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Automatic identification 
of posteroanterior cephalometric 
landmarks using a novel deep 
learning algorithm: a comparative 
study with human experts
Hwangyu Lee 1, Jung Min Cho 1, Susie Ryu 2, Seungmin Ryu 3, Euijune Chang 1, 
Young‑Soo Jung 1 & Jun‑Young Kim 1,4*

This study aimed to propose a fully automatic posteroanterior (PA) cephalometric landmark 
identification model using deep learning algorithms and compare its accuracy and reliability with 
those of expert human examiners. In total, 1032 PA cephalometric images were used for model 
training and validation. Two human expert examiners independently and manually identified 19 
landmarks on 82 test set images. Similarly, the constructed artificial intelligence (AI) algorithm 
automatically identified the landmarks on the images. The mean radial error (MRE) and successful 
detection rate (SDR) were calculated to evaluate the performance of the model. The performance of 
the model was comparable with that of the examiners. The MRE of the model was 1.87 ± 1.53 mm, 
and the SDR was 34.7%, 67.5%, and 91.5% within error ranges of < 1.0, < 2.0, and < 4.0 mm, 
respectively. The sphenoid points and mastoid processes had the lowest MRE and highest SDR in 
auto-identification; the condyle points had the highest MRE and lowest SDR. Comparable with human 
examiners, the fully automatic PA cephalometric landmark identification model showed promising 
accuracy and reliability and can help clinicians perform cephalometric analysis more efficiently while 
saving time and effort. Future advancements in AI could further improve the model accuracy and 
efficiency.

Cephalometric analysis is a fundamental diagnostic procedure that utilizes radiological landmarks to measure 
various linear, angular, and proportional parameters on lateral and posteroanterior (PA) cephalograms1,2, which 
offer valuable information for evaluating craniofacial structures, such as growth assessment, orthodontic treat-
ment planning, orthognathic surgery planning, and treatment outcome assessment3–5. Nevertheless, manual 
diagnostic procedure is a demanding and time-consuming task. Moreover, despite the essential role of landmark 
identification in cephalometric analysis, intra- and inter-observer variability and a lack of reliability continue 
to pose a challenge6,7. Since the accuracy of landmark identification determines the quality of diagnosis, inac-
curate identification of cephalometric landmarks can result in misguided planning of orthodontic therapy and 
orthognathic surgery.

Therefore, there is a growing need to develop fully automated and reliable cephalometric landmark identifica-
tion methods that use artificial intelligence (AI) algorithms. Recent advances in AI, particularly in deep learning, 
have garnered considerable attention for its use in diagnostic imaging, disease classification, and monitoring8,9. 
In orthodontics, deep learning technologies have been utilized for automated cephalometric landmark identi-
fication, among other applications3,10,11.

Since the 1990s, various studies have proposed fully automated cephalometric landmark identification sys-
tems that utilize machine-learning techniques12,13. However, their limited accuracy has hindered their success. 
Recently, deep learning algorithms, such as convolutional neural networks (CNNs), have been used increasingly 
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to detect landmarks on lateral cephalograms automatically3,14,15. These studies have reported that deep learning 
algorithms exhibit high accuracy in detecting landmarks at shorter time, achieving precision levels within the 
range of 2.0 mm. Additionally, they have achieved successful detection rates (SDR), surpassing 70% and 90% for 
the respective thresholds of 2 and 3 mm4,16,19–21. However, most studies reporting the development and evalua-
tion of automated cephalometric identification algorithms primarily focused on utilizing lateral cephalograms 
as their main target.

Although lateral cephalometric analysis is valuable in assessing anteroposterior and vertical issues, it has 
limitations in evaluating skeletal asymmetry and dentofacial structures in the transverse plane. The use of pos-
teroanterior cephalogram holds significant value in the assessment of transverse skeletal and dentoalveolar 
relationships, enabling the quantification of bilateral structural issues22–24. It provides vital diagnostic information 
that is essential for evaluating patients who present with functional, dentoalveolar, and/or facial asymmetries.

Nevertheless, since the impact of such analyses greatly depends on their accuracy, there are limitations 
associated with the use of the PA cephalogram owing to errors in landmark identification. There are two pri-
mary categories of cephalometric errors: "projection errors," which result from the geometric aspects of the 
radiographic setup, and "identification errors," which occur owing to the uncertainty in locating specific ana-
tomical landmarks25,26. The reliability and reproducibility of identified landmarks are influenced by various 
factors, including image density, image sharpness, anatomical complexity, and superimposition of anatomical 
structures27–29. Consequently, the identification errors on PA cephalograms were higher than those of lateral 
cephalometric analysis owing to their nature, which involves more superimposition of anatomical structures 
and variations in head positioning30. Furthermore, the experience and predisposition of the examiner play a 
significant role, asrdeeper understanding of anatomy and familiarity with radiographic images can help reduce 
intra- and inter-examiner errors22,31.

Considering the limitations and potential errors associated with manual landmark identification in PA cepha-
lograms, there is a growing need for automatic identification methods. The development of automatic PA cepha-
logram identification systems can greatly enhance the accuracy and reliability of the analysis, minimizing the risk 
of errors caused by human factors. Moreover, the implementation of automatic PA cephalogram identification 
would not only expedite the analysis, but also contribute to enhanced diagnostic capabilities and more effective 
treatment planning for patients presenting with functional, dentoalveolar, and/or facial asymmetries. Therefore, 
this study aimed to develop a fully automatic PA cephalometric landmark identification model using a deep learn-
ing algorithm and compare its accuracy and reliability with the assessments made by expert human examiners.

Results
Table 1 presents the mean radial error (MRE) and intra-class correlation coefficient (ICC) values for each of 
the 19 landmarks detected by the human examiners that were defined as the gold standard points. The average 
MRE for all landmarks was 1.68 ± 1.85 mm. The ICC values for all landmarks were above 0.7, except for the 
y-coordinate of the upper dental midline (U1M), indicating high reliability between the two examiners. The 

Table 1.   Mean radial error (MRE) and inter-examiner reliability of two human examiners.

Landmarks

Mean radial 
error (mm)

Interclass correlation 
coefficient

Mean SD x-coordinate y-coordinate

Cg 3.53 2.65 0.983 0.783

SphR 0.94 0.75 0.989 0.986

SphL 1.17 0.92 0.982 0.979

ConR 3.61 2.34 0.886 0.771

ConL 3.95 2.56 0.859 0.725

MstR 0.85 0.60 0.991 0.988

MstL 0.81 0.75 0.991 0.987

ANS 0.89 0.68 0.994 0.986

JugR 1.42 1.42 0.987 0.953

JugL 1.11 1.16 0.993 0.968

GoR 1.68 1.73 0.983 0.952

GoL 1.60 1.37 0.980 0.969

Me 1.46 1.23 0.957 0.995

U1M 2.32 11.21 0.710 0.531

U6MCR 1.61 1.08 0.966 0.970

U6MCL 1.41 1.13 0.973 0.977

L1M 1.13 1.35 0.958 0.993

L6MCR 1.13 1.04 0.973 0.987

L6MCL 1.21 1.20 0.971 0.985

Average 1.68 1.85 – –
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lower ICC value for the y-coordinate of the U1M may be attributed to the detection tendency of the two human 
examiners, which is relatively less relevant to transverse evaluation.

Examples of the 19 landmarks were visually represented on a PA cephalometric image to facilitate comparison 
between the landmarks detected by the human examiners (gold standard) and those by the automatic identifica-
tion algorithm (Fig. 1).

Table 2 presents the MRE and standard deviation (SD) for the 19 landmarks identified by the human exam-
iners (the gold standard) and the automatic identification algorithm. The landmarks with the lowest MRE were 
SphR (1.12 mm), SphL (1.10 mm), and MstR (1.10 mm), whereas those with the highest MRE were ConR 
(3.47 mm) and ConL (3.16 mm). The average MRE was 1.87 ± 1.53 mm.

Table 3 shows the SDR of the landmarks within the error ranges of < 1.0, < 2.0, and < 4.0 mm. The average 
SDR was 34.7%, 67.5%, and 91.5% within the ranges of 1.0, 2.0, and 4.0 mm, respectively. The automatic identi-
fication algorithm showed a high accuracy (> 80%) within a range of 2.0 mm for SphR and SphL (89.0%), MstR 
and L6MCL (87.8%), and U6MCL and L6MCR (81.7%). In contrast, ConR (25.6%) and ConL (32.9%) had the 
lowest SDR values.

The horizontal and vertical error patterns between the two human examiners and the automatic identification 
of each landmark are illustrated in Fig. 2.

Discussion
This study proposed a fully automated deep learning model for identifying PA cephalometric landmarks and 
compared its accuracy with that of two expert human examiners.

Numerous studies have introduced algorithms for the automated identification of lateral cephalograms as 
well as methods for evaluating their accuracy3,10,11. Conversely. A recent systematic review and meta-analysis 
reported AI agreement rates of 79% and 90% for the thresholds of 2 and 3 mm, respectively, with a mean diver-
gence of 2.05 compared to manual landmarking19. Another study showed that most studies did not exceed a 
2-mm prediction error threshold in mean and that the mean proportion of landmarks detected within this 2-mm 
threshold was 80%20.

Figure 1.   Examples of superimposed gold standard (blue dot) and auto-identified (red dot) landmarks on PA 
cephalometric image (a–f). The best result was obtained with an average MRE of 1.06 mm (a), and the worst 
result with an average MRE of 4.02 mm (b).
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However, only a limited number of studies have used deep learning algorithms to automate identification 
in PA cephalograms18. Although lateral cephalometric analysis is a basic tool for diagnosis in orthodontics, 
PA cephalometric analysis is essential for evaluating skeletal asymmetry and providing dentofacial structural 
information in the transverse plane22–24. Owing to its anatomical orientation, PA cephalometry inevitably causes 
greater overlap and superimposition of the skeletal structures and dentition than lateral cephalometry. These 

Table 2.   Mean radial error (MRE) between gold standard and auto-identification using the AI algorithm.

Landmarks

Mean radial 
error (mm)

Mean SD

Cg 2.57 1.63

SphR 1.12 0.97

SphL 1.10 0.67

ConR 3.47 2.09

ConL 3.16 1.88

MstR 1.10 1.16

MstL 1.95 1.28

ANS 1.83 1.29

JugR 1.91 1.59

JugL 1.70 1.24

GoR 1.70 1.34

GoL 1.49 1.20

Me 2.17 1.77

U1M 2.19 5.54

U6MCR 1.55 0.99

U6MCL 1.43 0.78

L1M 2.50 1.83

L6MCR 1.33 0.98

L6MCL 1.18 0.76

Average 1.87 1.53

Table 3.   Success detection rate (SDR) of auto-identification using the AI algorithm.

Landmarks

Success detection rate (%)

 < 1.0 (mm)  < 2.0 (mm)  < 4.0 (mm)

Cg 14.6 45.1 79.3

SphR 53.7 89.0 98.8

SphL 51.2 89.0 100.0

ConR 6.1 25.6 73.2

ConL 12.2 32.9 69.5

MstR 65.9 87.8 98.8

MstL 19.5 57.3 93.9

ANS 29.3 61.0 93.9

JugR 36.6 61.0 92.7

JugL 29.3 68.3 91.5

GoR 39.0 70.7 93.9

GoL 43.9 75.6 97.6

Me 26.8 67.1 85.4

U1M 50.0 72.0 92.7

U6MCR 35.4 74.4 97.6

U6MCL 30.5 81.7 100.0

L1M 20.7 53.7 81.7

L6MCR 46.3 81.7 98.8

L6MCL 47.6 87.8 100.0

Average 34.7 67.5 91.5
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overlapped images reduce the accuracy and reliability of landmark identification, resulting in identification that 
highly depends on the examiner’s experience and subjectivity22,31–33.

The present study aimed to develop a fully automatic PA cephalometric landmark identification system using 
a two-step landmark detection framework. In the first step, ResNet 18 was used to detect the region of interest 
by roughly extracting 19 landmark positions. Random augmentation and loss functions were used to improve 
performance. In the second step, ResNet 50 architecture was used to extract fine points from the cropped image. 

Figure 2.   Scatter plots with 95% confidence ellipses for the landmark detection errors of the human examiners 
and automatic identification.
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Then, CLAHE was applied to the cropped images for clear visualization of the bone, soft tissue, and the back-
ground regions.

The inference time and accuracy according to number of ResNet layers during the coarse training step are 
listed on Table 4. Deeper networks can extract more complex and abstract features. However, such complex 
feature extraction comes at the cost of increased computational burden, resulting in longer inference times. 
Similarly, as shown in the Table 4, as the layer depth increased, the computing time also increased. Although 
ResNet34 demonstrated approximately a 19% improvement in average accuracy for landmark detection com-
pared to ResNet 18, its inference time was approximately 40% slower. Therefore, we opted to use ResNet18 for 
the coarse training stage.

To evaluate the performance of the proposed model, manual identification of the 19 landmarks was performed 
independently by two human examiners on 1032 images used for model training and validation. Furthermore, 
the landmarks were identified manually by two expert human examiners and automatically by the developed 
AI algorithm on 82 test set images. The MRE and SDR between gold standard and auto detected point were 
calculated from the results of the test sets.

Although every cephalometric landmark has its own definition, its identification is subjective and dependent 
on the experience and judgment of the examiner22,31. Even highly educated experts may hold different opinions 
regarding the ideal location, indicating the absence of an ’absolute gold standard’ reference point. To address 
this limitation, we employed a method where the arithmetical mean point for each landmark was calculated 
by averaging the X and Y coordinates detected by two human expert examiners. The inter-examiner reliability 
was previously established using an assessment of the ICC. Although this mean point may not precisely align 
with the specific definition of a particular landmark, it can be regarded the closest approximation to the gold 
standard point.

The SphR, SphL, and MstR had the lowest MRE, whereas the condyle points had the highest MRE. The average 
MRE value was 1.87 mm, which falls within the clinically acceptable range of previous studies that considered 
an MRE of up to 2.0 mm as acceptable3,10,11,34. In terms of the SDR, auto-identification demonstrated a high 
accuracy at the sphenoid points and the mastoid process across all error ranges. Conversely, the lowest SDR was 
observed at the condyle points.

The tendency of these results could be related to the degree of overlap of the anatomical structures. Auto-
identification showed low MRE and high SDR values for the sphenoid points and mastoid processes, respectively, 
which have relatively little anatomical overlap. Conversely, auto-identification exhibited high MRE and low 
SDR values for the condyle points, which overlap with the maxilla and zygomatic arch, respectively, consistent 
with the inter-examiner evaluation. These results align with those of prior studies on auto-identification on 
PA cephalograms, which reported relatively significant errors in identifying the landmarks located within the 
frontozygomatic suture, zygomatic process, and condyles owing to an overlap of the anatomical structures17,22,35.

The precision of auto-identification of the landmarks located on the teeth, which was anticipated to have 
low accuracy owing to the overlap of adjacent teeth and the presence of orthodontic brackets and prosthesis, 
produced favorable results, with an MRE within 2.0 mm. This finding suggest that auto-identification can be 
utilized for precise evaluation of asymmetry using the dentition.

The scatterplots of the landmark detection errors showed a characteristic distribution within the co-ordinate 
system, as shown in Fig. 2. For instance, Menton (Me) distinctively oriented horizontally, whereas Crista galli(Cg) 
oriented more in a vertical direction, which reflects the tendency of detection errors of each landmarks and cor-
responding to the differences observed between the two examiners.

In conclusion, this study presented a novel approach for the fully automatic identification of PA cephalometric 
landmarks using a deep learning algorithm. The accuracy and reliability of the proposed model were evaluated 
by comparison with those of expert human examiners. Our results showed that the accuracy and reliability of 
the constructed AI model are comparable to those of human experts. These findings suggest that with advances 
in AI, automatic PA cephalometric landmark identification can significantly improve the efficiency and accuracy 
of cephalometric analysis while reducing the time and effort required.

Methods
This study was approved by the Ethics Review Board of Yonsei University Dental Hospital Institutional Review 
Board (approval number 2–2020-0005) and passed the exemption review of informed consent on the use of 
patients’ cephalometric data. The requirement for written or verbal informed consent was waived owing to the 
non-interventional retrospective study design, and all cephalometric images were anonymized to ensure confi-
dentiality. This study was performed in accordance with the Declaration of Helsinki.

The inclusion criteria were as follows: (1) patients aged between 18 and 39 years, with permanent denti-
tion and complete facial growth, and (2) those who underwent orthodontic therapy or orthognathic surgery 

Table 4.   Inference time and accuracy according to the number of ResNet layers.

Model Average computing time (s) Average radial error (mm)

ResNet 18 0.005573844 4.262201158

ResNet 34 0.009241667 3.583836895

ResNet 50 0.012178767 7.023593526

ResNet 152 0.034862056 7.182261526
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between 2015 and 2021. The exclusion criteria were as follows: (1) partial or total edentulism, and (2) a history 
of dentofacial trauma, craniofacial syndromes, or systemic diseases. Thus, 1114 PA cephalometric images taken 
before treatment from the participants who met the inclusion criteria and were included in this study.

The PA cephalograms used in this study were acquired using a Rayscan machine (Ray Co. Ltd., Hwaseong, 
Korea) and collected from the picture archiving and communication system of the Yonsei University Dental 
Hospital as JPEG files. The images had a resolution of 1930 × 2238 pixels and a pixel spacing of 0.13 mm. Each 
pixel was represented by a single grayscale channel with values ranging from 0–255.

The 1114 PA cephalometric images included in the study were randomly divided into three sets: 803 images 
for training purposes, 229 for validation, and 82 for testing. The training and validation sets were used exclusively 
during the model training phase, whereas the test set was used solely to evaluate the reliability of the human 
examiners and the accuracy of the auto-identification model.

A total of 19 clinically important PA cephalometric landmarks used in routine dentofacial diagnosis were 
selected. Table 5 and Fig. 3 describe their definitions and positions. Two expert human examiners, an oral and 
maxillofacial surgeon with over 10 years of clinical experience in dentofacial deformity and an orthodontic 

Table 5.   Definition of landmarks.

No Landmarks Definition

1 Crista galli (Cg) The most superior and anterior points on the median ridge of the bone that projects upward from the cribriform plate of the 
ethmoid bone

2 Sphenoid point right (SphR) The right intersection of sphenoid bone greater and lesser wing

3 Sphenoid point left (SphL) The left intersection of sphenoid bone greater and lesser wing

4 Condyle point right (ConR) The most superior and the middle point on the contour of the right condyle head

5 Condyle point left (ConL) The most superior and the middle point on the contour of the left condyle head

6 Mastoid process right (MstR) The most inferior point of the right mastoid process

7 Mastoid process left (MstL) The most inferior point of the left mastoid process

8 Anterior nasal spine (ANS) The center of the intersection of the nasal septum and the palate

9 Jugal point right (JugR) The right intersection of the tuberosity of maxilla and zygomatic buttress

10 Jugal point left (JugL) The left intersection of the tuberosity of maxilla and zygomatic buttress

11 Gonial point right (GoR) The most posterior inferior point of the right mandibular angle

12 Gonial point left (GoL) The most posterior inferior point of the left mandibular angle

13 Menton (Me) The most inferior point of the symphysis of the mandible

14 Upper dental midline (U1M) The dental midline point of incisal edge of the maxillary central incisor

15 Upper first molar cusp right (U6MCR) The most lateral cusp point of the right maxillary first molar crown

16 Upper first molar cusp Left (U6MCL) The most lateral cusp point of the left maxillary first molar crown

17 Lower dental midline (L1M) The dental midline point of the incisal edge of the mandibular central incisor

18 Lower first molar cusp right (L6MCR) The most lateral cusp point of the right mandibular first molar crown

19 Lower first molar cusp left (L6MCL) The most lateral cusp point of the left mandibular first molar crown

Figure 3.   Landmarks on the PA cephalometric radiograph.
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specialist with 5 years of orthodontic training, independently and manually identified the landmarks on the 
1032 images used for model training and validation to obtain the ground truth.

During model training, the large size of the original image facilitates the creation of more feature maps for 
learning; however, it is also associated with the disadvantages of GPU memory allocation limitation and long 
computing time. Therefore, in the first step, the image was resized to 964 × 1119 pixels, which was ¼th of the 
original size. It is important to retain the features of the widest possible area to extract the approximate coor-
dinates of the 19 landmarks. Thus, the x- and y-coordinates of the 19 landmarks were extracted by locating the 
center of mass of each labeling point, which enabled the construction of a coordinate landmark detection model.

The landmark detection framework operates through a two-step process, as shown in Fig. 4. The 19 landmark 
positions were coarsely extracted, and the image was cropped to a certain size based on these rough positions. 
Subsequently, the fine points were extracted from the cropped images. The adoption of this two-step framework 
facilitated efficient learning and high accuracy.

ResNet 18 was used as the initial step to preserve the original features and expedite the learning process while 
minimizing the computational complexity. ResNet 18 is a model that can solve the gradient vanishing problem 
as the layer deepens through residual learning using skip connection, and it is widely used in facial landmark 
detection tasks. ResNet 18 consists of 17 convolution layers and a fully connected layer at the end. However, 
the first convolution layer was limited to a 7 × 7 kernel and max pooling to minimize the input size, whereas 
all subsequent layers were implemented using a 3 × 3 kernel convolution layer. The final fully connected layer 
comprised 38 output features, thereby enabling the derivation of the x- and y-coordinates of the 19 landmarks. 
Residual shortcut connections were introduced between the two convolution layers to optimize the learning 
process, as shown in Fig. 4, where the solid line represents the input and output having the same dimension, and 
the dotted line represents an increase in the dimension with zero padding and a stride of 2.

An augmentation strategy randomly selected from a list of methods, including rotation, scale, flip, and con-
trast, was applied to account for patients with tilted heads and asymmetric X-rays, as shown in Fig. 5. Wing loss 
was utilized as the loss function in the first step, which helped reduce an excessive focus on outliers to find the 
approximate landmark positions36,37. Wing loss is more resistant to the impact of outliers than the mean squared 
error (MSE) loss function.

In the second step, the original image was cropped to a size of 400 × 400 pixels and centered around the 19 
landmark positions obtained in the first step. Subsequently, contrast-limited adaptive histogram equalization 
(CLAHE) was applied to the cropped images. CLAHE is a histogram-flattening method that enhances the con-
trast of the radiographs, thereby enabling clear visualization of the bone, soft tissue, and background regions38. 
The application of CLAHE is known to enhance image quality and has gained widespread usage in deep learn-
ing model studies that utilize medical images39,40. ResNet 50 architecture was used in this step. It is similar to 
ResNet 18 but with deeper networks, and it comprises 49 convolution layers and a fully connected layer at the 
end. The final fully connected layer was designed with two output features to derive the x- and y-coordinates of 
one landmark. To optimize learning, residual shortcut connections were applied to three convolution layers with 
kernel sizes of 1 × 1, 3 × 3, and 1 × 1. The 1 × 1 convolution layers were responsible for dimensionality reduction 
and restoration, whereas the 3 × 3 layer functioned as a bottleneck with smaller input/output dimensions. MSE 
loss was utilized as the loss function for the second step.

Figure 4.   Schematic design of the two-step landmark detection framework. (Conv: convolution, FC: fully 
connected, ROI: region of interest, CLAHE: Contrast Limited Adaptive Histogram Equalization).
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The two-step models were initialized with a learning rate of 0.01 during model training, which was then 
decayed by a factor of 0.5 every 30 epochs. An Adam optimizer with a batch size of 64 was used for 400 epochs. 
All procedures were conducted using the PyTorch framework running on an NVIDIA Quadro RTX8000 GPU.

Two expert examiners specializing in oral and maxillofacial surgery and orthodontics manually identified 19 
cephalometric landmarks on 82 images that constituted the test set. The MRE and SD were calculated to evalu-
ate the inter-examiner reliability, and the ICC was computed to assess the degree of reliability between the two 
human experts. The mean values of the x- and y-coordinates determined by the two examiners were used as the 
gold standard for subsequent analysis.

Automatic detection of 82 test set images was completed using the constructed AI algorithm, and the MRE 
and SDR with error ranges of < 1.0, < 2.0, and < 4.0 mm for all landmarks were calculated to evaluate the perfor-
mance of the proposed model. All calculations were performed in Microsoft Excel using the following formulae:

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Received: 21 March 2023; Accepted: 15 September 2023
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