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Abstract

Aims: Objective evaluation of radiation dermatitis is important for analysing the correlation between the severity of radiation dermatitis and dose distribution
in clinical practice and for reliable reporting in clinical trials. We developed a novel radiation dermatitis segmentation system based on convolutional neural
networks (CNNs) to consistently evaluate radiation dermatitis.
Materials and methods: The radiation dermatitis segmentation system is designed to segment the radiation dermatitis occurrence area using skin photographs
and skin-dose distribution. A CNN architecture with a dilated convolution layer and skip connection was designed to estimate the radiation dermatitis area.
Seventy-three skin photographs obtained from patients undergoing radiotherapy were collected for training and testing. The ground truth of radiation
dermatitis segmentation is manually delineated from the skin photograph by an experienced radiation oncologist and medical physicist. We converted the skin
photographs to RGB (red-green-blue) and CIELAB (lightness (L*), red-green (a*) and blue-yellow (b*)) colour information and trained the network to segment
faint and severe radiation dermatitis using three different input combinations: RGB, RGB þ CIELAB (RGBLAB) and RGB þ CIELAB þ skin-dose distribution
(RGBLAB_D). The proposed system was evaluated using the Dice similarity coefficient (DSC), sensitivity, specificity and normalised Matthews correlation co-
efficient (nMCC). A paired t-test was used to compare the results of different segmentation performances.
Results: Optimal data composition was observed in the network trained for radiation dermatitis segmentation using skin photographs and skin-dose distri-
bution. The average DSC, sensitivity, specificity and nMCC values of RGBLAB_D were 0.62, 0.61, 0.91 and 0.77, respectively, in faint radiation dermatitis, and 0.69,
0.78, 0.96 and 0.83, respectively, in severe radiation dermatitis.
Conclusion: Our study showed that CNN-based radiation dermatitis segmentation in skin photographs of patients undergoing radiotherapy can describe ra-
diation dermatitis severity and pattern. Our study could aid in objectifying the radiation dermatitis grading and analysing the reliable correlation between
dosimetric factors and the morphology of radiation dermatitis.
� 2022 The Author(s). Published by Elsevier Ltd on behalf of The Royal College of Radiologists. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Radiation dermatitis is a common side-effect of radio-
therapy manifested through skin changes, such as
erythema, desquamation and ulceration; about 90% of pa-
tients receiving radiotherapy experience acute radiation
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dermatitis [1,2]. Skin toxicities induced by radiation include
cosmetic change, pain, discomfort and risk of infection,
which decrease the quality of life after radiotherapy. More-
over, severe radiation dermatitis can lead to interruption or
premature discontinuation of radiotherapy and have a
potentially negative impact on treatment outcomes [3e5].
Therefore, establishing an accurate correlation between the
dose distribution and the incidence, aswell as the severity, of
radiation dermatitis is important in clinical practice and for
reliable and valid reporting in clinical trials.

The severity of radiation dermatitis is assessed based
on simple grading systems, such as Radiation Therapy
Oncology Group (RTOG) and Common Terminology Criteria
for Adverse Effects (CTCAE) [6,7]. RTOG and CTCAE classify
al College of Radiologists. This is an open access article under the CC BY-NC-
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the degree of radiation dermatitis from faint to severe by
observing skin changes induced due to irradiation, such as
pigmentation, erythema, desquamation, ulceration and
necrosis. Grading through visual inspection of radiation
dermatitis is a common method of evaluating radiation
dermatitis. However, this method entails a risk of subjective
interpretation by individual evaluators.

Various methods have been proposed to reduce the
variability in radiation dermatitis grading through visual
inspection. Creating and utilising a radiation dermatitis
grading atlas by collecting radiation dermatitis photographs
can make radiation dermatitis grading more consistent
[8,9]. However, the accuracy and reliability of radiation
dermatitis grading may be compromised because of sub-
jective interpretations through visual inspection by indi-
vidual evaluators.

Skin photographs obtained frompatients who underwent
radiotherapy are an important factor in objectifying the ra-
diation dermatitis grading based on visual inspection.
Colorimetric features, such as RGB (red-green-blue) and
CIELAB (lightness (L*), red-green (a*) and blue-yellow (b*)),
are important factors in identifying erythema and pigmen-
tation in skin photographs [10e13]. Accordingly, researchers
have attempted to quantify the grading process of radiation
dermatitis based on the colour features in skin photographs
in recent years [14e16]. An efficient and objective radiation
dermatitis grading system is lacking despite the efforts to
quantify the scoring system for severe radiation dermatitis.
The radiation dermatitis grade obtained based on the colour
features in skin photographs is expressed as a single
numeric number that cannot contain information about the
heterogeneity in the severity of radiation dermatitis in a
patient [12,17]. Moreover, various dosimetric indices repre-
sent the important risk factors associated with the severity
of radiation dermatitis [4,18e21]. However, the correlation
between skin-dose distribution and radiation dermatitis
based on morphology has not been established. Thus, the
shape of radiation dermatitis should be described quanti-
tatively in addition to the objectification of radiation
dermatitis grading to establish the correlation between the
spatial distribution of dosimetric factors and radiation
dermatitis.

The aim of this study was to develop a radiation
dermatitis segmentation system using a convolutional
neural network (CNN) in skin photographs of patients un-
dergoing radiotherapy. To the best of our knowledge, we are
the first to attempt the segmentation of the occurrence and
morphology of radiation dermatitis in the photographs of
patients based on severity. The proposed deep-learning
segmentation system segments and identifies the area of
radiation dermatitis into two different levels (from faint to
severe) based on the CTCAE grading system, using patient
skin photographs and skin-dose distribution. Our study
demonstrates the application of radiation dermatitis seg-
mentation as a new scale for objectively grading and clas-
sifying radiation dermatitis with heterogeneity in the
irradiated area of patient’s skin. Furthermore, the quantifi-
cation of the radiation dermatitis occurrence area makes it
possible to determine the skin-dose distribution that
directly coincides with the area afflicted by radiation
dermatitis. This can be a major step in determining the
normal tissue complication probability (NTCP) based on
skin-dose distribution.
Materials and Methods

The radiation dermatitis segmentation system is illus-
trated in Figure 1. In our study, the proposed CNN was
trained to segment radiation dermatitis into two different
labels: faint radiation dermatitis (CTCAE ¼ 1) and severe
radiation dermatitis (CTCAE � 2). The dataset for devel-
oping the proposed system consists of colorimetric and
dosimetric features obtained from skin photography and
treatment planning data, respectively, of patients who have
received radiotherapy. The colorimetric features were
extracted from skin photographs to RGB and CIELAB to
provide detailed information of skin photographs to CNN.
Treatment planning data were used to generate skin-dose
distribution maps representing the spatial information of
skin dose. The collected dataset was preprocessed to
standardise the shape of the training dataset. The pre-
processed dataset was split into training and test data via
stratified random sampling to maintain the balance be-
tween radiation dermatitis labels. The performance of the
developed system was evaluated after training using
combinations of three different input data: RGB, RGB þ
CIELAB and RGB þ CIELAB þ skin-dose distribution.
Data Acquisition and Preprocessing

We retrospectively collected skin photographs of pa-
tients who underwent radiotherapy at our institute be-
tween September 2020 and February 2021. These included
head and neck, breast and thoracic cancer patients. Patients
were treated with either volumetric-modulated radio-
therapy or three-dimensional conformal radiotherapy. The
prescribed doses of the radiotherapy ranged from 28.8 to 70
Gy in 15e33 fractions. All patients were given daily frac-
tions of 2e3 Gy. This study was approved by the institu-
tional review board at the Yongin Severance Hospital, and
all procedures were carried out in accordance with relevant
guidelines and regulations. Our study was based on a re-
view of retrospective charts of patients who developed ra-
diation dermatitis due to radiotherapy. An informed
consent waiver was obtained from Yongin Severance Hos-
pital (9-2020-0163) because of the retrospective nature of
the study and the use of anonymised data.

Photographs of skin affected by radiation dermatitis
were obtained using a three-dimensional camera (Intel
RealSense Depth Camera D435i, Intel, Santa Clara, CA, USA)
that could simultaneously scan colour and depth informa-
tion [22]. The radiation dermatitis was segmented into two
different labels to evaluate the shape and severity of radi-
ation dermatitis symptoms based on the CTCAE scoring
result: faint (grade 1) and severe (�grade 2) symptoms.



Fig 1. Schematic diagram of the proposed model. The skin photograph and skin-dose distribution map are used to develop the radiation
dermatitis segmentation system. The ground truth of radiation dermatitis segmentation is manually delineated from the skin photograph by an
experienced radiation oncologist and medical physicists. The skin-dose distribution is registered with skin surface data obtained from a three-
dimensional camera and converted into a two-dimensional image. The skin background region in the radiation dermatitis training data is
removed based on labels of normal skin followed by image preprocessing. The proposed convolutional neural network for segmenting radiation
dermatitis is trained using three different radiation dermatitis training input datasets.
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Radiation dermatitis was delineated manually by an expe-
rienced radiation oncologist and medical physicists with
the assistance of a graph-cut algorithm implemented in the
MATLAB Image Segmenter. Visual changes due to the
development of patch moist desquamation are the main
criterion for defining the severe radiation dermatitis label.
Skin photographs obtained from the radiotherapy patients
who did not develop radiation dermatitis at data acquisition
(CTCAE grade 0) were included in the dataset as no-label
images.

Radiation dermatitis skin photographs were used in two
different colour spaces, RGB and CIELAB, in our study based
on the analysis of the significant correlation between L*, a*,
and b* values and the severity of radiation dermatitis in past
studies [14,15,23]. Skin photographs are captured in the RGB
colour space with an 8-bit range of [0,255] and converted
into the 1976 CIELAB colour space [24]. The pixel values of
L*, a* and b* maps are represented as [0,100], [e128,127]
and [e128,127] ranges, respectively.

A skin-dose distribution map was generated based on
the treatment planning file and used as a supplementary
input in the CNN for radiation dermatitis segmentation. The
final dose distribution was calculated by a collapsed cone
convolution algorithm (RaySearch Laboratories AB, Stock-
holm, Sweden) with a dose grid of 2 mm � 2 mm � 2 mm.
We obtained the dose distribution from 2 mm under
the external body contour using the calculated dose of
the treatment planning system (TPS) and radiotherapy
structure set file. The three-dimensional skin-dose distri-
bution obtained from the external body contour was
converted into a point cloud array consisting of the position
and intensity values of the dose pixels. The skin depth in-
formation of the region of interest was extracted from
the patient’s skin photograph obtained with a three-
dimensional camera. The surface registration between the
skin-dose distribution and the patient skin photograph was
carried out using the iterative closest point algorithm under
the tolerance condition of 0.5 mm and with a maximum of
1000 iterations. The point-to-point iterative closest point
algorithm provided byMATLAB Version 2020bwas used for
surface registration. Then, the dose distribution corre-
sponding to the skin depth information was projected onto
the plane of the two-dimensional depth image tomatch the
skin area of the RGB photographs. A ray-tracing algorithm
was applied to two-dimensional projection based on the
intrinsic matrix of the three-dimensional camera [25].

Data preprocessing included background removal, nor-
malisation and image cropping. Background removal was
carried out to prevent CNNs from training non-skin areas
such as clothes, band-aids and immobilisation devices. The
background region was delineated manually and its pixel
values were set to zero in both colour and dose images. The
colour maps of the skin photography were normalised from
the full range of each colour space: [0,255] for RGB, [0,100]
for L* and [e128,128] for a*b* to the range [0,1] after back-
ground removal. Moreover, the pixel values of the skin-dose
distribution map were converted into the equivalent doses
in 2 Gy fractions (EQD2) with an a/b of 10 Gy [26] to correct
for the difference in fractionation regimen. The converted
skin dose was truncated into a prescription dose range of
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5e60 Gy and divided by 60 Gy to normalise the values in the
interval [0,1]. The normalised dose (D) map was converted
to accumulated dose (AD) up to the time of skin photograph
acquisition according to the equation, AD ¼ D � NDelivered/
NTotal. Here, D is the normalised dose; NDelivered and NTotal
are the number of delivered and total fractions, respectively.
All radiation dermatitis data were cropped to 256 � 256
pixels and concatenated as multiple input channels for
training the CNN. The number of trainable parameters of
the proposed CNN are described in Supplementary Table S1.
CNN for Radiation Dermatitis Segmentation

We developed a two-dimensional CNN architecture to
train the radiation dermatitis dataset, as shown in Figure 2.
This work was inspired by the DeepLab-v3 with atrous
spatial pyramid pooling [27]. The first layer calculated the
3 � 3 convolutions with the same number of filters as the
input channels. The output of the first layer was downscaled
by one-quarter using the 3 � 3 convolutions with stride 2,
and it was passed through several convolution blocks, fol-
lowed by batch normalisation and a rectified linear unit. Our
network included five convolution blocks consisting of three
parallel 3� 3 convolution layerswith the same filter size but
different dilated factors, from one to three, for training ra-
diation dermatitis features from various field sizes. The
output features of the convolution layers were concatenated
Fig 2. Architecture of the proposed convolutional neural network. The d v
number of input channels for three different networks, RGB, RGBLAB an
convolution layers with a distinct dilated factor r. All 3 � 3 and 1 �1 convo
The last 1 � 1 convolution layer reduced the depth of the feature map i
without the batch normalisation and rectified linear unit. RGB, red-gree
lightness (L*), red-green (a*) and blue-yellow (b*)); RGBLAB_D, RGB þ CIE
and then refined using a 1 � 1 convolution layer in each
block. After the convolution blocks, feature upsampling was
carried out via 2 � 2 transpose convolution to restore the
image resolution to that of the input. Softmax activationwas
applied as the last layer of the model after reducing the
channel size into 3 by utilising 1�1 convolution. The model
detected the pixel that was classified as faint radiation
dermatitis and severe radiation dermatitis using pixel-wise
probability from three output channels. We carried out the
conditional random field [28] operation for post-processing
the network output to refine the segmentation output using
contextual information between labels. The use of condi-
tional random fields could eliminate small incorrect labels
and smooth label outlines (Supplementary Figure S1). Some
features in the network were copied and reused through the
skip connection shown in Figure 2 to improve the perfor-
mance of the network within a limited number of extracted
features.
Network Training

The dataset used in the study included 73 skin photo-
graphs, comprising 37 faint radiation dermatitis (50.7%), 29
severe radiation dermatitis (39.7%) and seven no-label
(9.6%) images. The dataset was divided into training and
test datasets with a ratio of 6:4 using the stratified random
sampling method based on the presence of faint/severe
alue represents the depth of the feature map and input depth d0 is the
d RGBLAB_D. The convolution block consisted of three 3 � 3 dilated
lutions were followed by batch normalisation and rectified linear unit.
nto three channels for network output and activated using Softmax
n-blue colour space; RGBLAB, RGB þ CIELAB (CIELAB dimensions of
LAB þ skin-dose distribution.
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radiation dermatitis. The training dataset consisted of 23
faint radiation dermatitis, 29 severe radiation dermatitis
and four no-label images; we carried out data augmenta-
tion techniques to avoid network overfitting due to small
datasets. We carried out random rotation from 0 to 20 de-
grees and vertical or horizontal flips on the dataset during
network training.

Our network was trained with three combinations of
input data: RGB (three channels), RGB þ CIELAB (RGBLAB,
six channels) and RGB þ CIELAB þ skin-dose (RGBLAB_D,
seven channels). The first 3� 3 convolution layer possessed
the optimal filter size that could be adjusted to fit the input
channels 3, 6 and 7. The number of trainable parameters in
each input condition is summarised in Supplementary Table
S1. Network training was conducted using 10-fold cross-
validation for the training dataset to generalise the perfor-
mance of the networks trained on the small dataset. The
generalised Dice loss [29] was used as an objective function
for network training with multi-class output and was
minimised using the Adam optimiser [30] with an initial
learning rate of 1e-4. All networks were trained up to 200
epochs with early stopping to avoid overfitting. The
network architecture was implemented using PyTorch li-
brary version 1.6.0 (Cuda 10.1) on NVIDIA RTX 2060 GPU.

Evaluation Metrics

The performance of the proposed three networks was
evaluated in terms of the Dice similarity coefficient (DSC),
sensitivity, specificity and normalised Matthews correlation
coefficient (nMCC). The values of the three metrics were
computed using the pixel-based confusion matrix with the
following equations, where a value of one indicates a per-
fect overlap between ground truth and network output:

DSC ¼ 2� TP
2� TP þ FP þ FN

(1)

Sensitivity ¼ TP
TP þ FN

(2)

Specificity ¼ TN
TN þ FP

(3)
nMCC ¼ 1
2
ð1þMCCÞ ¼ 1

2

 
1þ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

!
(4)
where true positive (TP) and true negative (TN) are the
numbers of pixels correctly diagnosed as positive and
negative, respectively, and false positive (FP) and false
negative (FN) are the number of pixels incorrectly diag-
nosed as positive and negative, respectively (see
Supplementary Table S2). The confusion matrix was calcu-
lated for pixels located within the patient skin area and
network performance was evaluated for segmentation la-
bels of faint and severe radiation dermatitis. A paired t-test
was used to compare the segmentation performance dif-
ference of DSC, sensitivity, specificity and nMCC. Statistical
significance was defined as P < 0.05.
Results

The DSC, sensitivity, specificity and nMCC values were
calculated for the faint and severe radiation dermatitis la-
bels, the results for which are summarised in Tables 1 and 2.
The network was tested using 28 images, comprising 14
faint radiation dermatitis, 11 severe radiation dermatitis
and three no-label. The average DSC, sensitivity, specificity
and nMCC values of the RGBLAB_D network (i.e. 0.62, 0.61,
0.91 and 0.77, respectively) were higher than those of the
RGB (i.e. 0.50, 0.56, 0.85 and 0.70, respectively) and the
RGBLAB (i.e. 0.52, 0.60, 0.84 and 0.70, respectively) net-
works in the faint radiation dermatitis segmentation.
Moreover, in the severe radiation dermatitis segmentation,
the average DSC, sensitivity, specificity and nMCC values of
the RGBLAB_D (i.e. 0.69, 0.78, 0.96 and 0.83, respectively)
network were higher than those of the RGB (i.e. 0.40, 0.41,
0.94 and 0.70, respectively) and RGBLAB (i.e. 0.44, 0.39, 0.96
and 0.72, respectively) networks. The RGBLAB_D network
showed a statistically significant difference in DSC and
nMCC than other networks in both faint and severe radia-
tion dermatitis segmentation and achieved the best per-
formance in severe radiation dermatitis segmentation (P <

0.001). The RGBLAB network showed a similar or improved
performance in faint and severe radiation dermatitis seg-
mentation compared with RGB. Representative images of
radiation dermatitis segmentation for three different net-
works are presented in Figure 3. The confusion matrix
calculated for the model evaluation was normalised by the
number of pixels in the ground truth label, as illustrated in
Figure 4.
Discussion

This study aimed to develop an image-based radiation
dermatitis assessment system using CNN. The primary
strength of our study was that radiation dermatitis can be
objectively graded and heterogeneous radiation dermatitis
can be evaluated in terms of morphology by segmenting the
radiation dermatitis occurrence area based on severity us-
ing skin photographs of patients who have received radio-
therapy. Hence, we can improve the reliability and validity
of radiation dermatitis grading and explain the correlation
between skin-dose distribution and the occurrence of



Table 1
Comparison of segmentation performance of the trained networks on faint and severe radiation dermatitis

Networks Faint radiation dermatitis (CTCAE grade ¼ 1) Severe radiation dermatitis (CTCAE grade � 2)

DSC Se Sp nMCC DSC Se Sp nMCC

RGB 0.50 � 0.21 0.56 � 0.25 0.85 � 0.13 0.70 � 0.11 0.40 � 0.22 0.41 � 0.29 0.94 � 0.06 0.70 � 0.11
RGBLAB 0.52 � 0.22 0.60 � 0.27 0.84 � 0.14 0.70 � 0.13 0.44 � 0.24 0.39 � 0.26 0.96 � 0.04 0.72 � 0.11
RGBLAB_D 0.62 � 0.21 0.61 � 0.25 0.91 � 0.12 0.77 � 0.11 0.69 � 0.21 0.78 � 0.28 0.96 � 0.04 0.83 � 0.10

CTCAE, Common Terminology Criteria for Adverse Effects; DSC, Dice similarity coefficient; nMCC, normalised Matthews correlation coef-
ficient; RGB, red-green-blue colour space; RGBLAB, RGB þ CIELAB (CIELAB dimensions of lightness (L*), red-green (a*) and blue-yellow (b*)
values); RGBLAB_D, RGB þ CIELAB þ skin-dose distribution; Se, sensitivity; Sp, specificity.
All values are represented as mean � standard deviation and the best results are highlighted in bold.

Table 2
P values for the comparison of different segmentation methods

Networks Faint radiation dermatitis (CTCAE grade ¼ 1) Severe radiation dermatitis (CTCAE grade � 2)

DSC Se Sp nMCC DSC Se Sp nMCC

RGB versus RGBLAB 0.33 0.003 0.22 0.69 <0.001 0.30 0.07 0.28
RGB versus RGBLAB_D <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.06 <0.001
RGBLAB versus RGBLAB_D <0.001 0.78 <0.001 <0.001 <0.001 <0.001 0.71 <0.001

CTCAE, Common Terminology Criteria for Adverse Effects; DSC, Dice similarity coefficient; nMCC, normalised Matthews correlation coef-
ficient; RGB, red-green-blue colour space; RGBLAB, RGB þ CIELAB (CIELAB dimensions of lightness (L*), red-green (a*) and blue-yellow (b*)
values); RGBLAB_D, RGB þ CIELAB þ skin-dose distribution; Se, sensitivity; Sp, specificity.
Statistically significant results (P < 0.05) are highlighted in bold.

Fig 3. Representative images of radiation dermatitis segmentation. (a) Input data (skin photograph), (b) ground truth of radiation dermatitis
segmentation, (c)e(e) segmentation output of RGB, RGBLAB and RGBLAB_D. The white contour denotes faint radiation dermatitis (CTCAE grade
¼ 1) and green contours denote severe radiation dermatitis (CTCAE grade � 2). RGB, red-green-blue colour space; RGBLAB, RGB þ CIELAB
(CIELAB dimensions of lightness (L*), red-green (a*) and blue-yellow (b*)); RGBLAB_D, RGB þ CIELAB þ skin-dose distribution.
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radiation dermatitis. Our findings demonstrate that the
RGBLAB_D network can delineate both faint and severe
radiation dermatitis based on skin photographic images. To
the best of our knowledge, this is the first study to assess the
severity and distribution of radiation dermatitis simulta-
neously for grading radiation dermatitis.

Some previous researchers have used quantitative ap-
proaches using corneometry, Doppler flowmetry and



Fig 4. Confusion matrices of (a) RGB network, (b) RGBLAB network and (c) RGBLAB_D network. The numbers in squares are the pixel ratios
classified to each label and normalised using the number of the true labels. RGB, red-green-blue colour space; RGBLAB, RGB þ CIELAB (CIELAB
dimensions of lightness (L*), red-green (a*) and blue-yellow (b*) values); RGBLAB_D, RGB þ CIELAB þ skin-dose distribution.
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spectrophotometry to provide an objective assessment of
radiation dermatitis [31e35]. However, these methods
need to overcome certain limitations to completely replace
the conventional grading systems based on visual inspec-
tion. Most devices utilised for detecting skin changes have
a small field of view. Therefore, these devices require a long
time to measure the entire radiation dermatitis area.
Moreover, a few devices require contact with the radiation
dermatitis area, inflicting pain on patients during mea-
surement. Therefore, photograph-based radiation derma-
titis grading is preferred for assessing radiation dermatitis
for daily treatment schedules in clinics. Hence, our
approach of using skin photography for radiation derma-
titis grading provides reproducible and objective scales for
evaluating radiation dermatitis and easy applicability in
clinical practice.

In our study, we used a CNN to segment two different
areas based on faint or severe radiation dermatitis in skin
photographs obtained from radiation dermatitis patients
(Figure 3). We used skin photographs to quantify the radi-
ation dermatitis grading systems because the change in skin
colour is a major factor in radiation dermatitis grading. A
study using CNNs to classify radiation dermatitis according
to the CTCAE grading system has been reported recently
[17,36]. However, CNNs were not used to segment the ra-
diation dermatitis area from skin photographs of radiation
dermatitis patients, based on severity. Moreover, the
occurrence of radiation dermatitis was not assessed in
terms of morphology and distribution, and radiation
dermatitis with varying severities were still identified un-
der a single numerical grade. The results of our study show
that a CNN can be applied to develop a radiation dermatitis
segmentation system based on skin photography (Table 1).

The DSC values of the RGBLAB networkwere greater than
those of the RGB. This shows that using CIELAB colorimetry
is beneficial for detecting the radiation dermatitis area. The
L*, a*, and b* ratios of skin photograph have been used to
assess the severity of radiation dermatitis in past studies
[10e12,23]. This is consistent with our observations that
show improved segmentation using CIELAB colour infor-
mation in the network input.

Skin-dose information is an important factor for
improving the proposed radiation dermatitis segmentation
system. We extracted the skin-dose distribution map from
the calculated dose of the TPS and applied it for network
training to analyse the relationship between skin dose and
radiation dermatitis severity. Therefore, RGBLAB_D exhibi-
ted statistically significantly higher values in all evaluation
metrics among the CNNs trained by three different datasets.
Although skin-dose information is a relevant factor for ra-
diation dermatitis segmentation, the skin-dose distribution
consistent with the radiation dermatitis area may differ
from patient to patient (see Supplementary Figure S2).
Therefore, the radiation dermatitis segmentation perfor-
mance can be improved when skin-dose distribution and
colour features are used together. The radiation dermatitis-
related skin-dose distribution map can be generated using a
three-dimensional camera and treatment planning data. In
a previous study, the mean deviation of the registration
between the skin photograph and skin-dose distribution
was within 0.3 mm on all axes [25].

Although various dosimetric factors have been used as
predictive indicators of the incidence and severity of radi-
ation dermatitis [4,20,21], the correlation between the
shape of radiation dermatitis and the skin-dose distribution
has not yet been studied. As the conventional radiation
dermatitis grading system cannot describe the spatial dis-
tribution of radiation dermatitis severity, the correlation
between dose distribution and the shape of radiation
dermatitis could not be analysed. Therefore, assessing the
morphology of radiation dermatitis development quanti-
tatively is necessary. Our study can be used to evaluate skin
toxicity in terms of morphology as well as objective grading
of radiation dermatitis.

The segmentation of radiation dermatitis can impact
future research on predicting skin tissue complications
post-radiotherapy. The dose-response curve for an organ at
risk is plotted using the NTCP model based on the single
variable summarising the dose-volume histogram [37].
Recent studies have encouraged parameter optimisation for
the NTCP model based on the differences in treatment
technique and clinical environment [38,39]. However, NTCP
optimisation using a single dosimetric variable may be less
reliable in modern radiotherapy techniques, leading to
inhomogeneous distribution of the degree of severity in the
radiation dermatitis area [40,41]. The proposed system can
provide detailed information about the shape of radiation
dermatitis grading and skin-dose distribution. Hence, the
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proposed system can be suitable for developing NTCP and
other predictive models for radiation dermatitis with high
reliability.

Our study had several limitations. First, the patients’ skin
photographs were taken in the treatment room under the
same illuminance conditions, but may be under non-ideal
illuminance conditions. Studies for developing photograph-
based assessment systems have highlighted that image
acquisition should be carefully carried out under normal-
ised exposure conditions [17,42]. However, we obtained the
skin photographs of radiation dermatitis patients without
considering the environmental factors that affect image
quality. Therefore, the segmentation performance of the
proposed system can be increased by acquiring skin pho-
tographs under a controlled environment with constant
illuminance, exposure and colour correction. Second, our
findings were based on a limited number of radiation
dermatitis photographs from a single institution. Data
augmentation and early stopping were applied to reduce
the risk of overfitting the model. We also generated CNN
that are less complex than well-known architectures such
as U-net [43,44]. This approach was effective for developing
the radiation dermatitis segmentation model and showed
similar performance with U-net trained using the fine-
tuning technique (see Supplementary Table S3). Neverthe-
less, it still has the potential to overfit the model, or at least
cause suboptimal weights. Moreover, we segmented the
radiation dermatitis based on merely two grades, namely,
faint and severe, because our dataset comprised small cases
of radiation dermatitis that were insufficient for identifying
the radiation dermatitis using the entire scale of traditional
grading systems. Therefore, further research on large data
from various patients is necessary for not only developing a
comprehensive radiation dermatitis grading system but
also for achieving the trade-off between the accuracy and
the robustness of the model. Finally, although the use of
three-dimensional cameras in radiotherapy treatment
procedures, including surface-guided radiotherapy, has
recently increased, the complexity of the method proposed
in this study can potentially limit the use of this technique
in clinical practice. Furthermore, the spatial accuracy of
three-dimensional cameras and the registration accuracy of
the skin-dose distribution may affect the performance of
the CNN model, which has not been addressed in the cur-
rent study.
Conclusions

We propose a radiation dermatitis segmentation system
based on a deep-learning CNN. The results of our study
showed that radiation dermatitis severity and pattern
can be determined using skin photographs of patients
undergoing radiotherapy. The use of skin-dose information
can help increase the accuracy of the network for radiation
dermatitis segmentation and assess the correlation be-
tween dose distribution and radiation dermatitis severity.
Our proposed approach using severity and radiation
dermatitis occurrence domain to objectify radiation
dermatitis assessment improves the reliability and validity
of the radiation dermatitis grading system. However, the
results need to be interpreted with caution given the
limitations of this study.
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