
Citation: Kim, M.H.; Shin, H.J.; Kim,

J.; Jo, S.; Kim, E.-K.; Park, Y.S.; Kyong,

T. Novel Risks of Unfavorable

Corticosteroid Response in Patients

with Mild-to-Moderate COVID-19

Identified Using Artificial

Intelligence-Assisted Analysis of

Chest Radiographs. J. Clin. Med. 2023,

12, 5852. https://doi.org/10.3390/

jcm12185852

Academic Editors: Danilo Buonsenso

and Sukhwinder Singh Sohal

Received: 27 July 2023

Revised: 25 August 2023

Accepted: 6 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Novel Risks of Unfavorable Corticosteroid Response in Patients
with Mild-to-Moderate COVID-19 Identified Using Artificial
Intelligence-Assisted Analysis of Chest Radiographs
Min Hyung Kim 1 , Hyun Joo Shin 2,3 , Jaewoong Kim 4,5 , Sunhee Jo 4 , Eun-Kyung Kim 2,3 ,
Yoon Soo Park 1 and Taeyoung Kyong 4,*

1 Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei
University College of Medicine, Yongin-si 16995, Republic of Korea; mhkim16@yuhs.ac (M.H.K.);
ysparkok2@yuhs.ac (Y.S.P.)

2 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data
Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea;
lamer-22@yuhs.ac (H.J.S.); ekkim@yuhs.ac (E.-K.K.)

3 Center for Digital Health, Yongin Severance Hospital, Yonsei University College of Medicine,
Yongin-si 16995, Republic of Korea

4 Department of Hospital Medicine, Yongin Severance Hospital, Yonsei University College of Medicine,
Yongin-si 16995, Republic of Korea; martins00@yuhs.ac (J.K.); xxshjo@yuhs.ac (S.J.)

5 Department of Biomedical Systems Informatics, Yonsei University College of Medicine,
Seoul 03722, Republic of Korea

* Correspondence: imdrkty@yuhs.ac; Tel.: +82-10-9079-6995

Abstract: The prediction of corticosteroid responses in coronavirus disease 2019 (COVID-19) pa-
tients is crucial in clinical practice, and exploring the role of artificial intelligence (AI)-assisted
analysis of chest radiographs (CXR) is warranted. This retrospective case–control study involving
mild-to-moderate COVID-19 patients treated with corticosteroids was conducted from 4 Septem-
ber 2021, to 30 August 2022. The primary endpoint of the study was corticosteroid responsive-
ness, defined as the advancement of two or more of the eight-categories-ordinal scale. Serial
abnormality scores for consolidation and pleural effusion on CXR were obtained using a com-
mercial AI-based software based on days from the onset of symptoms. Amongst the 258 partic-
ipants included in the analysis, 147 (57%) were male. Multivariable logistic regression analysis
revealed that high pleural effusion score at 6–9 days from onset of symptoms (adjusted odds ra-
tio of (aOR): 1.022, 95% confidence interval (CI): 1.003–1.042, p = 0.020) and consolidation scores
up to 9 days from onset of symptoms (0–2 days: aOR: 1.025, 95% CI: 1.006–1.045, p = 0.010;
3–5 days: aOR: 1.03 95% CI: 1.011–1.051, p = 0.002; 6–9 days: aOR; 1.052, 95% CI: 1.015–1.089,
p = 0.005) were associated with an unfavorable corticosteroid response. AI-generated scores could
help intervene in the use of corticosteroids in COVID-19 patients who would not benefit from them.

Keywords: artificial intelligence; chest radiograph; corticosteroid responsiveness; COVID-19

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19,
a pandemic that has affected the lives of 766 million individuals worldwide [1]. Efforts
have been made to mitigate the detrimental effect of this disease, and corticosteroids, a
type of immune modulator, have played a pivotal role in reducing mortality rates, as
demonstrated in large-scale randomized controlled trials [2–5]. The mechanism involved
in steroid responsiveness lies in its ability to reduce hyperimmune activation triggered
by SARS-CoV-2 [6,7]. However, determining and predicting the treatment response to
corticosteroids is complicated, making it challenging to identify individuals who will
benefit the most from this therapy. These difficulties led to the establishment of criteria
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for escalating immunomodulator therapy based solely on clinical observation of hypoxia
exacerbation [8]. To avoid cases refractory to corticosteroids or rebound phenomena during
steroid reduction or after discontinuation, additional methods for predicting corticosteroid
responsiveness are required [2,9,10].

The pathophysiologic mechanism of tissue tropism of SARS-CoV-2 through angiotensin-
converting enzyme 2 receptor, which damages alveolar epithelial and capillary endothelial
cells by an immune reaction, suggests that imaging modality could be used to predict
the prognosis of COVID-19 patients [11–13]. A study by Liang et al. highlighted the
utility of a scoring system that includes a chest radiograph (CXR) as a factor to predict
the prognosis of COVID-19 patients [14], while D’Cruz et al. presented opposing views
regarding its role [15]. The discrepant results might stem from the absence of standardized
measurements of CXR findings that are precise and can be quantified.

The shortcomings of imaging modalities are expected to be averted with the help
of deep learning algorithms applied to chest imaging. The role of artificial intelligence
(AI)-assisted algorithms in diagnosing and predicting the prognosis of COVID-19 has
been widely tested and validated recently [16–19]. Further usage of this technology in
identifying COVID-19 patients with unfavorable corticosteroid response by monitoring
AI-based changes in CXR findings is anticipated and deserves further investigation.

Our institution introduced an AI-assisted CXR imaging technology tested and vali-
dated in other studies [20–22]. This software helps to detect various lesions and provides
an abnormality score for each CXR a patient had taken. We aimed to navigate the utility of
an AI-generated CXR abnormality (AI-CXR) score in predicting the outcome of patients
hospitalized for COVID-19 and treated with corticosteroids.

2. Materials and Methods
2.1. Study Design and Population

This retrospective case–control study was conducted in a university-affiliated, 500-bed
hospital in South Korea. We enrolled mild-to-moderate COVID-19 patients treated with
corticosteroids from 4 September 2021, to 30 August 2022. This institution was designated
to provide care for mild-to-moderate COVID-19 patients who need hospitalization. Patients
whose condition deteriorated and required mechanical ventilation were transferred to other
hospitals dedicated to taking care of critically ill patients. Hospitalized patients were
treated according to the National Institutes of Health’s COVID-19 Treatment Guidelines [8],
except in the early phase of the pandemic when proper treatment guidelines had not been
established. Corticosteroids were the most commonly prescribed drugs in the early phase
of the pandemic due to easy accessibility in healthcare settings. Enrolled patients were
followed up until discharge, and the last follow-up date of the last patient was 6 October
2022. Patients were enrolled according to the following criteria: (1) hospitalized with acute
COVID-19 infection confirmed using real-time polymerase chain reaction tests and (2) a
history of corticosteroid use of an equivalent dose of dexamethasone 6 mg or less during
the SARS-CoV-2 infection regardless of type or date of initiation.

Any patient meeting the following conditions was excluded from the study: (1) under
the age of 19 years; (2) without CXR results; and (3) corticosteroid use exceeding an
equivalent dose of dexamethasone 6 mg.

The primary endpoint of corticosteroid unresponsiveness was defined as a deteriora-
tion of the patient’s condition manifested by the advancement of two or more in the World
Health Organization eight-categories-ordinal scale (Table S1) at the time of discharge, or no
improvement of a condition if the patient was initially categorized in the 5th category or
worse at the time of COVID-19 confirmation.

2.2. Data Collection

The data of participants were collected retrospectively by reviewing electronic medi-
cal records. Age, sex, underlying condition (diabetes mellitus (DM), chronic obstructive
pulmonary disease (COPD), history of myocardial infarction, chronic heart failure, periph-
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eral vascular disease, chronic kidney disease (CKD), chronic liver disease, malignancy
of solid organs, leukemia, lymphoma, cerebral vascular disease, dementia, connective
tissue disease, peptic ulcer disease, hemiplegia, or human immunodeficiency virus infec-
tion), Charlson comorbidity index (CCI), and immunocompromised status determined
by Centers for Disease Control and Prevention criteria [23] were recorded. Treatment,
history of vaccination, types, and duration of antiviral agents, antibacterial agents, and
corticosteroids were reviewed. Laboratory values such as white blood cell count (WBC
(103/µL), platelet count (103/µL), lymphocyte percentage (%), C-reactive protein (CRP,
mg/L), D-dimer (mcgFEU/mL), Interleukin (IL)-6 (pg/mL), albumin (g/dL), and pro-
calcitonin (PCT, ng/mL) were collected. CXR results were procured as described under
the next subheading. CXR and laboratory results were chosen based on the date of onset
of symptoms to assess the response according to the course of the disease. Serial results
were obtained according to the following categories: (1) 0: 0–2 days from the event; (2) 1:
3–5 days from the event; (3) 2: 6–9 days from the event; and (4) 3: more than 10 days from
the event. A single result in each category was included in the analysis.

2.3. AI-Based CXR Results

All CXRs were obtained in anteroposterior projection in each patient’s room, as man-
dated by hospital policy for patients with highly contagious diseases. A commercially
available AI-based lesion detection software (Lunit INSIGHT CXR, version 3, Lunit Inc.,
Seoul, Republic of Korea) was used to obtain the AI-CXR score of lung lesions. This
software used certified convoluted neural network architecture in its development and
is capable of detecting a total of eight lesions on CXRs, including pulmonary nodule,
consolidation, pneumothorax, fibrosis, atelectasis, cardiomegaly, pleural effusion, and
pneumoperitoneum [24,25]. Since consolidation and pleural effusion were known to be
associated with COVID-19 pneumonia, we extracted consolidation and pleural effusion
AI-CXR scores from the AI server, which were integrated into all CXRs taken throughout
hospitalization. The abnormality score by the AI software is presented as a percentage
ranging from 0 to 100%, which indicates the AI-decided probability of CXR having the
lesion. Our hospital used a cutoff value of 15% for the abnormality score to decide the
presence of the lesion according to vendors and another study [26]. Using this cutoff value,
this software determines that the lesion is present on the CXR and displays a contour map
along with the abnormality score as described in Figure S1.

2.4. Statistical Analysis

Participants with favorable and unfavorable corticosteroid responsiveness were com-
pared. Baseline characteristics were compared using Mann–Whitney U test, independent
samples t-test for continuous variables, and χ2 test or Fisher’s exact test for categorical
variables. Continuous variables are expressed as means ± standard deviation, or medians
(interquartile ranges) and categorical variables as numbers with percentages for the de-
scription of baseline characteristics. A generalized estimating equation model with logit
links was used to analyze whether repeated-measured CXR results and laboratory data
influenced the primary outcome. Univariate and multivariate logistic regression tests were
performed to determine the change in the performance of the fitted model for each time cat-
egory. Covariates for the multivariable logistic model were chosen based on p-value < 0.05
in a univariate analysis and clinical significance. Additionally, subgroup analysis involving
patients with hypoxia and categorized according to the date of COVID-19 confirmation
was conducted using a model that included AI-CXR score as a predictor. The association of
the AI-CXR score with other biomarkers was estimated using linear regression analysis. A
p-value < 0.05 was considered statistically significant. Cases with missing values in any
category were excluded from the analysis. The prediction accuracy of the AI-CXR score
was assessed using the area under the receiver operating characteristic (ROC) curve. For
the statistical analysis, we used R (version 4.2.2, Foundation for Statistical Computing,
Vienna, Austria) and SPSS (version 26.0, IBM Corp., Armonk, NY, USA).
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3. Results
3.1. Baseline Characteristics

Of the 752 COVID-19 patients hospitalized during the study period, 274 received
corticosteroid treatment. Among them, 13 who exceeded the dose of dexamethasone 6 mg
were excluded. Additionally, three patients were excluded due to lack of CXR results. As
a result, 258 participants were included in the analysis with 52 being classified as having
an unfavorable response and 206 as having a favorable response to corticosteroid therapy
(Figure 1). The average age of participants was 64.21 ± 18.88 years, with 147 (57.0%) being
male. Among those who were enrolled, 76 (29.5%) patients had DM, 7 (2.7%) had CKD, and
42 (16.3%) had a malignancy. As for the patient allocation, 51 (19.8%) were transferred due
to deteriorating conditions and 1 (0.4%) patient died. Patients with unfavorable corticos-
teroid response were older (69.67± 16.52 vs. 62.83± 19.19, p < 0.01), had higher CCI values
(1.5 [0–4] vs. 1 [0–2], p < 0.01), and had a greater proportion of those with immunocompro-
mised status (17 (32.7%) vs. 27 (13.1%), p < 0.01) than patients with favorable corticosteroid
response. The vaccination rate did not differ between the two groups (21 (43.8%) vs. 97
(50.3%), p = 0.11); however, a higher proportion of patients with unfavorable responses
received antiviral (40 (76.9%) vs. 112 (54.4%), p < 0.01) and antibacterial treatments (50
(96.2%) vs. 151 (73.3%), p < 0.01). Most patients were treated with dexamethasone (243/258,
94.2%), with three participants (3/206, 1.5%) in the favorable response group receiving less
than the equivalent dose of dexamethasone 6 mg (Table 1).
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Table 1. Baseline characteristics of the hospitalized COVID-19 patients treated with corticosteroids.

Total Unfavorable * (n = 52) Favorable
(n = 206) p-Value

Age (years) 64.21 ± 18.88 69.67 ± 16.52 62.83 ± 19.19 <0.001
Sex (male), n (%) 147 (57.0) 42 (80.8) 105 (51.0) <0.001

Re-infection, n (%) 2 (0.8) 0 (0.0) 2 (1.0) 0.371 †

Comorbidities, n (%)
DM 76 (29.5) 17 (32.7) 59 (28.6) 0.220

COPD 19 (7.4) 4 (7.7) 15 (7.3) 0.882 †

CHF 16 (6.2) 3 (5.8) 13 (6.3) 0.873 †

CKD 7 (2.7) 2 (3.8) 5 (2.4) 0.243 †

Chronic liver Dz. 5 (1.9) 1 (1.9) 4 (1.9) 1.00 †

Malignancy 42 (16.3) 14 (26.9) 28 (13.6) <0.001
CCI 1 [0–3] 1.5 [0–4] 1 [0–2] <0.001

Immunocompromised,
n (%) 44 (17.1) 17 (32.7) 27 (13.1) <0.001

Outcomes
Condition at discharge,

n (%) <0.001

Normal discharge 205 (79.4) 0 (0.0) 205 (99.5)
Transfer 51 (19.8) 51 (98.1) 0 (0.0)
Death 1 (0.4) 1 (1.9) 0 (0.0)
Others 1 (0.4) 0 (0.0) 1 (0.5)

Hospital days 8 [6–12] 4 [1–11.75] 8 [6–12] <0.001
Treatments

Oxygen requirements,
n (%) <0.001

None 99 (38.4) 0 (0.0) 99 (48.1)
Low-flow oxygen 101 (39.1) 3 (5.8) 98 (47.6)
High-flow oxygen 55 (21.3) 46 (88.5) 9 (4.4)

Mechanical ventilation 3 (1.2) 3 (5.8) 0 (0.0)
Monoclonal antibody, n

(%) 10 (3.9) 0 (0.0) 10 (4.9) <0.001

Tocilizumab, n (%) 0 (0.0) 0 (0.0) 0 (0.0)
Antiviral agents, n (%) 152 (58.9) 40 (76.9) 112 (54.4) <0.001

Remdesivir 146 (96.1) 39 (97.5) 107 (95.5)
Nirmatrevir/lopinavir 3 (2.0) 1 (2.5) 2 (1.8)

Molnuprevir 3 (2.0) 0 (0.0) 3 (2.7)
Antibacterial agents, n

(%) 201 (77.9) 50 (96.2) 151 (73.3) <0.001

Vaccination, n (%) 118 (49.0) 21(43.8) 97 (50.3) 0.115
Primary vaccination 97 (82.2) 20 (95.2) 77 (79.4)

Booster 21 (17.8) 1(4.8) 20 (20.6)
Corticosteroid

Treatment
Types, n (%) 1.000

Dexamethasone 243 (94.2) 51 (98.1) 192 (93.2)
Methylprednisolone 8 (3.1) 1 (1.9) 7 (3.4)

Prednisolone 4 (1.5) 0 (0.0) 4 (1.9)
Hydrocortisone 3 (1.1) 0 (0.0) 3 (1.4)

Doses, n (%) 0.300
6 mg equivalent 255 (98.5) 52 (100.0) 203 (98.5)

less 3 (1.2) 0 (0.0) 3 (1.5)
Days of steroid

initiation ‡ 4 [2–7] 3 [2–6] 4 [2–7] 0.271

Treatment duration 5 [4–8] 3 [1.25–8] 6 [4–8] 0.350

Data are expressed as mean ± standard deviation, median [Q1–Q3], or number with percentages. Abbreviations:
DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; CHF, chronic heart failure; CKD, chronic
kidney disease; Dz., disease; CCI, Charlson comorbidity index. * Unfavorable corticosteroid responsiveness was
defined as either advancement of two or more of the eight-categories-ordinal scale established by the World
Health Organization or no improvement from the initial 5th or worse category. † p-value was calculated using
Fisher’s exact test; ‡ Days between steroid initiation and COVID-19 confirmation.
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3.2. AI-CXR Score as a Factor Associated with Unfavorable Corticosteroid Response

The pleural effusion score in category 2 (adjusted odds ratio (aOR) 1.022, 95% confi-
dence interval (CI) 1.003–1.042, p = 0.02) and consolidation score in category 0–2 (category
0: aOR 1.025, 95% CI 1.006–1.045, p = 0.01; category 1: aOR 1.03 95% CI 1.011–1.051, p < 0.01;
category 2: aOR 1.052, 95% CI 1.015–1.089, p < 0.01) were associated with an unfavorable
outcome (Table 2). A box plot of the AI-CXR score according to the endpoint and time
category is shown in Figure S2. The prediction accuracy of the AI-CXR score was estimated
using ROC curve analysis. The area under the curve for consolidation score ranged from
0.739 to 0.855 and that of pleural effusion ranged from 0.692 to 0.809 and, hence, has a
significant power to predict the outcome of unfavorable corticosteroid response (Figure 2).

Table 2. Association of artificial intelligence-generated chest radiograph abnormality score with
unfavorable corticosteroid response according to time category.

Variables
Univariate Multivariable

OR * (95% CI) p-Value aOR † (95% CI) p-Value

Total
Consolidation score (%) 1.030 (1.017–1.042) <0.001 1.022 (1.010–1.035) <0.001

Pleural effusion score (%) 1.020 (1.009–1.032) 0.001 1.013 (1.001–1.026) 0.040

Category 0 ‡ Consolidation score (%) 1.025 (1.011–1.039) <0.001 1.025 (1.006–1.045) 0.010
Pleural effusion score (%) 1.016 (0.999–1.033) 0.068 1.003 (0.984–1.021) 0.780

Category 1 § Consolidation score (%) 1.035 (1.018–1.053) <0.001 1.03 (1.011–1.051) 0.002
Pleural effusion score (%) 1.020 (1.004–1.035) 0.013 1.017 (0.999–1.035) 0.070

Category 2 ‖
Consolidation score (%) 1.057 (1.022–1.093) 0.001 1.052 (1.015–1.089) 0.005

Pleural effusion score (%) 1.025 (1.010–1.040) 0.001 1.022 (1.003–1.042) 0.020

Category 3 ¶ Consolidation score (%) 1.058 (1.006–1.113) 0.028 1.033 (0.988–1.080) 0.158
Pleural effusion score (%) 1.022 (1.006–1.039) 0.006 1.003 (0.979–1.027) 0.809

Values with statistical significance of p < 0.05 were presented with bold type. Abbreviations: OR, odds ratio; aOR,
adjusted odds ratio; CI, confidence interval. * OR was calculated using a generalized estimating equation for all
measurements involved or logistic regression analysis in categorical measurements. † aOR was adjusted for age,
sex, Charlson comorbidity index, immune status, vaccination status, antiviral agent usage, and antibacterial agent
usage. ‡ 0–2 days from the onset of symptoms. § 3–5 days from the onset of symptoms. ‖ 6–9 days from the onset
of symptoms. ¶ More than 10 days from the onset of symptoms.
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score were drawn according to time category. Abbreviations: CAT 0: category 0, 0–2 days from the
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under the curve.
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The results of the subgroup analysis involving patients with conditions of concern
are presented in Figures S3 and S4. Consolidation scores remained relevant in predicting
corticosteroid responsiveness in patients with hypoxia and patients diagnosed in the Delta
variant-dominant period. Pleural effusion score was associated with the outcome in the
Omicron variant-dominant period.

3.3. Association between AI-CXR Scores and Other Laboratory Tests Correlated with Unfavorable
Corticosteroid Response

High CRP level was associated with unfavorable corticosteroid response across all time
categories. Low lymphocyte percentages also differed between unfavorable and favorable
corticosteroid response groups, but only in category 2 (aOR 0.914, 95% CI 0.851–0.982,
p = 0.01) and category 3 (aOR 0.857, 95% CI 0.752–0.970, p = 0.02) in grouping (Table S2).
The differences in values between the two groups are presented in Table S3.

Regarding variables that had a linear correlation with the AI-CXR score, CRP, albumin,
and lymphocyte percentage showed a close correlation across all time categories with
both consolidation and pleural effusion scores. The extent of correlation is expressed as a
parameter estimate (Table 3).

Table 3. The relationship of artificial intelligence-generated chest radiograph abnormality score with
other laboratory variables.

Variables
Consolidation Score Pleural Effusion Score

Parameter
Estimate t p-Value Parameter

Estimate t p-Value

Category 0 * WBC (103/µL) 1.27 1.70 0.09 0.803 1.69 0.09
PLT (103/µL) 0.01 0.22 0.82 0.07 3.01 <0.01

Lymphocyte (%) −0.23 −0.61 0.54 −0.12 −0.49 0.63
CRP (mg/L) 0.15 2.5 0.01 0.10 2.66 <0.01

Albumin (g/dL) −27.77 −5.87 <0.01 −7.05 −2.2 0.03
IL-6 (pg/mL) 0.72 1.32 0.24 0.00 0 0.99

D-dimer (mcgFEU/mL) 1.71 1.08 0.28 0.37 0.36 0.72
Procalcitonin (ng/mL) 2.02 1.88 0.07 1.49 1.99 0.054

Category 1 † WBC (103/µL) 2.46 2.65 <0.01 3.09 6.57 <0.01
PLT (103/µL) −0.01 −0.17 0.87 0.06 3.00 <0.01

Lymphocyte (%) −1.12 −4 <0.01 −0.46 −2.92 <0.01
CRP (mg/L) 0.21 4.75 <0.01 0.08 3.09 <0.01

Albumin (g/dL) −24.59 −4.74 <0.01 −13.41 −4.69 <0.01
IL-6 (pg/mL) 0.01 0.21 0.83 0.01 5.88 <0.01

D-dimer (mcgFEU/mL) 6.84 1.41 0.17 4.25 1.38 0.17
Procalcitonin (ng/mL) 5.12 1.67 0.11 3.82 1.67 0.11

Category 2 ‡ WBC (103/µL) 1.42 2.11 0.04 1.02 2.17 0.03
PLT (103/µL) −0.001 −0.03 0.97 0.01 0.41 0.68

Lymphocyte (%) −1.26 −6.61 <0.01 −0.33 −2.19 0.03
CRP (mg/L) 0.20 4.57 <0.01 0.08 3.09 0.27

Albumin (g/dL) −16.08 −3.33 <0.01 −18.61 −5.83 <0.01
IL-6 (pg/mL) 0.02 1.34 0.20 −0.01 −0.53 0.60

D-dimer (mcgFEU/mL) 8.93 1.09 0.29 1.75 0.35 0.73
Procalcitonin (ng/mL) 0.23 1.03 0.31 −0.11 −0.40 0.69

Category 3 § WBC (103/µL) 1.16 1.69 0.09 −0.19 −0.38 0.70
PLT (103/µL) −0.01 −0.26 0.80 −0.04 −2.76 <0.01

Lymphocyte (%) −0.67 −2.49 0.01 −0.31 −1.61 0.11
CRP (mg/L) 0.08 1.79 0.08 0.07 2.11 0.04

Albumin (g/dL) −17.19 −3.41 <0.01 −10.72 −2.80 <0.01
IL-6 (pg/mL) 0.34 2.80 0.03 −0.14 −0.38 0.72

D-dimer (mcgFEU/mL) 8.06 0.93 0.36 4.47 0.67 0.68
Procalcitonin (ng/mL) −2.86 −0.19 0.85 4.45 0.42 0.68

The extent of association was presented as a parameter estimate, which was calculated using a linear regression.
Values with statistical significance of p < 0.05 were presented with bold type. Abbreviations: WBC, white blood
cell count; PLT, platelet count; CRP, c-reactive protein; IL-6, interleukin six; NA, not applicable. * 0–2 days from
the symptom onset. † 3–5 days from the symptom onset. ‡ 6–9 days from the symptom onset. § More than 10 days
from the symptom onset.
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4. Discussion

The findings of this study suggested that AI-based software applied to CXR could
predict treatment response by utilizing previously underrecognized factors. The abnormal-
ity scores of pleural effusion and consolidation, generated by a commercially available AI
software, demonstrated good predictive performance for corticosteroid responsiveness in
COVID-19 patients. The positive correlation between AI-CXR scores and other biomarkers
associated with an unfavorable response suggested the reliability of this technology.

To select patients who would benefit the most from corticosteroid treatment, risk
factors associated with adverse outcomes need to be investigated. Previous studies have
focused on laboratory results and underlying conditions instead of imaging findings. Mu-
rakami et al. proposed severe respiratory failure and high-soluble IL-2 receptor, lactate
dehydrogenase, and CRP levels as factors associated with adverse outcomes [27]. A study
using deep learning algorithms in predicting corticosteroid responsiveness also included
laboratory results such as lymphocyte percentage, PCT, and tumor necrosis factor α, IL-1β,
IL-2 receptor, IL-6, IL-8, IL-10, and CRP levels [28]. Our study is different from these studies
in that we attempted to use CXR imaging as the main tool for outcome prediction. Consid-
ering the pathogenesis of COVID-19 and the mechanism of action of corticosteroids, the
use of an imaging modality is the better option for assessing corticosteroid responsiveness.
Our study shows that quantified scores presented by AI systems could be used to predict
corticosteroid responsiveness.

The efficacy of corticosteroids is dependent on their ability to reduce cytokines by sup-
pressing inflammatory cells involved in adaptive immunity. This would prevent alveolar
damage triggered by the reaction, which is likely to be detected by the imaging modal-
ity [29–34]. Recent studies involving AI-assisted image analysis shed light on the utilization
of the technique in diagnosing and predicting the prognosis of COVID-19 by quantifying
opacification of the alveolar system or interstitial tissue and precise localization with aug-
mentation [19,35]. These characteristics enable the implementation of a simple imaging
modality such as CXR in a setting where a complex imaging technique is unavailable due
to the high risk of disease exposure. In this study, we showed that quantified scores indicat-
ing the probability, based on a simple modality as CXR, can be used to identify patients
with poor responses. Since consolidation is a frequently observed finding in COVID-19-
associated pneumonia, typically appearing around 6–7 days after the onset of symptoms, it
is understandable that there is an association between the consolidation score within 10
days after the onset of symptoms and the treatment outcome [36]. This is also consistent
with the recent report of an association of between the extent of pneumonia in CXR and
poor outcomes [13]. Notably, the gap in pleural effusion score widened approximately a
week after symptom onset, when viral replication usually phases out with hyper-immune
activation phasing in. Pleural effusion is not directly associated in COVID-19; however,
it could be associated with hyper-immune activation such as multi-system inflammatory
syndrome through endothelial damage [37,38]. Our study presents tangible evidence of
the proposed mechanism of corticosteroid action. Therefore, we can interpret our finding
as an aberrant immune reaction expressed as consolidation at an early stage that led to
pleural effusion at a later stage that could not be slowed down through corticosteroid ad-
ministration, resulting in poor treatment response. Considering that disease progression is
associated with hyperimmune activation, patients with consolidation at approximately one
week from the onset of symptoms and unimproved pleural effusion should be considered
for preliminary therapy with other immune-modulating agents.

Our results indicate that AI-CXR scores linearly correlated with other biomarkers
associated with unfavorable outcomes. This would help resolve questions related to AI and
its implementation in clinical practice. Consistent with previously identified prognostic
factors of COVID-19 [27,39,40], CRP level and lymphocyte percentage were associated with
unfavorable treatment responses in this analysis. AI-CXR scores had a linear correlation
with high CRP, low lymphocyte percentages, and low albumin levels. The association
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between high AI-CXR scores to these variables suggests that AI-CXR scores can be used to
describe disease severity.

AI-CXR scores showed a similar significance in subgroup analysis including only
patients who required oxygen therapy, except for pleural effusions score in category 2.
This might be attributed to the small sample size. Further studies with a larger number of
participants are required to verify whether the AI-CXR score can be reliably applied to those
who need corticosteroid treatment as the current guidelines stipulate. AI-CXR scores had a
significant effect on the outcome in both the Delta and Omicron variant-dominant periods.
In South Korea, the Omicron variant gained dominance by the first week of January 2022.
It is noteworthy that different CXR findings were significant in terms of corticosteroid
responsiveness during each period. In the Delta variant-dominant period, consolidation
scores were associated with unfavorable corticosteroid response, while pleural effusion
scores predicted it in the Omicron variant-dominant period. The Omicron variant is known
for atypical presentation on chest CT compared to the Delta variant, despite its reduced
virulence [41]. This might indicate that the Omicron strain could still be a threat to patients
with weakened immune systems by replication of similar pathophysiologic damage to a
patient’s respiratory system. Application of AI-CXR scores to other pathogenic organisms
is expected.

This study has some limitations. First, most of the patients in the unfavorable group
had been transferred due to critical conditions; therefore, their outcomes are not known,
and thus, the results of the unfavorable group may have been overestimated. Second,
because of the retrospective design and small sample size, missing values in laboratory
and CXR tests could have affected the statistical power of this study. However, we believe
our results are important because we obtained statistical significance when we excluded
the missing data due to early transfer or discharge from the analysis instead of using
data imputation. Third, the diagnostic accuracy of AI-based software was not evaluated
according to the radiologists’ reports or CT scans because this was out of the scope of our
study. However, this software is already well-known for its high diagnostic performance in
other studies [42,43] and we attempted to investigate the robustness of the AI-CXR score by
examining the correlation with other biomarkers instead. Fourth, we used scores showing
the possibility of the presence of the lesions presented by AI for the analysis. It is debatable
whether abnormality scores presented by AI can constitute an absolute quantitative value
to represent disease extent or severity, unlike other quantitative imaging markers, due to
the undefinable characteristics of AI itself. However, we assumed that increased area or
opacity on CXR could increase the possibility of prediction by AI and decided to set this
value for monitoring treatment response throughout this study.

5. Conclusions

This study demonstrated a negative correlation between corticosteroid response and
AI-generated pleural effusion scores obtained approximately a week later, as well as
consolidation scores during the early stage of the onset of symptoms. Patients with signs
of poor response should be considered for pre-treatment with other immune-modulating
agents. Further validation of the technology involving patients with different disease
entities is warranted.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jcm12185852/s1, Table S1: Eight-categories-ordinal scale of
the World Health Organization; Table S2: Association of laboratory tests with unfavorable corticos-
teroid response according to time category; Table S3: The differences in laboratory values according
to corticosteroid responsiveness; Figure S1: Examples of artificial intelligence-generated abnormality
scores incorporated in patients’ chest radiographs; Figure S2: Differences in artificial intelligence-
generated chest radiograph scores according to corticosteroid responsiveness and time category;
Figure S3: Association between consolidation score and unfavorable corticosteroid responsiveness
according to the time category and subgroup; Figure S4: Association between pleural effusion
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score and unfavorable corticosteroid responsiveness according to the time category and subgroups.
Reference [44] is cited in Supplementary Materials.

Author Contributions: Conceptualization: M.H.K. and T.K.; Data curation: J.K. and H.J.S.; Formal
analysis: J.K. and M.H.K.; Funding acquisition: T.K.; Investigation: M.H.K. and T.K.; Methodology:
M.H.K., J.K. and T.K.; Project administration: M.H.K., H.J.S. and T.K.; Resources: J.K., H.J.S. and
S.J.; Software: J.K. and H.J.S.; Supervision: T.K.; Validation: M.H.K. and T.K.; Visualization: J.K.,
H.J.S. and M.H.K.; Writing—original draft: M.H.K. and H.J.S.; Writing—review and editing: M.H.K.,
E.-K.K., Y.S.P. and T.K. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by a faculty research grant from Yonsei University College of
Medicine (6-2022-0083).

Institutional Review Board Statement: This study was approved by the Institutional Review Board
of Yonsei University Health System Clinical Trial Centre, and the study protocol adhered to the tenets
of the Declaration of Helsinki (approval number 9-2022-0187, approved on 27 January 2022).

Informed Consent Statement: As this was a retrospective study, the Institutional Review Board
waived the requirement for written informed consent from the participants.

Data Availability Statement: The dataset supporting the conclusions of this article is included within
supplemental data (raw data used in the analysis).

Acknowledgments: We would like to thank all of the nursing staff as well as the physicians who
supported this project. We credit all of the patients who took part in this study. Finally, we thank
Medical Illustration and Design, a member of the Medical Research Support Services of Yonsei
University College of Medicine, for providing excellent support with medical illustration.

Conflicts of Interest: The authors declare that they have no competing interests.

Abbreviations

SARS-CoV-2 devere acute respiratory syndrome coronavirus-2
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