
www.e-enm.org 463

Endocrinol Metab 2023;38:463-471
https://doi.org/10.3803/EnM.2023.1820
pISSN 2093-596X  ·  eISSN 2093-5978

Songwon 
Lecture
2022

Multiomics Approach to Acromegaly: Unveiling 
Translational Insights for Precision Medicine
Kyungwon Kim, Cheol Ryong Ku, Eun Jig Lee

Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, 
Seoul, Korea

The clinical characteristics and prognoses of acromegaly vary among patients. Assessment of current and novel predictors can lead 
to multilevel categorization of patients, allowing integration into new clinical guidelines and a reduction in the increased morbidity 
and mortality associated with acromegaly. Despite advances in the diagnosis and treatment of acromegaly, its pathophysiology re-
mains unclear. Recent advancements in multiomics technologies, including genomics, transcriptomics, proteomics, metabolomics, 
and radiomics, have offered new opportunities to unravel the complex pathophysiology of acromegaly. This review comprehensively 
explores the emerging role of multiomics approaches in elucidating the molecular landscape of acromegaly. We discuss the potential 
implications of multiomics data integration in the development of novel diagnostic tools, identification of therapeutic targets, and the 
prospects of precision medicine in acromegaly management. By integrating diverse omics datasets, these approaches can provide 
valuable insights into disease mechanisms, facilitate the identification of diagnostic biomarkers, and identify potential therapeutic 
targets for precision medicine in the management of acromegaly.
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The Songwon Medical Scientist Award is the highest scientific 
award of the Korean Endocrine Society to honor an individual 
below 45 years old who has made excellent scientific contribu-
tions and planned outstanding research proposal to progress in 
the field of endocrinology and metabolism. The Songwon Medi-
cal Scientist Award is named after the pen name of Professor 
Kab Bum Huh, who had been emphasizing the importance of 
research and educations in field of not only endocrinology but 
also overall medicine. Professor Cheol Ryong Ku received the 
1st Songwon Medical Scientist Award at the 10th Seoul Interna-
tional Congress of Endocrinology and Metabolism of the Kore-
an Endocrine Society in October 2022.

INTRODUCTION

Approximately 15% of all primary intracranial tumors are pitu-
itary neuroendocrine tumors [1]. Growth hormone (GH)-pro-
ducing pituitary adenomas are the second most common hor-
mone-producing pituitary tumors after prolactin-producing ade-
nomas [1]. Acromegaly presents with various symptoms such as 
enlargement of the extremities and tongue, cardiac hypertrophy, 
osteoarthropathy, metabolic disorders, and malignancy due to 
prolonged excess GH [2,3]. If GH overproduction is not con-
trolled, these complications can lead to high mortality rate [4,5]. 

Improvements in surgical procedures, the development of 
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new radiotherapy techniques, and the availability of new medi-
cal therapies have resulted in considerable changes to the treat-
ment and management of acromegaly [6,7]. However, a signifi-
cant number of patients may not achieve remission owing to 
multiple clinical parameters [8-12]. Therefore, investigating the 
underlying biological mechanisms can help to identify targets 
for more effective treatments. This review outlines the need for 
a deeper understanding of patients with acromegaly to improve 
disease control and compliance. 

Rather than examining individual genes, proteins, or metabo-
lites, the focus shifts to analyzing complete sets: the genome, 
proteome, metabolome, and radiomics. These comprehensive 
approaches are categorized as “omics,” reflecting encompassing 
nature denoted by the suffix “-ome” [13]. Omics techniques are 
used in translational medicine, where research outcomes are 
translated into practical clinical applications, leveraging their 
inherent capacity for personalized medicine [14]. The impartial 
application of omics enables the evaluation of diagnosis, prog-
nosis, and prediction of treatment responses, facilitating the 
customization of medical approaches, ranging from risk assess-
ment to the handling of treatment resistance [15]. 

Despite recent efforts to elucidate the mechanisms and etiolo-
gy of GH-secreting pituitary adenomas, the connection between 
genetic alterations and clinical characteristics remains unclear, 
and the factors influencing treatment responsiveness remain un-
known. Moreover, genetic investigations specifically targeting 
GH-secreting pituitary tumors are limited. Therefore, a deeper 
understanding of the molecular basis of acromegaly is essential 
for developing targeted therapies and personalized treatment 
strategies.

In this review, we summarized the molecular aspects revealed 
by multiomics approaches that have shed new insight into the 
understanding of clinical behavior and novel therapeutic targets 
for patients with acromegaly and conclude with a discussion of 
future prospects. 

GENOMICS

Among the various omics technologies, genomics, the most es-
tablished domain, involves the investigation of linked genetic 
variations to discover novel therapeutic reactions or disease 
prognoses [16]. In this context, the impact of understanding ge-
netic variations, as observed in genome-wide association studies 
(GWAS), coupled with omics discoveries, has been identified 
[17]. Genomic studies have identified several genetic alterations 
associated with acromegaly, including germline variants, somat-

ic mutations, and copy number variations. 
Germline mutations occur in several known genes, including 

those in multiple endocrine neoplasia type 1 (MEN1), protein ki-
nase A regulatory subunit 1α (PRKARIA), aryl hydrocarbon re-
ceptor-interacting protein (AIP), G-protein coupled receptor 101 
(GPR101), cyclin dependent kinase inhibitor 1B (CDKN1B), 
succinate dehydrogenase subunit (SDHx), MYC associated fac-
tor X (MAX) genes, as well as familial cases with currently un-
known genes [18-21]. 

The most commonly identified somatic mutations in acromega-
ly are activating mutations in the guanine nucleotide-binding pro-
tein alpha-stimulating (GNAS) gene [22]. These mutations cause 
a gain-of-function effect in GNAS, leading to increased produc-
tion of cyclic adenosine monophosphate (cAMP), which in turn 
promotes cell proliferation and GH release. Notably, specific mu-
tations have been identified at critical positions, such as codon 
201, where arginine can be substituted with cysteine, histidine, or 
serine, and codon 227, where glutamine can be replaced with ar-
ginine or leucine [23]. Approximately 30% to 40% of sporadic 
acromegaly cases exhibit GNAS mutations [22]. GNAS muta-
tions in GH-secreting pituitary tumors are associated with higher 
preoperative insulin-like growth factor-1 (IGF-1) levels, higher 
surgical remission rates, favorable responses to somatostatin ana-
logues, and lower immediate postoperative nadir GH levels [24]. 

Genomic stability of GH-secreting adenomas has been exten-
sively studied. In a GWAS involving 128 sporadic pituitary ad-
enomas, three susceptibility loci were identified, two on chro-
mosome 10 and one on chromosome 13 [25]. In addition, copy 
number variations have also been reported. Interestingly, GH-se-
creting pitutiary tumors do not exhibit classical oncogene muta-
tions when analyzed by whole-genome sequencing and somatic 
copy number analysis, indicating potential defects in cell cycle 
regulation or signaling pathways [26]. Furthermore, genomic 
profiling of 39 GH-secreting tumors revealed heterogeneity in 
copy number alterations, indicating genomic instability. Some 
tumors exhibit substantial genomic disruption and aneuploidy, 
affecting up to 45% of the affected genome [27]. These tumors 
also harbored GNAS1 mutations. In a multiplex next-generation 
sequencing analysis of 16 GH-secreting pituitary tumors, copy 
number variations were more prevalent in GH-secreting pituitary 
tumors than in non-hormone-secreting pitutiary tumors [28]. 

EPIGENOMICS

Epigenetic modification
Given the centrality of gene expression changes and the limita-
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tions of genetic abnormalities in GH-secreting pituitary tumors, 
epigenetic modifications have received considerable attention. 
Numerous genes involved in cell growth and signaling show al-
tered methylation status, including cell cycle regulators such as 
cyclin dependent kinase inhibitor 2A (CDKN2A), CDKN1B, 
RB transcriptional corepressor 1 (Rb), and fibroblast growth 
factor receptor 2 (FGFR2) [29-31]. GH-secreting pituitary tu-
mors display relative hypomethylation of genes involved in ion 
channel signaling, including voltage-gated potassium channel 
subunit beta-2 (KCNAB2), calcium-activated potassium chan-
nel subunit beta-4 (KCNMB4), and calcium voltage-gated 
channel subunit alpha1C (CACNA1C), which can be hyper-
methylated in nonfunctional tumors [32]. 

Increased global acetylation leads to increased expression of 
pituitary tumor-transforming gene 1 (PTTG1), bone morpho-
genic protein 4 (BMP4), and dopamine receptor 2 (DR2) in pitu-
itary tumor cells. This suggests that widespread changes in epi-
genetic modifications could induce shifts in gene expression 
[33,34]. Overexpression of histone deacetylases (HDAC) within 
the sirtuin family (SIRT) have been observed in somatotropino-
mas and is correlated with smaller tumor size [35]. Peptidylargi-
nine deaminase (PAD) enzymes plays a role in histone citrullina-
tion, a process that influences chromatin activity. The enhanced 
presence of PAD enzymes in somatoprolactinomas has been 
linked to increased mRNA targeting of the oncogenes high-mo-
bility group A 1 (HMGA1), IGF-1, and the neuroblastoma MYC 
oncogene (N-MYC) by micro-RNAs (miRNAs) [36].

Epigenomic profiling can contribute to the understanding of 
tumorigenesis in pituitary adenomas. However, there are no sig-
nificant differences in tumor subtype or prognosis. 

Noncoding RNAs
Approximately 75% of the transcribed genes yield RNA mole-
cules that do not participate in protein synthesis; instead, they 
generate noncoding RNAs [37]. These noncoding RNAs en-
compass miRNAs, long noncoding RNAs, circular RNAs, and 
P-element Induced WImpy testis in Drosophila (PIWI)-interact-
ing RNAs [38]. Although their biological significance is not ful-
ly understood in most cases, several miRNAs have been shown 
to be involved in the control of pituitary tumorigenesis, aggres-
sive features, and drug responsiveness. 

miR-15a and miR-16-1 demonstrate decreased expression in 
GH-secreting pituitary tumors, and miR-16 is known to target 
GH receptor, IGF-1, IGF1 receptor, and IGF2 receptor expres-
sion [39,40]. Downregulated miRNAs were found to regulate 
the expression of three genes linked to proliferation: HMGA1, 

controlled by miR-34b and miR-548c-3p, HMGA2 regulated by 
miR-34b, miR-326, miR-432, miR-548c-3p, and miR-570; and 
E2 promoter binding factor 1 (E2F1), which is affected by miR-
326 and miR-603 [41]. Overexpression of these three genes is 
associated with cell proliferation [41].

The dysregulation of miR-126, miR-381, and miR-338-3p 
controls cell proliferation, invasion, and response to therapy by 
affecting PTTG1 [42-44]. MiR-26b and miR-128 act on the 
phosphatase and tensin homologue (PTEN)/phosphoinositide 
3-kinase (PI3K)/protein kinase B (AKT) pathway, which stimu-
lates epithelial-mesenchymal transition (EMT) [45,46]. MiR-
503, known as a tumor suppressor, was found to be downregu-
lated, whereas miR-525-5p, a protector against EMT, was up-
regulated in GH-secreting adenomas. Dysregulation of both has 
been reported to control EMT during tumorigenesis [47,48].

In acromegaly, as observed in other tumors, miRNAs also 
play a role in resistance to treatment. For instance, miR-34a was 
shown to correlate with AIP expression, which is an important 
marker of response to somatostatin analogue treatment [49,50]. 
Somatostatin receptor (SSTR) 2 is regulated by miR-185 in vitro 
and is upregulated in non-responders to somatostatin analogues 
[51]. However, no direct correlation was observed between mir-
185 and SST2 expression in vivo. miR-125a-5p and miR-524-
5p are decreased in response to somatostatin analogues [42]. 
miR-866-5p, a type of oncomiR, is upregulated In responsive 
tumors [42].

TRANSCRIPTOMICS

Transcriptomics, an additional high-throughput methodology, 
involves concurrent qualitative and quantitative analyses of spe-
cific mRNA species and focuses on dysregulated genes in acro-
megaly [52]. The integration of transcriptomic data provides a 
comprehensive understanding of tumor aggressiveness and 
treatment responsiveness in patients with acromegaly.

Signal transducer and activator of transcription 3 (STAT3) is 
a signaling molecule that has been implicated in GH hyperse-
cretion by somatotrophic cells and therefore holds potential as a 
therapeutic target for GH-secreting pituitary tumors. GH-secret-
ing tumors exhibit increased STAT3 expression, which leads to 
enhanced GH synthesis [53]. Blocking STAT3 activity inhibits 
the growth of somatotroph tumor xenografts and suppresses GH 
secretion in cultured cells derived from human GH-secreting pi-
tuitary tumors [53]. 

PTTG regulates cell cycle by interacting with p53 [54]. More 
than 70% of GH-secreting pituitary tumors exhibit elevated 
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PTTG expression, which significantly contributes to cellular se-
nescence [55]. PTTG expression may be indicative of aggres-
siveness in various types of pituitary adenoma [56].

Microarray analysis of GH-secreting pituitary tumors identi-
fied E-cadherin mRNA expression to be negatively associated 
with tumor size and invasiveness, and positively associated with 
GH and IGF-I levels in serum and response to somatostatin ana-
logues [57]. Several genes, including epithelial splicing regula-
tory protein 1 (ESRP1), pleomorphic adenoma gene 1 (PLAG1) 
like zinc finger 1 (ZAC1), and beta arrestin-1, is reported as 
predictors of responsiveness to medical treatment [57-60].

Rapid polymerase chain reaction amplification of cDNA ends 
using human pituitary tumors identified a novel alternatively 
spliced somatostatin 5 (sst5) receptor variant [61]. The presence 
of truncated sst5 (sst5TMD4) is associated with increased ag-
gressive features and worse prognosis in GH-secreting pituitary 
tumors [62]. Enhanced p21 expression is linked to less aggres-
sive GH-secreting pituitary tumors and likely exerts a mitigat-
ing effect on cell proliferation [21]. 

Some studies have identified somatic genetic alterations in 
GH-secreting pituitary tumors using whole-exome sequencing. 
Whole-exome sequencing detected arm-level somatic copy 
number alterations (SCNA) in 42 pituitary macroadenoma sam-
ples at extensive sites across the genome in 29% of the speci-
mens. Chromosomal alterations are more frequent in GH-se-
creting pituitary tumors [63,64]. Both cAMP and Fanconi anae-
mia DNA damage repair pathways are affected by SCNA in 
GH-secreting pituitary tumors [63]. Another study reported that 
in addition to the cAMP pathway, calcium signaling might be 
involved in the pathogenesis of GH-secreting pituitary tumors 
[64]. One study proposed novel somatic variants (48 genes with 
59 variants) in patients with acromegaly with neither GNAS 
variants nor family history [65]. Single cell RNA sequencing of 
pituitary-specific positive transcription factor 1 positive pitu-
itary adenomas (PIT1-PAs) proposed interferon-γ and cadherin 
2-targeted drugs are promising therapeutic methods for aggres-
sive PIT1-PAs [66].

PROTEOMICS

Proteomics is another omics-related technology that examines 
the protein content of an organism, tissue, or cell to understand 
the function or structure of a specific protein. This technology 
can be used in various research settings with different capacities 
to identify diagnostic markers, produce vaccines, and even inter-
pret the protein pathways of disorders [67]. Herein, large-scale 

protein characterisation using this high-throughput proteomic 
strategy may benefit from mass spectroscopy techniques [68].

Although limited, proteomics studies have been conducted in 
patients with acromegaly. ATPase sarcoplasmic/endoplasmic 
reticulum Ca2+ transporting 2 (ATP2A2) and AT-rich interac-
tion domain 5 B (ARID5B) correlated with the GH change rate 
in the octreotide loading test, and WWC family member 3 
(WWC3), serine incorporator 1 (SERINC1), and zinc finger 
AN1-type containing 3 (ZFAND3) correlated with the tumor 
volume change rate after somatostatin analogue treatment [69]. 
One study evaluated biomarkersare changed after surgical treat-
ment and revealed intensities of two isoforms of transthyretin, 
haptoglobin (HP) a2, haemoglobin β subunit (HBB) and two 
isoforms of apolipoprotein A1 (APOA1), and complement C4B 
(C4B) precursor could be used as potential biomarkers [70].

METABOLOMICS 

Metabolomics is a rapidly growing technology that has identi-
fied perturbations in various metabolic pathways, including glu-
cose, lipid, and amino acid metabolism. These findings may 
contribute to the development of novel diagnostic biomarkers 
and targeted therapies for acromegaly.

Feng et al. [7] reported that all pituitary adenomas, including 
GH-secreting pituitary adenomas, display downregulated glu-
cose metabolism and glycolysis compared to normal tissues. 
They revealed that isocitrate dehydrogenase (NADP(+)) 2 
(IDH2) is a key player in the reprogrammed metabolism of such 
tumors, and confirmed that IDH2 is a potential target for inhib-
iting tumor cell growth and secretion by blocking IDH2 [71]. 

Researches using liquid chromatography with tandem mass 
spectrometry, gas chromatography-mass spectrometry, and nu-
clear magnetic resonance spectrometry have been reported in 
pituitary tumors, but among them, there has been no research 
focused solely on acromegaly patients [72-74].

RADIOMICS 

Radiomics transforms radiological images into extractable data 
by automatically quantifying comprehensive imaging character-
istics [75]. Previous studies have shown promising results in 
predicting the molecular state, severity, and outlook of gliomas 
[76]. Recent investigations have also shown encouraging find-
ings for predicting the subtype or treatment response of pituitary 
adenomas. Although basic observations, such as cavernous si-
nus invasion on magnetic resonance imaging (MRI), are also 
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associated with prognosis, advancements in MRI methodolo-
gies have led to a variety of ongoing radiomic studies [77,78].

Park et al. [79,80] proposed that radiomics features have the 
potential to predict the granulation pattern of GH-secreting pitu-
itary tumors. Earlier studies have suggested that densely granu-
lated adenomas respond more favorably to somatostatin ana-
logue treatment than sparsely granulated adenomas do. This is 
particularly relevant, given the limited accessibility of electron 
microscopy in clinical settings.

CONCLUSIONS 

Nucleic acid-based methods, including genomics, epigenomics, 
and transcriptomics have been extensively used in patients with 
acromegaly, providing information on multiomics characteris-
tics related to variable parameters such as drug responsiveness 
and recurrence (Fig. 1). To date, studies have focused on single-
omics approaches to classify patients with acromegaly. Integrat-
ing various omics datasets offers a comprehensive perspective 

that enables us to derive more precise insights to understanding 
diseases and searching possible targets for treatment. Multiomics 
strategies have enlightened us in a manner that singular omics 
approaches alone cannot achieve. The integration of clinical data 
such as treatment response and disease outcomes through a mul-
tiomics approach can facilitate the identification of personalized 
treatment strategies. Further research and collaborative efforts 
are required to translate these findings into clinical practice.
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