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ABSTRACT This paper presents a novel approach for measuring the human respiration rate utilizing
a mattress sensor. The proposed method employs an unsupervised clustering technique in conjunction
with a cluster selection algorithm to accurately measure the respiration rate. The pressure exerted on the
mattress sensor reflects the volume changes in the upper body during the breathing process, enabling the
estimation of the respiration waveform based on the measured pressure variations. Through the clustering
method, the measured pressure changes are effectively separated into respiratory-related clusters and
noise. Subsequently, the cluster selection algorithm identifies the optimal combination of clusters that best
represents the respiration pattern. To evaluate the performance of the proposed method, it was compared
against two alternative methods, namely RWD and RAC. The results demonstrate that the proposed method,
referred to as RCS, achieved the highest mean Pearson correlation coefficient of 0.88, indicating superior
performance compared to the other methods. In contrast, the mean Pearson correlation coefficients for RWD
and RAC were determined as 0.61 and 0.76, respectively. Statistical analysis confirmed the significance of
the differences among thesemethods (p< 0.001). Furthermore, a regression analysis was conducted to assess
the accuracy of the respiration rate measurements. The findings revealed that the proposed method yielded
the most precise estimation of the respiratory rate.

INDEX TERMS Respiratory rate, pressure sensor, clustering method, non-contact.

I. INTRODUCTION
As one of the four vital signs that are important indicators of
the state and functions of the human body, respiratory signals
have a significant effect on the heart rate variability (HRV).
They are very important data for monitoring the condition of
ischemic heart disease patients and the onset of respiratory
disorder syndrome in newborns. In addition, the estimation of
respiratory signals is very important in many cases, as sudden
respiratory disorders are directly related to life and must be
treated within a short time [1].
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In order to measure the respiratory signals of patients,
different methods using various sensors have been studied.
M. Chu et al. proposed a method to estimate the respira-
tory rate and volume using a wearable strain sensor [2],
while F.T. Wang et al. calculated the respiratory rate using
impedance plethysmography [3]. N. Molinaro et al. proposed
a method to monitor the respiratory rate using silver plated
knitted sensors [4]. However, these methods cause incon-
venience to wearers because they must wear the sensor
directly on them. To alleviate the discomfort of patients, there
have been studies of methods to measure breathing remotely
using a camera. M. C. Yu presented a method to estimate the
respiratory volume by estimating chest movements and to
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examine lung disease caused by chest malformation using
a depth camera [5]. K. Alicja et al. presented and analyzed
the accuracy of a method to estimate the respiratory rate
using thermal camera [6]. L. Scalise et al. presented amethod
to estimate the heart rate and respiration rate using a web
camera [7]. In all of the above methods, the subject of the
estimation must be placed in front of the camera. Not only
is it difficult to position a patient in front of a camera in
a real environment, but it is also challenging to install the
camera so that it operates effectively when a patient is lying
in bed. Not only camera-based methods, but also methods
using microwave radar have been studied. Y. S. Lee et al.
used microwave Doppler radar to detect and monitor respi-
ration [8]. They also demonstrated the feasibility of Doppler
radar in detecting different types of breathing patterns associ-
ated with different breathing sequences. J. Lee and S. K. Yoo
proposed radar-based respiration monitoring method using
harmonic quefrency selection method and showed that res-
piration could be continuously detected regardless of the
position and measurement duration [9]. Czyżewski, A., et al.
proposed a microwave radar-based respiration measurement
method that can more accurately measure respiration by
applying a heuristic algorithm that provides accurate esti-
mates even in the presence of misleading autocorrelation
function maxima [10]. The method using microwave radar
works well in the presence of clothes or thin blankets, but it
may have limitations when the subject uses thick blankets,
and the feasibility has not yet been tested in various sleeping
positions.

Using a pressure sensor has the advantages of not having
to attach a sensor to the patient’s body and of being able
to place it under the mattress of the bed, eliminating the
need for complicated installation procedures. In addition,
it has the advantage of not being restricted by the sleeping
position or the situation where the subject sleeps with a thick
blanket. Several previous studies have used pressure sensors.
M. H. Jones et al. estimated the respiratory rate using a pres-
sure sensor array with the fusion method, which elects the
group with the highest weighting from the respiratory rate
that is estimated by each sensor [11]. The power spectrum
peak detection of the Fourier transform was used to estimate
the respiratory rate of each sensor. D. I. Townsend et al. used
a pressure sensor array and selected valid sensors by deter-
mining whether the signal met two criteria, the upper and
lower bounds for the moving variance and moving average
to estimate the respiratory rate [12]. M. Holtzman et al. also
used a pressure sensor with the spectral ratio method, which
utilizes the periodicity of the respiratory signal to ensure that
the breathing signal is not discerned from movement [13].
J. M. Kortelainen et al. used a multichannel bed pressure sen-
sor and estimated the respiratory rate using the first principle
component score of the principle component analysis (PCA)
model applied to the bed sensor signal [14]. S. Nizami et al.
used pressure-sensitive mats [15] and applied a frequency
domain respiration rate estimation algorithm [16]. These
studies focused on extracting a representative respiratory

frequency from the signals of the sensor or on selecting a
sensor from pressure sensor arrays. However, extracting a
representative frequency is difficult to do quickly when there
is a change in breathing pattern, and selecting a sensor means
that the quality of the breathing signal will inevitably dete-
riorate if the selected sensor is affected by body movement.
Moreover, the position and amount of the pressure applied
to the sensor varies over time. Therefore, it is important to
dynamically segment only the region affected by respiration,
rather than to select a sensor.

Clustering is a type of unsupervised learning that finds the
cluster that best represents the given data without labeled
data. There are several algorithms for clustering a given
set of data points. K-means clustering is commonly used
by researchers [17]. It presents the advantage of being fast,
involving only a small amount of computation, but has the
disadvantage of determining the number of clusters in the
initial setting, as the clustering result is strongly dependent
on the choice of number of centroids [18]. Mean-shift clus-
tering is a non-parametric iterative algorithm that tries to
identify dense areas of data points. Unlike k-means, it does
not require prior knowledge of the number of centroids. It has
the advantage of being ideal for handling clusters of arbitrary
shape and number [19]. It iteratively computes the mean
shift until it fulfills a certain convergence condition, and
is limited by the fixed kernel bandwidth. The limitation of
this algorithm is that the value of the bandwidth parameter
is unspecified [20]. Gaussian mixture model clustering is a
probabilistic model based on a Gaussian distribution [21].
It has more flexibility than the k-means model, as it assumes
that the data points are Gaussian distributed. It also presents
the advantage of only requiring a small amount of parameters
to learn [22]. The disadvantage of this algorithm is that the
spatial relationships between the neighboring data points are
not taken into account [23]. The density-based spatial cluster-
ing of applications with noise (DBSCAN) is a density-based
clustered algorithm. It presents several advantages. First,
it does not require prior knowledge specification of the num-
ber of clusters. Second, unlike the mean-shift algorithm,
which classifies outliers onto a cluster, it identifies outliers
as noise. Third, it can find arbitrarily shaped clusters [24].
The disadvantage of this algorithm is that it fails when the
clusters are of varying density [25]. Among these various
clustering methods, we selected the DBSCAN method, since
in order to segment the region related to respiration activity
in the pressure sensor, it is necessary to distinguish noise
from breathing and to separate the pressure distribution that
appears in various forms.

In this paper, we propose a method to measure res-
piration in a position-invariant manner using an unsuper-
vised clustering method combined with a cluster selection
algorithm. The aim of this study was to measure respiration
signals using a mattress sensor configured as a pressure
sensor. To check the feasibility of the proposed method,
we estimated the respiration using a mattress sensor and
measured it using a respiration belt in the lying position.
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We then compared the proposed method with other
methods.

The rest of the paper is organized as follows. Section II
introduces the characteristics of the pressure sensor used and
how to measure breathing using this sensor. In addition, clus-
tering with the cluster selection method and the method for
calculating the respiratory signals are described. Section III
shows the experimental results and evaluation of the proposed
method. In Section IV, the experimental results and feasibility
of the proposed method are discussed. Finally, Section V
concludes this paper.

II. METHODS
In this study, a mattress sensor with a 48 × 48 array
of pressure sensors was used to measure the respira-
tion in a non-invasive way. Micro Force Sensors (MFS)
developed by MiSung Polytech [26] were used as the
pressure sensors. Their structure is shown in Fig. (1a).
A MFS is composed of two symmetrical materials with a
pressure-sensitive layer between them. The contact resistance
of the pressure-reducing layer is used to measure the magni-
tude of the force applied to the pressure sensor. Each sensor
can output a resistance value of 1 K� – 1 M� and can
measure pressure from 0 to 100 kg over a surface of 5× 5mm.
Fig. (1b) shows a pressure sensor in the form of a mattress in a
48× 48 array. The sensor data was taken in two-dimensional
form within a 48 × 48 matrix and the data was sampled
from 14 to 15 Hz. Fig. (1c) shows the experimental environ-
ment. To show that the respiratory rate can be estimated using
a mattress sensor, the mattress sensor was placed under the
subject’s upper body (in a supine position), and the respiration

FIGURE 1. (a) Structure of the Pressure Sensor, (b) Mattress Sensor, and
(c) experimental setup.

was estimated while changing the amount of air supplied by
a ventilator. To compare the respiration signals, they were
simultaneously measured using a respiration belt manufac-
tured by BIOPAC Systems [27].

Fig. 2 shows the flow chart of the proposed method. When
data is acquired from the mattress sensor, the difference is
calculated from the sensor data in the time domain. DBSCAN
clustering is performed to separate data points where pres-
sure changes appear due to breathing. When clustering is
performed, multiple clusters are classified. For each cluster,
a respriation waveform is calculated. By FFT conversion, the
cluster with the highest peak in the respiration frequency band
is selected, and the respiration waveform is finally calculated
by inversely transforming the FFT converted respiratrion
wavefrom of the selected cluster.

A. EXPERIMENTAL SETUP
To show the feasibility of the proposed mattress sensor, the
respiration signals of a person in a supine position were
measured by inserting various input volumes from shallow
breathing to heavy breathing using a ventilator. The respira-
tory activity was recorded independently by a pressure sensor
and a respiration belt. Twomale subjects (Subject 1: age= 29,
BMI = 21.9kg/m2, Subject 2: age = 28, BMI = 23.3kg/m2)
without lung disease were recruited for the experiment, and
gave their informed consent to participate in the experiment.
Before measuring their respiration signals, each subject was
trained to breathe with only the air injected by a ventilator.
The respiration signals were measured for 2 minutes, 5 times
per each subject. All the collected data was used to assess the
performance of the proposed method.

B. MEASURING RESPIRATION WITH A PRESSURE SENSOR
The respiratory process consists of two stages: inhalation
and exhalation. During inhalation, as the intercostal muscles
and diaphragm contract, the volume of the thoracic cav-
ity and abdomen expands. When a person inhales air, the
intercostal muscles contract and expand the volume of the
thoracic cavity, while the diaphragm contracts, causing it to
descend. When the diaphragm descends to widen the thoracic
cavity, the abdominal cavity narrows, causing the abdomen to
swell naturally. During exhalation, the contracted intercostal
muscles and the diaphragm relax and the extended diaphragm
returns to its original dome-shape, causing the volume of the
thoracic cavity to contract [28]. This change in volume of the
thoracic cavity produces a visible outward movement [29].
In a supine position, when a mattress sensor is placed under
the upper body and the person breathes, the change in volume
of the thoracic cavity caused by breathing appears as a change
in pressure on the mattress sensor.

C. UNSUPERVISED CLUSTERING
When measuring breathing using a mattress sensor, move-
ments not related to breathing, such as simple body move-
ments that cause pressure changes, compromise the accuracy
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FIGURE 2. The flow chart of the proposed method.

of the breathing estimation. Therefore, it is important to
isolate the pressure changes caused by breathing in order
to measure the respiration signals from the mattress sensor
accurately. In addition, depending on the lying posture, the
area over which the body contacts themattress sensor changes
and appears random,without a specific form of the areawhere
the pressure related to breathing is transmitted. In this study,
we used the density-based spatial clustering of applications
with noise (DBSCAN) clustering method [30] proposed by
M. Ester to separate the pressure changes related to the respi-
ration. DBSCAN is a density-based clustering algorithm that
finds all types of clusters, effectively distinguishes noise, and
naturally supports spatial databases [31].

The mathematical principle of the DBSCAN algorithm is
as follows. The data set to be processed is defined as D, the
minimum number of objects in the neighborhood is expressed
as MinPts, and the algorithm clustering radius as Eps. If a
particular point p in the data setD is the center of a sphere, the
data contained within the Eps radius at that point is defined
as the Eps neighboring area, which is NEps (p) = {q ∈
D|dist(p, q) ≤ Eps}. Here, dist (p, q) means the Euclidean
distance of data points p and q. If the number of data points
included in the Eps neighborhood of the position of a specific
data point p in the data setD is larger thanMinPts, it is called a
core point.When data points p and q corresponding to data set
D are given, if a core point exists and two points are located
within the radius of the Eps neighborhood of p, then q at p
is expressed as direct density-reachable, which is q∈NEps(p),∣∣NEps(p)∣∣ ≥ MinPts. When data points p1, p2, p3, . . . , pn ∈
D included in data set D are given, and p1 = q and pn = p,
if pi+1 are direct density-reachable at pi, p at q is called
density-reachable.When data points p and q corresponding to
data setD are given, p at q is expressed as density-connected if
a particular data point o ∈ D is density-reachable for p and q.
At initiation, the algorithm starts a search of the Eps region

adjacent to the data point of interest. If enough data points
are around, that is, if more data points than MinPts are given,
the cluster is expanded. If not enough data points are given,
the points are temporarily classified as noise. These points
considered noise may later be found in other Eps neigh-
borhoods, and some of them may be reclassified as part of
the cluster. If a data object in the cluster is designated as a
core, the Eps neighborhood is also classified as part of the
cluster. Therefore, all points in the neighborhood, as well as
the core neighborhood, are added to the cluster. This process

is repeated until the density-connected cluster is completely
determined. Finally, new or unprocessed data is retrieved and
classified into clusters or as noise. The algorithm ends when
all the data in dataset D has been verified. This process is
summarized in Algorithm 1.

Algorithm 1 DBSCAN Algorithm
Input: Dataset D
Output: Cluster
DBSCAN(D,MinPts,Eps)

1: cid← 0
2: for all the UnChecked P in D do
3: set P as Checked
4: N(P)← SearchNeighbour (P,Eps)
5: if length(N(P)) ≥ MinPts
6: cid← cid+ 1
7: ExpandCluster(P,N (P) , cid,MinPts,Eps)
8: else
9: set P as Noise
ExpandCluster(P,N (P) , cid,MinPts,Eps)

1: assign P to cluster cid
2: for all the Q in N (P)

3: if Q is UnChecked
4: set Q as Checked
5: N(Q)← SearchNeighbour (Q,Eps)
6: if length(N(Q)) ≥ MinPts
7: N(P)← N(P) ∪ N(Q)
8: if Q is unassigned to any cluster
9: assign Q to cluster cid

D. RESPIRATION SIGNAL
When using a mattress sensor, respiration signals can be
obtained from the change in volume of the thorax. The expan-
sion and contraction caused by breathing are measured as
pressure changes by the pressure sensor, and these changes in
pressure caused by breathing are measured over time. For the
continuous two-dimensional data obtained from the mattress
sensor, a median filter with a sample window size of 5 was
applied to the time domain to reduce noise. The difference
in time was calculated for each data point to measure only
the pressure changes caused by breathing. This is represented
by (1). The respirationwaveform can be calculated differently
depending on how the time difference is spaced. In this study,
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the respiration waveforms for each time difference were
calculated with representative time differences of 1-sample,
15-sample, and 30-sample intervals. The time difference
interval was 0.067 seconds for one sample, and 1 second and
2 seconds for 15-sample and 30-sample differences, respec-
tively. Given that the normal breathing rate is 12 to 20 times
per minute, the 15-sample time difference corresponds to an
approximation of the quarter period of respiration, and the
30-sample difference to an approximation of the half period.

Dt = Mt −Mt−1 (1)

In this case, Mt refers to the mattress sensor data obtained
at time t, and Dt refers to the two-dimensional data obtained
by calculating the difference between themattress sensor data
at time t and the mattress sensor data at time t− 1. The
data Dt is mapped to three-dimensional coordinate points to
separate the pressure changes related to breathing. This is as
shown in (2).

P = {x, y,Dt=1,...,k (x, y)} (2)

The term P is a set of three-dimensional points, and each
three-dimensional coordinate means Dt (x, y), which calcu-
lates the pressure difference over time on the x, y coordinates,
with the pressure sensors of the x, y coordinates correspond-
ing to the rows and columns of the mattress sensor. Here, k
means the length of themattress sensor data obtained from the
breathing estimation. The DBSCAN algorithmwas applied to
the three-dimensional point set P to separate the data points
related to breathing. This is as shown in (3). To this end,
MinPts and Eps were set to 800 and 3, respectively.

Presp = DBSCAN (P,MinPts,Eps) (3)

The term Presp refers to a set of points corresponding to
the pressure change related to breathing, as separated by the
DBSCAN algorithm. The respiration signal Rt at a specific
time t can be calculated as in (4).

Rt =
∑
{x,y,t}∈Prest

Dt (x, y) (4)

If the length of the mattress sensor data obtained from the
breathing estimation is k, the respiration signal measured by
each mattress sensor forms a time permutation with length k.
In this paper, we define the time permutation of the respiration
signal {Rt }kt=1 as the respiration waveform.

E. CLUSTER SELECTION
When clustering data related to breathing using the clustering
algorithm, a number of clusters are classified. In this paper,
we propose a cluster selection method to find the combina-
tion of clusters that best represent the respiration among the
many classified clusters. The algorithm can be described as
follows. A better respiration signal is selected by comparing
the respiration signal calculated in the first cluster with the
respiration signal calculated in another cluster. Then, each
respiration signal is FFT-converted and the respiration signals
are compared by selecting the larger value of the energy

peaks in the 0.1–1 Hz band corresponding to the respiration
frequency in the power spectrum. The clustering algorithm
repeats the comparison for as many combinations of multiple
clusters that have been separated as respiration, and finally
selects the combination of clusters with the highest peak value
that is, the combination of clusters with the least noise.

III. RESULTS
We measured the respiration signals of a person in a supine
position by inserting various input volumes from shallow
breathing to heavy breathing using a ventilator. In addition,
the clustering algorithm was used to calculate the respira-
tion waveform by separating the respiration-related areas.
To demonstrate the superiority of our proposed method,
we compared the respiratory waveforms of various meth-
ods. First, we extracted respiratory waveform without using
DBSCAN clustering method (RWD). Second, we extracted
respiratory waveform using all the separated clusters using
DBSCAN (RAC). Last, we extracted respiratory waveform
using clusters which was selected from the clustering selec-
tion method (RCS).

A. RESPIRATION WAVEFORM COMPARISON BETWEEN
DIFFERENCE TIME INTERVALS
When calculating the respiration signals using the mattress
sensor, the time difference was calculated for each piece of
data to measure the pressure change caused by breathing.

The respiration waveform was calculated for time differ-
ences of 1 sample, 15 samples (quarter period of normal
breathing), and 30 samples (half period of shallow breathing).
The results are shown in Fig. 2. When the time interval is
a 1-sample difference, when compared with the respiration
waveform of the respiration belt, it can be seen that there is
a lot of noise together with the respiration signal, and that
the respiration pattern is hard to distinguish. When the time
interval is a 15-sample difference, the respiration pattern is
more clearly distinguishable than in the case of a 1-sample
difference. However, the breathing peak is not seen clearly.
With a time interval of 30 samples, it was found that the
respiration waveform was similar to the respiration wave-
form of the respiration belt, and the breathing peak was also
seen most clearly. When the Pearson correlation coefficient
between the respiration waveform of the respiration belt and
the respiration waveform calculated from the time intervals
of 1-sample, 15-sample, and 30-sample differences was cal-
culated, it was sequentially calculated as 0.24, 0.74, and 0.83.
This shows that the respiration waveform at 30 samples is the
most similar to that of the respiration belt, as seen in Fig. 3.

B. RESPIRATION-RELATED REGION SEGMENTATION
The clustering algorithm was applied to separate the noise
from the data related to breathing. Fig. 4 shows the cluster-
ing results of the clustering algorithm two-dimensionally in
10 experimental cases. In Fig. 4, the x and y axes represent
the columns and rows of 48 × 48 sensors. Fig. 4 shows that
respiration-related clusters are distributed at various locations
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FIGURE 3. Respiration waveform comparison between difference time
intervals.

in each case. In all cases, however, the respiration-related
clusters were found to be mainly distributed in areas with
more than 36–48 rows. In Fig. 4, the data classified as noise
were excluded from the display. Fig. 5 shows the results
of the clustering algorithm in three dimensions. In Fig. 5,
each of the x, y, and z axes indicates the values obtained
by calculating the difference between the rows and columns
of the 48 × 48 sensor array, and between the measured
the pressure values and pressure values at 30-sample time
intervals. In Fig. 5, it can be seen that a total of three clus-
ters and noise were separated, and that the position of the
change in the pressure value is not distributed throughout
the 48 × 48 matrix of the pressure sensor, but is clustered
between rows 44 and 48.

Fig. 6 shows the respiration waveforms calculated for each
cluster and the respiration waveforms of the respiration belt.
It presents the values calculated from each cluster and the
respiration belt. Among the data classified as respiration-
related clusters, cluster 3 was calculated to be themost similar
to the respiration waveform of the respiration belt. Next,
it was found that cluster 1 was similar to the respiration
waveform of the respiration belt, while cluster 2 was the most
different from the respiration waveform of the respiration
belt. It was hard to find the respiration pattern in the data
classified as noise. Therefore, it was found that the noise had
been effectively separated by the clustering algorithm. The
Pearson correlation coefficients were calculated as 0.68, 0.52,
and 0.91, respectively, for each cluster number in ascending
order, and as 0.12 for the data classified as noise.

C. EVALUATION OF RESPIRATION WAVEFORMS
In this paper, the respiration waveforms were evaluated by
calculating the Pearson coefficient of correlation between the
respiration waveforms measured using the respiration belt
and the respiration waveforms calculated in all the experi-
mental cases. Table 1 compared the respiration waveforms
extracted from different methods. Table 1 showed that the
Pearson correlation coefficient was the lowest when using
RWD in all cases, while it was the highest when using RCS.

TABLE 1. Evaluation of respiration waveforms generated by different
methods.

Moreover, the means of the Pearson correlation coefficients
were 0.61, 0.76, and 0.88, respectively, showing that the
lowest mean was found for RWD, while the RCS yielded the
highest mean. Fig. 7 shows the linear regression results of
the Pearson correlation values for each method for the input
volume. In the case of the RWD, the slope and offset of the
linear model were 0.299e-4 and 0.323. If the input volume
is low, the Pearson correlation coefficient is low, while if the
input volume is large, the Pearson correlation coefficient is
high. In the case of RAC, the slope and offset of the linear
model were 0.162e-4 and 0.601. This is less affected by
the input volume than when not using clustering. However,
it can be seen that the Pearson correlation coefficients tend
to be small with a small input volume and to be large with
as large input volume. The slope of the linear model was
calculated to be the lowest (0.234e-5) and had the highest
offset 0.852 when using RCS. Compared with other methods,
it was relatively unaffected by the input volume, and the
Pearson correlation coefficient was calculated to be high.

D. EVALUATION OF RESPIRATION RATE
In this paper, the respiration rate was calculated using the
respiration waveforms calculated with each method and was
compared with the respiration rate calculated with the res-
piration belt. Fig. 8 shows the linear regression results for
the respiration rate calculated with each method and the
respiration rate calculated with the respiration belt. In Fig. 8,
RWD exhibits a linear model slope of 0.564 and achieves the
lowest coefficient of determination (0.67), indicating the low-
est agreement with the respiration rate from the respiration
belt. On the other hand, the slope of the linear model of RCS
was 1.031. This method achieved the highest coefficient of
determination (0.99), showing the highest level of agreement
with the respiration rate measured by the respiration belt.
Fig. 9 shows the Bland-Altman plots evaluating systematic
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FIGURE 4. Distribution of the respiration-related clusters using the clustering algorithm.

FIGURE 5. Respiration-related region segmentation using the clustering
algorithm.

FIGURE 6. Respiration waveform comparison between difference clusters.

bias of different methods against ground truth number of
breath. The RWD under estimated the number of breath com-
pared to the respiration belt (bias= −1.50±3.17, 95% limits

of agreement = [−7.72,4.72]). In the case of RAC, the bias
became smaller and had narrower 95% limits of agreement
compared to RWD (bias = −0.60 ± 1.58, 95% limits of
agreement= [−3.69,4.49]). In the case of RCS, RCS had the
smallest bias and narrowest 95% limits of agreement (bias
= −0.10± 0.32, 95% limits of agreement = [−0.72,0.52]).

IV. DISCUSSION
In this study, we segmented the breathing-related regions
that appeared at various locations when measuring breath-
ing using a mattress sensor and a clustering algorithm.
We checked the distribution of clusters in each experimental
case. As a result, it was found that respiration-related clusters
were distributed in regions of different shapes and sizes in
each experiment, and that they were mainly distributed in
rows 36–48, at the edges of the sensor. In this region, the
corresponding body part is the abdominal area. Therefore,
it was found that the pressure sensor mainly detects the
volume change of the abdomen caused by respiration.

In our study, we proposed a method to selectively identify
the clusters most relevant to respiration among those gen-
erated using the DBSCAN algorithm. Consequently, when
employing the cluster selection method, the mean Pearson
correlation coefficient reached its highest value of 0.88,
indicating the ability to accurately calculate the respira-
tion waveform most akin to the reference respiration belt.
As illustrated in Table 1, the RWD method, which does
not utilize clustering, exhibited considerably low correla-
tions. With mean Pearson correlation coefficients of 0.37,
0.12, and 0.33 for Cases 1, 3, and 6, respectively, the RWD
method demonstrated a notable lack of reliability. On the
other hand, the RAC method, which exclusively employed
the DBSCAN clustering technique, yielded higher accuracy
compared to the RWDmethod. The mean Pearson correlation
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FIGURE 7. Pearson correlation comparison of input volume between the different methods.

FIGURE 8. Respiration rate comparison between the different methods.

FIGURE 9. Bland-altman plots evaluating systematic bias of different methods against ground truth (respiration belt).

coefficients for the RAC method were 0.58, 0.62, and 0.57,
respectively, for the corresponding cases. Conversely, the
RCS method, which combined the DBSCAN clustering with
the cluster selection algorithm, exhibited substantial per-
formance improvements. This is evident from the achieved
mean Pearson correlation coefficients of 0.84, 0.75, and 0.84,

respectively, for the aforementioned cases. These results
underscore a significant enhancement in both accuracy and
reliability.

When comparing the method without clustering and the
method using clustering but without the cluster selection
method, the means of the Pearson correlation coefficient
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were 0.61 and 0.76, respectively, showing that the differences
were not statistically significant. This means that the cluster-
ing method partially clusters not only the pressure changes
related to breathing, but also those not related to breathing.
It was found that only the respiration-related pressure changes
were reselected through the cluster selection method. There-
fore, the respiration-related region was well segmented when
using the cluster selection method. It was also found that the
method without clustering and the method using all clusters
were affected by the input volume, while they were least
affected by the various input volumes. This shows that the
cluster-selection method allows us to estimate the respiration
waveform that is most similar to that of the respiration belt.

Recent research using pressure sensors to measure the
respiration activity was mainly focused on extracting a repre-
sentative respiratory frequency from the signals of the sensor
or on selecting a sensor from pressure sensor arrays. The
method of selecting a sensor that best represents breathing
is not appropriate when the breathing pattern changes or the
region to which pressure is applied by breathing changes over
time. In this study, instead of selecting a sensor, clustering
method combined with cluster selection method was applied
to select the cluster that best represents the respiration pattern.
By using this method, it was feasible to measure respiration
by dynamically segmenting the area where pressure is gener-
ated by respiration.

In calculating the respiration waveform in this paper, three
time-intervals (1-, 15-, and 30-sample intervals) were com-
pared to calculate the pressure difference. Because the data
of the mattress sensor was obtained from 14 to 15 Hz, the
15-sample and 30-sample intervals corresponded to about
1 second and about 2 seconds, respectively. Given that the
normal breathing of a person is 12 to 20 times per minute,
one breathing cycle is equivalent to 3 to 5 seconds. Therefore,
we compared 30-sample and 15-sample intervals (2 seconds
and 1 second corresponding to a half period and a quarter
period of shallow breathing). We found that the respiration
waveforms calculated were the most similar to the respiration
waveforms of the respiration belt at 30-sample intervals,
which is the half period of a respiratory cycle.

For the cluster selection, the respiration signal with the
highest peak in the frequency band between 0.1 and 1 Hz
was selected. These frequency bands were selected consid-
ering that the normal breathing frequency is within 0.2 to
0.7 [32]. Frequencies higher than 1 Hz in the frequency band
were regarded as abnormal because it is too fast for normal
breathing, and frequencies below 0.1 Hz were considered as
baseline noise.

The limitation of this study was that only two healthy men
were participated in the experiment to show the feasibility of
the mattress sensor. However, since various groups of people
did not participate in the experiment, only respiration sig-
nal and respiratory rate accuracy according to various input
volumes were provided. The verifications for various groups
of people and applications are in the scope of our future
work. The use of a mattress sensor does have limitations.

If the blanket or mattress is too thick, it may impede the
proper transmission of pressure from the chest during respira-
tion, rendering it impossible to measure breathing accurately
using this sensor. Additionally, the pressure measurement
area of the mattress sensor is limited to 24× 24cm2. If pres-
sure transmission occurs outside this area, it can result in
decreased measurement accuracy. Furthermore, the pressure
measurement range is limited to 0 to 100 kg. Individuals
who exceed this weight limit may also pose challenges for
accurate measurements using the sensor. Additionally, as the
sensor is wired and connected to a computer, it may cause
inconvenience to the user. Developing a wireless version of
the sensor would enhance usability and provide a better user
experience.

V. CONCLUSION
In this paper, a clustering method combined with a cluster
selection algorithm, was proposed to show that human respi-
ration can be estimated using a mattress sensor. The proposed
method was compared with a method of calculation of the
respiration waveform without clustering and a method that
used clustering without using the cluster selection method.
The mean Pearson correlation coefficients calculated were
0.88, 0.76, and 0.61, respectively, showing that the respiration
waveforms calculated by the proposed method were most
similar to those using the respiration belt. The difference
in the correlation coefficients were statistically significant
(p <0.001). In addition, high correlation values were calcu-
lated for the various input volumes without being affected by
the change in input volume, and the respiration rate generated
by the proposed method also showed the greatest accuracy.
Therefore, it was found that the proposed method was a good
choice to estimate human respiration rates accurately using a
mattress sensor.
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