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Abstract: While interest in developing the human microbiome as a biomarker for attention-deficit
hyperactivity disorder (ADHD) is increasing, there has been limited exploration in utilizing urine
samples. In this study, we analysed urine microbiome profiles by extracting 16S ribosomal DNA from
purified bacteria-derived extracellular membrane vesicles obtained from urine samples. Sequencing
libraries were constructed by amplifying V3–V4 hypervariable regions sequenced using Illumina
MiSeq. Profiles of male Korean children and adolescents with ADHD (n = 33) were compared with
healthy sex-matched controls (n = 39). Statistically controlling for age, we found decreased alpha
diversity in the urine bacteria of the ADHD group, as evidenced by reduced Shannon and Simpson
indices (p < 0.05), and significant differences in beta diversity between the two groups (p < 0.001).
The phyla Firmicutes and Actinobacteriota, as well as the genera Ralstonia and Afipia, were relatively
more abundant in the ADHD group. The phylum Proteobacteria and the genera Corynebacterium
and Peptoniphilus were more abundant in the control group. Notably, the genus Afipia exhibited
significant correlations with the Child Behavior Checklist Attention Problems score and DSM-oriented
ADHD subscale. This study is the first to propose the urine microbiome as a potential biomarker for
pediatric ADHD.

Keywords: attention-deficit hyperactivity disorder; ADHD; microbiome; urobiome

1. Introduction

Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental
disorder characterized by inattention, hyperactivity, and impulsivity observed in multiple
environments [1]. ADHD is associated with impairments in academic and social functioning
and is often accompanied by a range of comorbid psychiatric disorders if left untreated [2–4].
The current standard of ADHD screening relies on caregiver and teacher questionnaires, for
which possible subjectiveness or bias cannot be ruled out. Conversely, biomarkers can be
more objective in diagnosis and at the same time serve as potential therapeutic targets [5].
While several potential biomarkers have been suggested, none have reached a high enough
level of evidence for standard clinical usage [6].

Recently, a large number of studies have been exploring the effect of the gut micro-
biome on psychiatric pathology. As such, the potential use of the human microbiome as a
biomarker of various disorders, including mental disorders, is being actively researched.
The microbiota–gut–brain axis is the foundation for bidirectional communication between
the gut microbiota and the central nervous system. The gut microbiome is associated with
various processes such as neuroinflammation, stress axis activation, neurotransmission,
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blood–brain barrier formation, myelination, and microglial maturation [7,8]. Major mecha-
nisms of bottom-up communication between the brain, gut, and gut microbiome include
the neural (operational through direct activation of the enteric nervous system and vagal
afferent nerves), endocrinal (through involvement in the development and regulation of the
hypothalamus–pituitary–adrenal axis), metabolic (by synthesis of neuroactive molecules),
and immune (CNS infiltrating immune cells and systemic inflammation) pathways [9]. Var-
ious alterations in gut microbiota have been found in ADHD patients [10–16], along with
associations between dietary or probiotic intervention, microbiota composition [17–19],
and ADHD-related outcomes, all indicative of possible uses of the human microbiome as a
diagnostic tool or biomarker in this patient population.

However, recent studies utilizing next generation sequencing have revealed that the
human body contains microbiota not limited to the gut, but also within the genitourinary
tract. The urine microbiome, namely “urobiome,” is emerging as an increasingly mean-
ingful branch of the human microbiome, consisting of microorganisms from the lower
urinary tract and genital tract [20]. Most research on the urobiome does not touch on child
psychiatry and is focused on either the adult population or urological diseases [20–24]. It
has previously been found that, in the case of women, 62.5% of intestinal-derived species
and 32% of vaginal-derived species are shared with species in urine [25]. This poses the
possibility of the unclear origin of the urine microbiome being the gut. Following this
idea, Leue et al. reported interrelationship between functional urologic diseases (e.g.,
overactive bladder, interstitial cystitis/bladder pain syndrome, chronic prostatitis/chronic
pelvic pain syndrome) and gastrointestinal disorders and hypothesized the existence of a
“bladder–gut–brain axis” to explain this phenomenon [26]. Accordingly, the forementioned
evidence of altered gut microbiota in those with ADHD opens the possibility of altered
urinary microbiomes as well. In addition, many children with ADHD also experience
urinary problems; for instance, one study found that 28% of individuals with ADHD exhib-
ited lower urinary tract symptoms [27]. In multiple studies, the degree of lower urinary
tract symptoms, including urinary frequency, pressure, urgency, and overactive bladder
syndrome, were significantly higher in patients with ADHD than in healthy individuals.
Further, the symptoms worsened along with increased severity of the ADHD. The incidence
and severity of lower urinary tract symptoms were also significantly higher in younger
children [28].

Regarding psychiatric pathologies, recent studies have indicated that gut microbiota
affects neurotransmitters (e.g., dopamine, norepinephrine, and epinephrine), organic acids,
and metabolite distributions in the urine. Altered gut microbiota affect the integrity of the
gut barrier, leading to variations in the bacterial metabolite absorption and excretion of
neurotransmitter precursors into urine [29]. This may be attributed to varied levels of bac-
terial metabolism within the diagnostic group [10,30–32]. In one previous study regarding
autistic children, many of the metabolite level alterations observed in the blood and urine
were found to be of bacterial origin, including short chain fatty acids (SCFAs), indoles,
and lipopolysaccharides (LPS) [30]. Furthermore, in a study by Xiong et al., combination
therapy using vancomycin and Bifidobacterium led to lessened autistic symptoms, such
as improvement in eye contact and communicative behavior. This therapy resulted in
normalized levels of 3-(3-hydroxyphenyl)-3-hydroxypropionic acid, 3-hydroxyphenylacetic
acid, and 3-hydroxyhippuric acid in the urine, which provides evidence that supports a
possible link between the production of these metabolites within the gut, their presence in
the urine, and the pathology of ASD [33]. Another recent study also suggested significantly
reduced diversity in the urinary microbiome in patients with higher levels of depression
and anxiety [34].

Together, these findings open the discussion of a possible bladder–gut–brain axis
taking part in the pathophysiology of ADHD, integrating the interaction between the
gastrointestinal and urinary tract microbiome to examine the effects the microbiome or
its by-products have on neural processing. Further investigation must be undertaken on
whether this axis could involve the same mechanisms of bidirectional communication via
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neurotransmitter release, immune system stimulation, etc., as the microbiota–gut–brain
axis [21].

As opposed to stool samples, urine samples are more convenient to study because the
collection is relatively simple, causes less aversion for the subjects, and can be efficiently
obtained in large amounts. Moreover, since gram-negative bacteria secrete extracellular
membrane vesicles (EVs) to communicate with human host cells, genetic material derived
from bacteria-derived EVs indicate specific microbiota that are metabolically or pathologi-
cally active [35–37]. Therefore, the microbiota reflected from EVs in urine likely represent
a more significant proportion of the bodily microbiome, as opposed to profiles obtained
from stool samples. Using this method, Lee et al. reported changes in the urine microbiota
of individuals with ASD along with a distinct microbiota profile associated with ASD [38].

The urobiome profiles of patients with ADHD have not been reported to date. To fill
this gap, we investigated whether bacteria-derived EVs in urine are also useful to rapidly
identify microbiota profiles in patients with ADHD. In this study, we investigated and
identified the urobiome profiles of Korean boys with ADHD by comparing them with those
of healthy male controls. Specifically, the urine microbiota of each participant was analyzed
by extracting 16S ribosomal DNA (rDNA) from purified EVs found in urine samples by
using 16S next-generation sequencing (NGS).

2. Materials and Methods
2.1. Subjects and Sample Collection

A total of 33 boys with ADHD were enrolled in the study from January to April
2022 at a child and adolescent psychiatry clinic in a tertiary university hospital in Seoul,
Korea. Inclusion criteria were as follows: (1) an age range from 6 to 16 years; (2) a diagno-
sis of ADHD according to the DSM-V criteria using Mini-International Neuropsychiatric
Interview-Kid (MINI-Kid) [39], which is a structured interview tool for children; (3) an IQ
of 70 or higher, assessed using the Korean-Wechsler Intelligence Scale for Children-Fourth
Edition (K-WISC-IV) [40]; and (4) informed consent provided by both the child and the
caregiver. Exclusion criteria included the presence of significant medical or neurological
diagnoses, a diagnosis of ASD or intellectual disability, or other comorbid psychiatric
disorders; the presence of an alcohol or substance use disorder; the ingestion of pro- or
antibiotics within 2 months prior to study participation; the presence of severe case(s) of
pediatric immune disease (e.g., atopic dermatitis, asthma, etc.) or gastrointestinal disease in
continuous medical treatment; and any specific dietary restrictions (e.g., vegan and vegetar-
ian). The baseline attention problem subscale of the Child Behavior Checklist and ADHD
Rating Scale were used to evaluate the severity of the ADHD symptoms. Sex-matched
controls were enrolled from Seoul National University Hospital with similar exclusion
criteria and informed consent, based on previous literature that the male urobiome does
not change significantly with age [20,24,41,42]. First morning midstream urine samples
were collected from participants for metagenomic analysis. If unavailable, second morning
midstream samples were accepted for collection. Midstream urine (40 mL) was collected
into a clean 50 mL urine container, transferred to a conical tube, and stored at −20 ◦C.

2.2. Bacterial and EV Isolation and DNA Extraction from Clinical Samples

Each urine sample was centrifuged at 10,000× g for 10 min at 4 ◦C, and the supernatant
was passed through a 0.22 µm membrane filter to eliminate any foreign particles and
quantified based on protein concentration. Isolated EVs from each sample (1 µg of protein)
were boiled at 100 ◦C for 40 min and centrifuged at 13,000× g for 30 min. Bacterial DNA
was extracted from the collected supernatants using a DNA extraction kit (PowerSoil DNA
Isolation Kit; MO BIO, Carlsbad, CA, USA) following the manufacturer’s instructions.
Isolated DNA was quantified using the QIAxpert system (QIAGEN, Hilden, Germany).
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2.3. PCR Amplification, Library Construction, and Sequencing of 16S rRNA Gene
Variable Regions

Metagenomic analysis of the 16S rRNA gene amplicon was conducted. It was preferred
over whole genome sequencing because the 16S rRNA gene is universal in bacteria and
can be measured for comparison among all bacteria, while whole genomes of bacteria
are of varying sizes and gene duplication, transfer, deletion, fusion, and splitting are
common [43,44]. Thirty-five cycles of PCR amplification of the V3-V4 hypervariable regions
of the 16S rRNA genes among the prepared bacterial DNA were performed using the primer
set 16S_V3_F (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGC
WGCAG-3′) and 16S_V4_R (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC
TACHVGGGTATCTAATCC-3′) according to MiSeq System guidelines for 16S metagenomic
sequencing library preparation (Illumina Inc., San Diego, CA, USA). PCR products were
used to construct 16S ribosomal RNA (rRNA) gene libraries for each sample, also following
the MiSeq System guidelines. These were then quantified using QIAxpert (QIAGEN,
Germany), pooled at an equimolar ratio, and used for pyrosequencing with the MiSeq
System (Illumina Inc., San Diego, CA, USA) according to the manufacturer’s protocols.
ZymoBIOMICS Microbial Community Standard (Cat # D6300) was used as a positive
control to ensure reliable detection.

2.4. Analysis of Bacterial Composition in the Microbiome

Paired-end 16S rRNA gene sequences were analyzed via Quantitative Insights into
Microbial Ecology (QIIME2 v2021. 4) [34]. Adapter sequences were removed using the
Cutadapt software [45]. Reads were filtered for quality and chimeric reads using DADA2
with manual parameters (trim-left-f 0, trim-left-r 0, trunc-len-f 260, trunc-len-r 200, trunc-q
2, max-ee-f 3, and max-ee-r 3) [46]. Taxonomic classification was assigned using a naïve
Bayes classifier trained on the extracted V3-V4 region from the SILVA 138 database. SILVA
databases have data of 510,984 total sequences including Bacteria, Archaea, and Eukaryota,
making it possible to analyze microbial diversity in various environments with extensive
comprehensiveness. In addition, because SILVA continuously improves and updates their
quality standards, more reliable analysis results are obtainable [47]. All sequences classified
as chloroplasts or mitochondria were removed.

2.5. Statistical Analysis

Demographic characteristics, including age, baseline Child Behavior Checklist (CBCL)
subscale scores, and ADHD-RS scores, were analyzed using SPSS 26.0.0.2. Alpha diversity
metrics were assessed using the phyloseq [48] package of R (version 4.1.0). Each sample
was rarified with the minimum read value to avoid alpha diversity bias. These metrics were
compared based on operational taxonomic units (OTUs), the Chao1 index, Shannon index,
and Simpson index. Values were transformed by taking the natural logarithmic value to
reduce skewness, and ANCOVAs were performed with age as a control factor. Beta diversity
metrics were extracted using the stats package implemented in R. Dimension reduction
was conducted using principal coordinate analysis (PCoA) and multiple dimension scale
(MDS) to assess the beta diversity between clinical samples based on the Bray–Curtis
dissimilarity. Permutational multivariate analysis of variance (PERMANOVA) was used to
validate whether either the centroid or the spread of each sample was different between
the groups. The bacterial composition of each group was compared at the phylum and
genus levels using ANCOVA tests, controlling for age, based on normalized OTU reads of
the taxa. Spearman’s correlation between normalized OUT reads of ADHD-specific taxa,
and baseline CBCL subscale and ADHD-RS scores was performed using SPSS 26.0.0.2. All
statistical analyses were interpreted at a two-sided significance level of 0.05. The study was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the Institutional Review Board of the Gangnam Severance Hospital, Yonsei University
College of Medicine (3-2020-0209).
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3. Results
3.1. Demographic Characteristics

We analyzed urine samples from 72 individuals, including 33 boys with ADHD and
39 healthy adults. Patients with ADHD had a mean age of 9.5 ± 2.5 (range, 6 to 15),
and the healthy individuals had a mean age of 21.4 ± 1.3 (range, 19 to 23). The baseline
CBCL attention problem subscale, DSM-oriented ADHD t-scores, and ADHD-RS scores
of patients with ADHD are displayed in Table 1. According to the best estimate clinician
diagnosis, 84.8% (n = 28) of the participants with ADHD were of the combined presentation,
with the remaining 15.2% being of the predominantly inattentive presentation. Hence, we
decided that the ADHD group was homogeneous enough in ADHD subtypes to continue
analyses as one whole group.

Table 1. Baseline CBCL and ADHD-RS results of ADHD individuals.

Scales Mean ± SD

CBCL
Attention problems subscale a 61.30 ± 7.16

DSM-oriented ADHD subscale a 64.30 ± 11.91
ADHD-RS
Inattention 11.03 ± 5.35

Hyperactivity/impulsivity 10.55 ± 5.18
Total 21.58 ± 9.92

a CBCL subscale t-scores.

3.2. Comparison of Alpha and Beta Diversity between ADHD and Controls

OTUs, Chao1, Shannon, and Simpson indices were calculated to analyze the alpha
diversity of each group. Although the Shannon and Simpson indices showed a significantly
greater number of species and their abundance in the healthy individuals (Shannon index,
p = 0.012; Simpson index, p = 0.046), the Chao1 index and OTUs did not (Figure 1).

Bray–Curtis similarity is a popular ecological metric used to examine the similarity
between two or more samples based on their bacterial composition, indicated by a value
between 0 and 1. The higher the value, the less species they share with each other. The
two-dimensional PCoA plot uses Bray–Curtis similarity between each pair of ADHD and
control samples and compresses the information to two principal components to visualize
beta diversity. The further separated the dots representing each group are, the more
different they are in terms of bacterial community conformation. The 2-dimensional PCoA
plot showed that the two groups had significantly different bacterial communities at the
phylum level and genus level. This pattern was further confirmed by the PERMANOVA
analysis performed (p < 0.001, Figure 2).
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Figure 1. Alpha diversity indices were compared between the ADHD and control group with
ANCOVA, controlling for age. From the left, alpha diversity is compared using Chao1, OTUs,
Shannon, and Simpson indices. The significant difference in Shannon and Simpson indices implies a
greater number and abundance of microbiota in the control group. OTUs and Chao1 did not show
significant differences between groups. p-values are displayed on the top of each plot.
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Figure 2. Two-dimensional PCoA plots based on Bray–Curtis similarities. PERMANOVA was
performed to analyze the difference in distribution on the PCoA plots. (a) Beta diversity at the
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3.3. Relative Microbiota Abundance Differences between ADHD and Controls

Microbial taxonomic analysis was performed to compare the relative abundance
of microbiota between the two groups. Figure 3 displays the bar plots for the relative
abundance of taxa for each group and bar plots based on the average relative abundance at
the phylum level of each group. Equivalent analyses were performed at the genus level
(Figure 4).
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Figure 4. Bar plots of relative abundance of microbes at the genus level. (a) Relative abundance of
all samples and (b) Average relative abundance of microbes in patients with ADHD and healthy
individual groups.

Taxa with significant differences in relative abundance at the phylum and genus levels
were analyzed using ANCOVAs and controlled for age (p < 0.05, Figure 5). The analysis was
performed only for taxa with more than 1% of the total reads. Specifically, at the phylum
level, Firmicutes and Actinobacteriota were more abundant in the ADHD group, whereas
Proteobacteria were more abundant in the control group. At the genus level, Ralstonia and
Afipia were more abundant in the ADHD group, whereas Corynebacterium and Peptoniphilus
were more abundant in the control group.
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3.4. Correlation between Baseline ADHD Symptom Scores and ADHD-Specific Taxa

We performed Spearman’s correlation analysis to examine whether the number, specif-
ically OTU reads, of certain ADHD-specific taxa was related to ADHD symptom severity
(Table 2). Neither Firmicutes or Actinobacteriota correlated with the CBCL attention problem
subscale t-scores. However, at the genus level, Afipia showed a correlation with both the at-
tention problem subscale t-score and DSM-oriented ADHD t-score. None of the ADHD-RS
scores correlated with the abundance of taxa at the phylum or genus level.

Table 2. Correlation between baseline evaluation and normalized OTU reads.

Phylum Level Firmicutes b Actinobacteriota b

CBCL

Attention
0.154 (0.392) 0.138 (0.445)Problems

Subscale a

DSM oriented
0.167 (0.352) 0.157 (0.383)ADHD

Subscale a

ADHD-RS
Inattention −0.057 (0.154) 0.003 (0.987)

Hyperactivity 0.025 (0.889) 0.114 (0.528)
Total −0.016 (0.930) 0.043 (0.813)

Genus level Ralstonia b Afipia b

CBCL

Attention
−0.289 (0.103) 0.427 × (0.013)Problems

Subscale a

DSM

−0.339 (0.054) 0.375 × (0.032)
oriented
ADHD

subscale a

ADHD-RS

Inattention −0.012 (0.947) −0.076 (0.676)
H/I 0.049 (0.786) −0.149 (0.409)
Total 0.015 (0.936) −0.093 (0.607)

a CBCL subscale t-score. b Displayed as r (p-value).
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4. Discussion

The present study examined the microbiome profile of urine obtained from boys with
ADHD by extracting bacterial DNA from bacteria-derived EVs in urine samples. We found
significant differences in the urine microbial abundance and diversity between patients
with ADHD and those of healthy individuals. The urobiota composition was significantly
different in the ADHD group compared with that of the control group. We found a relative
abundance of phylum Firmicutes and Actinobacteriota, along with the genera Ralstonia and
Afipia in boys with ADHD, suggesting the potential use of the urobiome as a biomarker
of ADHD.

4.1. Comparison of Alpha and Beta Diversity between ADHD and Controls

We found decreased alpha diversity in the urine microbiome measured using the
Shannon and Simpson indices from individuals with ADHD, which is consistent with the
results from prior studies on the gut microbiome in ADHD [11,15,17]. However, there
were no differences in the OTU reads or Chao1 index, indicating no statistically significant
difference in the number of species between the two groups. Moreover, we found different
patterns of beta diversity, suggesting that the urine microbial compositions of the two
groups were substantially different. Therefore, decreased alpha diversity can be said to
have resulted from the differences in urine microbiota distribution between the two groups.

Regarding the natural increase in the abundance and diversity of the gut microbiome
with age [49], we cannot rule out that the age differences between the ADHD group (mean
age 9.5 ± 2.5 years) and the healthy group (21.4 ± 1.3 years) may have possibly affected the
composition of the urine microbiomes. To address this possibility, we statistically controlled
for age in our analyses. While there is evidence to suggest that the female urobiome changes
significantly before and after puberty, there is a lack of literature that supports that this is
also true for males [20,24,41,42]. Kassiri et al. reported a similar composition and bacterial
load in the urobiome of prepubertal males compared with those previously reported in
adults [42]. Thus, we considered it reasonable to compare these two groups to identify the
urobiome profiles of individuals with ADHD.

4.2. Relative Microbiota Abundance Differences between ADHD and Controls

We found that at the phylum level, there were higher levels of the phyla Firmicutes
and Actinobacteriota along with a relative deficiency of Proteobacteria in patients with ADHD
compared with healthy individuals. At the genus level, higher levels of genera Ralstonia
and Afipia and a relative deficiency of Corynebacterium and Peptoniphilus were characteristic
of the ADHD group.

While we believe that EVs extracted from urine represent microbiota from a more
variable source of systems [38], it is important to note that the majority of the microbiota in
the body are represented by gut microbiota. Studies comparing stool and urine microbiota
in individuals without ADHD show that 64% of the species identified from the urine
overlap with those identified from stool samples [25]. However, at this stage, there are
inconsistencies in reports comparing gut microbiota composition to urine due to the highly
variable reports of gut microbiota characteristics in ADHD. Such variability may be due
to different sample sizes, inconsistent participant selection criteria, neuropsychological
assessments, unidentified confounding factors (e.g., dietary characteristics), the duration of
the intervention period, and diverse microbiome analysis techniques (e.g., PCR versus 16S
marker gene analysis) [50]. For example, one study found that the abundance of Bacteroides
ovatus and Sutterella stercoricanis in the gut microbiota of individuals were positively cor-
related with ADHD symptoms [17]. However, another study reported elevated levels of
the families Bacteroidaceae and Neisseriaceae in the gut as possible biomarkers for ADHD
and found that the OTU levels of the species Bacteroides correlated with parental ratings of
hyperactivity and impulsivity [11]. Some studies found significant associations between
the order Clostridiales and ADHD, although they differed in which specific genus was
abundant [12–14,16]. In a previous study by Aarts et al., exploring the gut microbiota of
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individuals with ADHD, Actinobacteriota was more abundant in individuals with ADHD,
while Firmicutes was more abundant in controls. Aarts et al. also stated that Bifidobacterium,
a genus of the phylum Actinobacteriota, seemed responsible for the increase in cyclohexadi-
enyl dehydratase (CDT), an enzyme in the phenylalanine (a dopamine precursor) pathway,
in the microbiome of individuals with ADHD. The abundance of CDT was negatively
correlated with reward-anticipation responses across the whole brain [10].

Our results partly agree with the study by Aarts et al., at the phylum level, as Actinoba-
teriota were found to be significantly more abundant in individuals with ADHD. However,
on average, the specific genus Bifidobacterium comprised only 0.05% of the microbiota
of the ADHD group and was found to be significantly lower than that of the controls
(p = 0.002). Our results are also notably different from those of other studies that have
examined the gut microbiome of individuals with ADHD. Since this is the first study to
identify and report urobiome characteristics in individuals with ADHD, these discrepancies
should be analyzed carefully. This may imply that the microbiome of the urine and gut
are substantially different and cannot be compared with each other in the first place, or
that a microbiome from a source other than the gut plays a key role in the characteristic
urobiome of patients with ADHD. Despite the largely varying results among studies on the
microbiome in patients with ADHD, microbiome studies on other neurodevelopmental
disorders, such as ASD, show promising potential in this field, with results from multiple
studies converging to point towards certain microbiota as biomarkers or possible treatment
targets [38,51–56]. Therefore, further studies are necessary to examine the relationship
between the microbiome of other sources (including the gut) and urine for an accurate
insight into this discrepancy and to distinguish a reliable biomarker for ADHD.

4.3. Correlation between Baseline Evaluation Scores and ADHD-Specific Taxa

Our correlation results showed that the abundance of the genus Afipia had significant
correlations with the CBCL attention problems subscale and DSM-oriented ADHD subscale
t-scores, but not with the ADHD-RS scores. Although the ADHD-RS is the current gold
standard questionnaire used to make ADHD diagnoses, the correlation seen in the CBCL
attention problems subscale is still notable. To the best of our knowledge, no previous
studies have determined the effect of the genus Afipia and its function on the central
nervous system. Therefore, we could not exclude the possibility that this genus could play
a pathogenic role in individuals with ADHD. Given that the genus is mainly associated
with infections [57], there is speculative potential for it to affect the immune system, which
may have implications for ADHD-related symptomatology. Further studies using diverse
means to evaluate ADHD symptoms may be useful in identifying additional microbiota
specifically related to symptom severity.

4.4. Limitations

Our study had several limitations. First, we could not obtain an age-matched sample
and thus had to conduct the analyses under the assumption that the urobiome of males
would not change substantially with age, while also statistically controlling for age as a
covariate in our analyses. Our results should be interpreted with care in terms of clinical
implications as it is a limited primary investigation on this topic. Future studies with
direct comparisons between ADHD individuals and their age-matched controls within
each sex are required for a more accurate analysis. Second, we did not control for certain
lifestyles, such as engagement in sexual interests, that may contribute to the microbiome
obtained from midstream urine. While the risk of contamination in midstream urine
samples in men is lower than in women due to anatomic differences [25], the possibility
is still present. Further studies incorporating confidential questions at baseline to take
this factor into consideration could be beneficial. Third, we did not consider the possible
diurnal variation of urinary microbiomes or microbial by-products. Instead, we controlled
for this factor by collecting first or second morning midstream urine only. Fourth, we did
not conduct analyses of the possible functions of each phylum or genus. Therefore, we
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could not define how different microbiome compositions may have contributed to differing
pathways of individuals with ADHD and their pathogenesis. Additional research that
uses more advanced analyses, such as using Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt), would provide further insight into the
bladder–brain axis, and its role in patients with ADHD. Fifth, our study participants were
entirely male, thus our study results should be interpreted with caution when generalizing
to other groups, such as females with ADHD. In this study, we aimed to provide the
best sex-matched analysis possible, as microbial and/or metabolic profiles in the urine
of individuals with ADHD can significantly differ by sex [58,59]. Further study with
the rigorous recruitment of female participants, despite the low prevalence of ADHD in
females [60], is warranted. Finally, our study compared only a small number of individuals
with ADHD and controls. A study with a larger sample size would be beneficial for the
better identification of urobiome profiles.

5. Conclusions

To the best of our knowledge, our study is the first to show that the urobiome of
Korean children with ADHD is significantly different from that of healthy individuals.
We demonstrate that bacteria-derived EVs in the urine can be a reliable source of urine
micro with ADHD from healthy children. Although this portrays the potential use of
urine samples as a biomarker for pediatric ADHD, further research is needed in order to
implement our findings directly to clinical usage.
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