analyzed in terms of sensitivity, specificity, area under curve (AUC), and accuracy. To assess the diagnostic 
performance of the images in the cartilaginous lesion, the agreements of FSE-conventional and FSE-DNN were 
assessed using Pearson’s correlation. All statistical analyses were performed in MedCalc (MedCalc Software, 
Ostend, Belgium) and Microsoft Excel (Microsoft, Redmond, WA, USA). P-values < 0.05 were considered sta-
tistically significant.
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Results
Demographic characteristics and scan time reduction
Forty-five patients who underwent this research protocol of knee MRI including routine and accelerated MR 
pulse sequence were enrolled in three vendors evenly (15 patients for each scanner). The age range of the 45 
patients was 30–78 years (mean age ± standard deviation, 53.9 ± 11.8 years). Fourteen patients were male and 31 
were female. A total of 45 MRIs of three-vendors were evaluated. Accelerated FSE-DNN reduced scan times by 
average 41.0% compared to FSE-conventional (GE 41.7%, Philips 43.1%, Siemens 38.1%), respectively.

Quantitative image quality analysis
SNR and CNR on accelerated FSE images were significantly decreased with scan time reduction such as chang-
ing parallel imaging factors and the number of phase encoding steps. FSE-DNN reconstruction software could 
enhance the SNR and CNR of accelerated FSE image in a short time. FSE-DNN showed statistically better SNR 
and CNR than convention FSE : SNR ratio were 2.06, 2.23, 2.63, and 2.10 on axial T2-weighted fat-saturated FSE, 
axial T1-weighted FSE, sagittal T2-weighted FSE, and coronal T2-weighted fat-saturated FSE, respectively ; CNR 
radio were 2.14, 3.00, 2.81, and 1.83 of marrow-to-muscle on axial T2-weighted fat-saturated FSE, marrow-to-
muscle on axial T1-weighted FSE, marrow-to-meniscus on sagittal T2-weighted FSE, and marrow-to-tendon on 
coronal T2-weighted fat-saturated FSE, respectively. Scan reductions were 44.63%, 45.56%, 29.80%, and 43.87% in 
axial T2-weighted fat-saturated FSE, axial T1-weighted FSE, sagittal T2-weighted FSE, and coronal T2-weighted 
fat-saturated FSE, respectively. The image quality analyses with paired t-test results were summarized in Table 2.

Subjective image quality analysis
For qualitative evaluation, overall image quality of FSE-DNN was comparable (p > 0.05), depending on the 
reader. Overall image qualities of anatomical structures were better or equal (n = 42/45 in reviewer 1, n = 44/45 
in reviewer 2, and n = 43/45 in reviewer 3). Image noise scores were higher or equal (n = 42/45 in reviewer 1 
and 2, n = 44/45 in reviewer 3). Imaging artifacts scores were higher or equal (n = 40/45 in reviewer 1, n = 41/45 
in reviewer 2, and n = 42/45 in reviewer 3). The qualitative evaluation of three radiologists were displayed in 
Fig. 3. The comparisons between FSE-conventional and FSE-DNN images were shown at overall image quality 
of anatomical structures, perceived image noise, presence of imaging artifacts using a five-point scale. The aver-
age and standard deviation of each value are displayed on right side of each score bar. There are no significantly 
statistical differences (all, p-values > 0.05). Inter-reader agreements of anatomical structures, perceived image 
noise, presence of imaging artifacts on FSE and FSE-DNN were fair to moderate correlation  (R2 = 0.73, 0.31, 
and 0.89, respectively; all, p < 0.001). Inter-reader agreement on FSE and FSE-DNN showed good agreement 
 (R2 = 0.76; p < 0.001).

Representative images for comparable image quality are shown in Fig. 4. The accelerated image exhibited 
fewer motion-related artifacts, while the TSE-DNN image displayed improved image quality. However, certain 
artifacts from parallel imaging persisted in the TSE-DNN image, as depicted in Fig. 5.

Diagnostic performance for ligamentous, meniscal, and cartilaginous lesions
All FSE-conv and FSE-DNN images were rated of lesion detection by three interpreting musculoskeletal radiolo-
gists. In evaluation of lesion detection, the diagnostic performances of FSE-DNN showed comparable results in 
ligamentous, meniscal, and cartilaginous lesions (Table 3, Fig. 6). Two of cartilage lesions was under-graded or 

Table 2.  SNR and CNR results of conventional FSE, accelerated FSE without DNN reconstruction, and 
accelerated FSE with DNN reconstruction (FSE-DNN). Ax T2W FS Axial T2-weighted fat-saturated FSE, Ax 
T1W Axial T1-weighted FSE, Sag T2W Sag T2-weighted FSE, Cor T2W FS Cor T2-weighted fat-saturated FSE, 
p-values of paired t-test (Accelerated FSE and FSE-DNN).

Philips (Ellition CX) GE (Discovery MR750) Siemens (Prisma Fit)

p-value
FSE-
conventional

Accelerated 
FSE FSE-DNN

FSE-
conventional

Accelerated 
FSE FSE-DNN

FSE-
conventional

Accelerated 
FSE FSE-DNN

SNR

 Ax T2W FS 4.8 ± 1.3 4.3 ± .9 7.7 ± 2.9 14.2 ± 5.4 8.6 ± 4.4 18.4 ± 12.8 2.0 ± 0.2 2.1 ± 0.4 7.3 ± 2.1  < 0.001

 Ax T1W 22.8 ± 4.0 13.7 ± 3.5 28.1 ± 6.3 90.9 ± 51.5 57.8 ± 31.9 101.2 ± 53.6 12.2 ± 1.9 8.0 ± 1.3 34.6 ± 6.5 0.002

 Sag T2W 22.4 ± 4.4 18.8 ± 3.4 38.9 ± 7.0 33.7 ± 15.5 30.5 ± 20.6 41.9 ± 34.8 9.9 ± 1.7 8.0 ± 1.5 39.3 ± 15.8  < 0.001

 Cor T2W FS 5.0 ± 1.7 4.2 ± .9 11. ± 4.3 9.9 ± 3.1 6.7 ± 2.6 11.9 ± 3.6 3.0 ± 0.5 2.6 ± 0.4 12.5 ± 4.2  < 0.001

CNR

 BM-muscle on 
T2W FS 9.5 ± 6.5 6.0 ± 6.0 10.1 ± 12.0 14.3 ± 10.2 9.5 ± 10.0 17.7 ± 14.1 8.1 ± 3.1 6.5 ± 2.9 37.5 ± 28.2 0.001

 BM-muscle on 
T1W 54.8 ± 16.4 31.7 ± 16.1 65.1 ± 31.6 165.1 ± 76.8 123.1 ± 55 210.9 ± 88.4 31.6 ± 10.3 21.3 ± 7.7 101.2 ± 43.5  < 0.001

 BM-tendon on 
T2W 69.4 ± 22.7 56.3 ± 13.3 112.4 ± 29.1 172.7 ± 120.8 150.6 ± 121.3 194.1 ± 154.2 32.4 ± 7.8 25.0 ± 5.5 118.9 ± 54.6  < 0.001

 BM-meniscus 
on T2W FS 12.1 ± 9.9 8.6 ± 4.6 22.9 ± 18.0 29.2 ± 17.7 15.9 ± 11.8 31.8 ± 22.8 8.3 ± 5.0 6.3 ± 3.9 31.9 ± 27.1  < 0.001
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over-graded (n = 2) while there was no significant difference in other image sets (n = 43). Representative imaging 
examples for cartilage under-grading or over-grading are shown in Fig. 7.

Discussion
In this post-market multi-vendor study using commercially available DNN-based parallel imaging reconstruc-
tion, the FSE-DNN reconstruction of highly accelerated MRI scan reduced acquisition time by an overall 41.0% 
for a 2D FSE image of the knee MRI. This algorithm is an image-based DNN-reconstruction, which does not 
require the k-space data nor MRI physics-related information such as multi-channel coil geometry. An older 

Figure 3.  Qualitative evaluation of three radiologists. The comparison between FSE-conventional and FSE-
DNN images was shown at overall image quality of anatomical structures, perceived image noise, presence of 
imaging artifacts using a five-point scale. The average and standard deviation of each value are displayed on 
right side of each score bar. There are no significantly statistical differences (all, p-values > 0.05).

Figure 4.  Conventional and reconstructed images of accelerated sequences: a 47-year-old male with knee 
pain (A–D). FSE-DNN shows comparable image quality with reduced scan time. The first row represents 
FSE-conventional images, the second row represents accelerated FSE sequences, and the third row represents 
DNN-reconstructed images of FSE-DNN. Each column represents the images reconstructed by axial fat-
saturated T2-weighted image, sagittal T2-weighted image, coronal fat-saturated T2-weighted image, and axial 
T1-weighted image.
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model of this software has also shown promising generalizability results in pediatric  brain32 and in prostate 
imaging as  well33, indicating that an image-based approach may enable accelerated MR exams in clinically used 
routine sequences with relatively simple modifications such as changing parallel imaging factors and the number 
of phase encoding lines, etc. This software could restore highly accelerated images in a short time, displaying 
clinically acceptable image quality and comparable diagnostic performance. This can be differentiated from 
physics-based (k-space-based) DNN  reconstruction34 which is inherently closely associated with data acquisi-
tion methods and may require more computational power and time. As a result, image-based algorithms can be 
relatively easily deployed in a variety of clinical settings with less MR vendor dependency, and they can even be 
applied retrospectively to image data in the PACS server. However, further investigation is warranted to accurately 
compare the image qualities of image-based and k-space-based DNN reconstruction methods.

The strength of our study is that it is a prospective, multi-reader, multi-vendor study as a post-market sur-
veillance. We applied the reconstruction algorithm to knee MRI sequences from all three vendors, showing the 
possibility of application to multi-vendor MRI applications in radiology. With this strength of this FSE-DNN 
model, this image-based DNN reconstruction can be easily employed in the radiologic workflow of multi-vendor 
MRI with various MRI parameters. By changing the parallel imaging factor or number of phase encoding steps 
of the conventional routine MR sequence, which is easily applicable in the clinical MR imaging protocol, this 
DNN image reconstruction can reduce scan times with non-inferior image quality and comparable diagnostic 
performance.

In the quantitative evaluation, FSE-DNN reconstructed images showed higher SNR and CNR, corresponding 
with previous FSE-DNN  studies35,36 and the same  software32,33. In subjective qualitative evaluation, FSE-DNN 
reconstructed images of accelerated FSE images showed non-inferiority against FSE-conventional images in terms 
of qualitative image quality evaluation. Deep learning reconstruction can be employed in various accelerated 
imaging  techniques37–39, such as parallel imaging, compressed sensing, or their combination. In our study, we 
did not compare the combination of compressed sensing and parallel imaging with parallel imaging alone (e.g., 
CS-SENSE vs. SENSE or CS-SENSE vs. ASSET). Further study on deep learning reconstruction comparison 
study on combination of CS and parallel imaging is needed in the future.

Figure 5.  Conventional and reconstructed images of accelerated sequences: a 64-year-old woman with knee 
pain (A–D). Motion-related artifacts in conventional FSE (A upper, arrow) is not seen on accelerated image (A 
middle), and the image is enhanced on FSE-DNN image (A lower). Overall image quality is comparable in both 
conventional FSE and FSE-DNN images (B and D). However, parallel imaging artifacts cannot be completely 
removed in FSE-DNN image (C middle and lower, arrowheads). The first row represents conventional FSE 
images, the second row represents accelerated FSE sequences, and the third row represents DNN-reconstructed 
images of FSE-DNN. Each column represents the images reconstructed by axial fat-saturated T2-weighted 
image, sagittal T2-weighted image, coronal fat-saturated T2-weighted image, and axial T1-weighted image.
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Table 3.  Diagnostic performance of DNN-based reconstruction of FSE-DNN. MM medial meniscus, LM 
lateral meniscus, ACL anterior cruciate ligament, PCL posterior cruciate ligament, MCL medial collateral 
cruciate ligament, FCL fibular collateral ligament, BM bone marrow, Sen Sensitivity, Spe Specificity, AUC  Area 
under curve, Acc Accuracy, confidence intervals or p-values in parentheses.

MM LM ACL PCL MCL FCL BM Cartilage

Radiologist 1

Sen (%) 100.00 (76.84–
100.00)

100.00 (39.76–
100.00)

100.00 (39.76–
100.00)

100.00 (15.81–
100.00)

100.00 (47.82–
100.00)

100.00 (15.81–
100.00)

100.00 (87.66–
100.00)

Pearson correla-
tion
0.98 (p < 0.001)

Spe (%) 100.00 (88.78–
100.00)

100.00 (91.40–
100.00)

100.00 (91.40–
100.00)

93.02 (80.94–
98.54)

100.00 (91.19–
100.00)

100.00 (91.78–
100.00)

94.12 (71.31–
99.85)

AUC 1.00 (0.92–1.00) 1.00 (0.92–1.00) 1.00 (0.92–1.00) 0.97 (0.86–1.00) 1.00 (0.92–1.00) 1.00 (0.92–1.00) 0.971 (0.87–1.00)

Acc (%) 100.00 (92.13–
100.00)

100.00 (92.13–
100.00)

100.00 (92.13–
100.00)

93.33 (81.73–
98.60)

100.00 (92.13–
100.00)

100.00 (92.13–
100.00)

99.78 (88.23–
99.94)

Radiologist 2

Sen (%) 100.00 (76.84–
100.00)

100.00 (39.76–
100.00)

80.00 (28.36–
99.50)

66.67 (9.43–
99.16)

80.00 (28.36–
99.50)

50.00 (1.26–
98.74)

100.00 (87.66–
100.00)

Pearson correla-
tion
0.96 (p < 0.001)

Spe (%) 96.77 (83.30–
99.92

100.00 (91.40–
100.00)

97.50 (86.84–
99.94)

92.86 (80.52–
98.50)

100.00 (91.19–
100.00)

100.00 (91.78–
100.00)

100.00 (80.50–
100.00)

AUC 0.98 (0.89–1.00) 1.00 (0.92–1.00) 0.89 (0.76–0.96) 0.80 (0.65–0.90) 0.90 (0.77–0.97) 0.75 (0.60–0.87) 1.00 (0.92–1.00)

Acc (%) 97.78 (88.23–
99.94)

100.00 (92.13–
100.00)

95.56 (84.85–
99.46)

91.11 (78.78–
97.53)

97.78 (88.23–
99.94)

97.78 (88.23–
99.94)

100.00 (92.13–
100.00)

Radiologist 3

Sen (%) 100.00 (76.84–
100.00)

100.00 (39.76–
100.00)

100.00 (47.82–
100.00)

100.00 (15.81–
100.00)

100.00 (47.82–
100.00)

100.00 (15.81–
100.00)

100.00 (87.66–
100.00)

Pearson correla-
tion
0.96 (p < 0.001)

Spe (%) 100.00 (88.78–
100.00)

100.00 (91.40–
100.00)

100.00 (91.19–
100.00)

95.35 (84.19–
99.43)

100.00 (91.19–
100.00)

100.00 (91.78–
100.00)

100.00 (80.50–
100.00)

AUC 1.00 (0.92–1.00) 1.00 (0.92–1.00) 1.00 (0.92–1.00) 0.98 (0.88–0.99) 1.00 (0.92–1.00) 1.00 (0.92–1.00) 1.00 (0.92–1.00)

Acc (%) 100.00 (92.13–
100.00)

100.00 (92.13–
100.00)

100.00 (92.13–
100.00)

95.56 (84.85–
99.46)

100.00 (92.13–
100.00)

100.00 (92.13–
100.00)

100.00 (92.13–
100.00)

Figure 6.  Lesion detection and diagnostic performance in conventional FSE and reconstructed images of 
accelerated sequences (FSE-DNN). (A) A 50-year-old female with knee pain. Mucoid degeneration of ACL 
(arrows) is shown both conventional FSE (upper A) and FSE-DNN images (lower A). (B) A 60-year-old female 
with knee pain. Medial meniscal posterior root tear is nicely shown in both images (arrowheads). (C and D) A 
58-year-old female and 58-year-old female with knee pain. Cartilage fissuring (arrowheads) and cartilage flaring 
(boxes) are well delineated in accelerated FSE-DNN images.
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In our study, overall image qualities of anatomical structures were better or equal in most cases. By utiliz-
ing deep learning reconstruction of MRI, it is possible to reduce scan time and minimize patient movement, 
resulting in motion-less imaging. However, the artifacts related with parallel imaging can be pronounced, and 
these artifacts may persist in some patients. This highlights the need for optimized MRI sequences tailored for 
accelerated MR imaging. Further research in this direction is imperative in the future. This optimization of MRI 
sequences involves the choice of CS and the parallel imaging factor, and optimized k-space trajectories.

In the diagnostic performance of lesion analysis, FSE-DNN reconstructed images showed non-inferiority 
compared to FSE-conventional images. In our study, no significant difference was observed in the diagnostic 
performance between FSE-conventional and FSE-DNN images. In cartilage evaluation, FSE-DNN showed under-
graded lesion (n = 1) and over-graded lesion (n = 1) in small numbers (n = 2/45) among 45 image sets. However, 
there is no statistical difference between FSE-DNN reconstructed images and FSE-conventional images in this 
45-case study. This under-grade or over-grade of cartilage may have originated from acceleration artifacts and 
image degradation rather than the DNN- reconstruction in our early clinical validation with routine clinical 
MRI protocols (Fig. 7). Cartilage under-grading on FSE-DNN could also have been affected by the amount of 
image denoising. This suggests the need for careful selection of acceleration method and denoising settings for 
cartilage imaging, which may depend on imaging target structures. Conversely, cartilage could be over-graded 
from parallel imaging-related artifacts. In an under-graded chondromalacia case, cartilage fissuring was smooth-
ened on FSE-DNN images while cartilage signal was slightly enhanced in an over-graded chondromalacia case. 
This highlights the necessity for MRI sequence optimization, particularly emphasizing the need for more precise 
learning when it comes to small structures like cartilage and structures influenced by MR signal intensity. This 
acceleration optimization could be different depending on the target joint (e.g. a large off-center shoulder and 
a small extremity hand) and target structures such as ligaments, bone marrow, meniscus, and cartilage. Further 
study involving a larger number of images is needed to validate this aspect.

There were several limitations of this study as well. First, the acquisition parameter modifications were not 
the same between the three vendors. For example, compressed sensing is routinely used in only one of the scan-
ners, whereas the other two scanners utilize parallel imaging only. We intended the DNN-based reconstruction 
application to the current MRI sequences, reflecting the clinical practice. Secondly, we set a denoising level of low 
(51% reduction) according to a preceding internal study on noise reduction level for knee MRI. However, optimal 
image reduction level should be further investigated in clinical MRI, which could depend on the scanner, imaging 
joint or target, and radio-frequency coil. Thirdly, our diagnostic evaluations were not confirmed arthroscopically 
in all patients. We conducted this study with radiologists’ consensus as a gold standard of diagnostic performance. 
Despite evaluation in limited number of patients and limited pathologic findings, this prospective study supports 

Figure 7.  Cartilage grade on conventional and reconstructed images of accelerated sequences. (A) A 54-year-
old female with knee pain. Cartilage fissuring is shown in medial femoral condyle (upper A) while the cartilage 
fissuring is smoothened, showing under-grade chondromalacia on 2D FSE-DNN image (lower A). (B) A 
41-year-old male with knee pain. Cartilage signal changes without significant defect in lateral tibial plateau 
(upper B) while the cartilage showed T2 high signal intensity defects on 2D FSE-DNN image, showing over-
graded cartilage (lower B).
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the possibility and the generalizability of DNN reconstruction of highly accelerated MRI to reduce the MRI 
scan time in clinical practice. Fourthly, the measurements for SNR and CNR were conducted by conventional 
approach. While optimized methods are available for sensitivity map-based parallel  imaging40,41, it was neces-
sary to adhere to the conventional approach for practical reasons, as multiple acquisitions were challenging to 
perform on actual patient images. And, in the context of deep learning-based MRI reconstruction, an optimized 
method has not yet been established. Further research in this area is warranted in the future.

In conclusion, DNN can be applied to accelerated knee imaging in multi-vendor MRI scanners, with reduced 
scan time and comparable image quality. Cartilage grading could be under- or over-graded while good agree-
ments in ligamentous and meniscal evaluations. Therefore, the readers should be cautious in utilizing in DNN-
accelerated MRI for some lesion evaluation. This study suggests the potential for routine MRI protocols applica-
tions to DNN-accelerated knee MRI in clinical practice.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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