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Application of error classification 
model using indices based on dose 
distribution for characteristics 
evaluation of multileaf collimator 
position errors
Heesoon Sheen 1,5, Han‑Back Shin 2,3,5, Hojae Kim 4, Changhwan Kim 3, Jihun Kim 3, 
Jin Sung Kim 3 & Chae‑Seon Hong 3*

This study aims to evaluate the specific characteristics of various multileaf collimator (MLC) position 
errors that are correlated with the indices using dose distribution. The dose distribution was 
investigated using the gamma, structural similarity, and dosiomics indices. Cases from the American 
Association of Physicists in Medicine Task Group 119 were planned, and systematic and random MLC 
position errors were simulated. The indices were obtained from distribution maps and statistically 
significant indices were selected. The final model was determined when all values of the area under 
the curve, accuracy, precision, sensitivity, and specificity were higher than 0.8 (p < 0.05). The dose–
volume histogram (DVH) relative percentage difference between the error‑free and error datasets was 
examined to investigate clinical relations. Seven multivariate predictive models were finalized. The 
common significant dosiomics indices (GLCM Energy and GLRLM_LRHGE) can characterize the MLC 
position error. In addition, the finalized logistic regression model for MLC position error prediction 
showed excellent performance with AUC > 0.9. Furthermore, the results of the DVH were related to 
dosiomics analysis in that it reflects the characteristics of the MLC position error. It was also shown 
that dosiomics analysis could provide important information on localized dose‑distribution differences 
in addition to DVH information.

Intensity-modulated radiation therapy (IMRT) enables highly conformal and precise dose distribution to the 
target, reducing the exposure of healthy tissue from unwanted  radiation1,2. Such remarkable therapeutic outcomes 
are achieved using a unique beam-shaping device called the multileaf collimator (MLC)1,3–6. It is a crucial com-
ponent of the modulation plan defined for IMRT to generate complex dose  distributions7. Therefore, regularly 
monitoring MLC’s accuracy and reproducibility are important to ensure that the actual and planned locations 
match during  treatment8–10.

The issue of MLC position uncertainty has been widely investigated for different systems and techniques 
using radiographic film, ionization chambers, portal imaging devices, and log  files11–18. However, the utilization 
of different detectors may yield different results because of their unique characteristics (resolution, detector 
density, geometric (2D/3D) differences, and calibration method) and potential differences in the gamma cal-
culation  method18–20.

Gamma  analysis21–23, developed to quantitatively evaluate the consistency of dose distributions, has been 
implemented using a combined dose difference (DD) and distance to agreement (DTA) threshold to determine 
whether each IMRT plan is acceptable in regular clinical practice. However, several  groups4,7,23 have reported 
the following limitations in evaluating the uncertainty related to the MLC leaf position: (1) insensitivity to dose 
errors, (2) absence of correlations with clinical dose errors, (3) difficulty in defining the root cause of the exist-
ing discrepancy between dose distributions, (4) differences between the gamma results produced by different 
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measurement  devices24, and (v) different standard criteria proposed in the Imaging and Radiation Oncology 
Core (IROC) and TG218  reports25. Recently, dosiomics (or radiomics)1,4,7,26–29 and structural similarity (SSIM)4 
have been conducted to determine whether they can be used to overcome the limitations of conventional gamma 
analysis. First, dosiomics (or radiomics) analysis has been applied to extract valuable features from dose maps 
between the planned and delivered doses in patient-specific quality assurance (PSQA) by considering the dose 
or fluence map as an image. Several studies have shown that radiomics-based analysis can effectively detect MLC 
positioning errors and provide an alternative to conventional gamma  analysis4,5,11,26. Second, the SSIM index 
can detect absolute dose errors, gradient discrepancies, and dose structure errors with sub-indices luminance, 
contrast, and  structure1,4,7,25–27. Both methods can be employed to describe MLC errors because they show the 
locations of large discrepancies and different types of error-related patterns. However, no strong indicators or 
harmonized error characterization or prediction results have been reported because of measurement device bias 
and patient-specific heterogeneity when using patient  data1,4,7,25–29. For these reasons, essential research is needed 
to discover and analyze basic indicators in a state where heterogeneity due to measurement devices and patients 
is removed before direct application to the clinical practice of various  conditions1,4,7,26–34.

This study aims to evaluate the characteristics of various MLC position errors correlated with indices using 
dose distribution, and to use them as reference data for future clinical applications. In this regard, two implemen-
tations were preferentially performed as follows: to exclude clinical variability, a single-material AAPM TG-119 
phantom was used to establish a treatment plan; MLC position errors were generated in the treatment planning 
system (TPS) instead of measurements. The difference between the error-free and error dose distributions was 
analyzed using the gamma index, SSIM index, and dosimetry index to investigate the characteristics of the MLC 
position error. An index indicating the feature of the MLC position error was found and used to develop an MLC 
position error prediction model. The dose–volume histogram (DVH) was examined to investigate the clinical 
relationship. We evaluated the clinical significance by analyzing the final optimal model and DVH parameter 
results. To the best of our knowledge, this study is the first attempt to analyze the characteristics and predictive 
models of systematic and random MLC error using dosiomics, gamma, and SSIM indices in the absence of 
deviation due to clinical, instrumental, and technical differences.

Materials and methods
IMRT treatment plans for American Association of Physicists in  Medicine35 Task Group 119 
(TG‑119) cases. All plan data were generated and optimized using the segmental MLC (SMLC) mode in the 
RayStation planning system v5 (RaySearch Laboratories, Stockholm, Sweden). Computed tomography (CT) and 
structure datasets including phantoms used in this study were downloaded from AAPM TG-119  case36. Addi-
tionally, AAPM TG-119 suggests the IMRT goals and beam arrangement. For each plan, beam arrangements 
and planned doses, such as angle and number of beam field on Elekta Versa HD linear accelerator with Agility 
MLC (Elekta AB, Stockholm, Sweden), were set as recommended by AAPM TG 119 (Supplementary Table S1). 
The plans were generated using RayStation v5 TPS with the dose calculation algorithm (collapsed cone convolu-
tion (CCC)) of a grid size of 2.0 mm for each beam of the static IMRT plans using segmented MLC.

Simulated MLC leaf position error. This study primarily considered two types of MLC positional errors: 
systematic error and random error. DICOM-RT plan files were extracted from RayStation v5 to simulate the 
MLC positional errors. The original MLC position for all the control points described in the DICOM-RT plan 
file was changed to the locations specified in the DICOM-RT plan file and modified using in-house software(see 
Supplementary MATLAB source code), developed using MATLAB 2018b (Mathworks, Natick, MA). Subse-
quently, the modified DICOM-RT plan files were imported back into RayStation v5, as shown in Fig. 1 36.To 
evaluate only the effect of the MLC position error, the MU values on all control points between the error-free 
plan and error plan were not changed, and the same plan objective function was used. Moreover, only recalcula-
tion was performed without optimization based on the CCC algorithm.

As shown in Fig. 1, the two types of MLC position errors were induced in each beam of the error-free plan 
as follows:

For the systematic MLC position error plans, at every control point, the MLC positions surrounding the plan-
ning target volume (PTV) were shifted by 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm to the right of their original 
leaf position on one side of the bank.

For the random MLC position error plans, at every control point, the MLC positions in both banks were 
randomly shifted by a pseudo-random number having a Gaussian distribution of mean value, μ, 0.0 mm, 1.0 mm, 
and 2.0 mm, with a standard deviation, σ, 1.0 mm width (1 sigma)10,37. When the shift of the leaf position collided 
with the leaf located on the opposite side bank, it was randomly arranged within the corresponding Gaussian 
distribution to avoid a collision.

We developed 35 simulated MLC position error plans and total cases for each angle and beam (Table 1).

Gamma analysis. The gamma-index method evaluates the coincidence between two dose distributions of 
error-free and error datasets using the percent DD and  DTA38. We performed a complete local 3D gamma analy-
sis between two dose files for the error-free and error plans with error based on the criteria 3%/3 mm, 3%/2 mm 
(the AAPM TG-218 recommendation), 2%/2 mm, and 1%/1 mm with a 10% threshold using PTW Verisoft 
software, version 6.1 (PTW, Freiburg, Germany)7,10,38,39. Three-dimensional gamma analysis was conducted for 
each angle and the entire beam.

SSIM. The SSIM index is designed to compare and evaluate pairs of images (error-free and error-induced 
plan) and can be utilized to evaluate the luminance, contrast, and structure of  SSIM4,25,38,40.
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In this study, the entire SSIM index and three subcomponents (luminance, contrast, and structural index) 
were also evaluated as functions of the beam fields. Preprocessing was not required for SSIM because the size 
of dose maps was the same. The SSIM index was calculated using MATLAB 2018b (Mathworks, Natick, MA), 
and it is expressed as follows:

The default SSIM index is based on the following settings: α = β = γ = 1 , and C3 =
C2

2
 , and the SSIM index 

can be calculated as follows:
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σx and σy , and σxy are the local means, standard deviations, and cross-variance for images x and y, respectively.

The specific parameters for the SSIM calculation were set based on previous  studies4,25,40. The regularization 
constant is calculated as C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2. K1 and K2 were set to 0.01 and 0.03, respectively, 
as the default values suggested by Wang et al.40. Peng et al.25 proposed the default values of K1 and K2 as suitable 
factors for evaluating the MLC position error in the result of the regularization constant effect according to the 
K1 and K2 values. The dynamic range, L, was set to 200, corresponding to the fraction dose in this study.

Dosiomics analysis. For dosiomics analysis, two different dose-distribution datasets were generated: (1) 
subtracted error-free datasets (simulated error free dose map—error free dose map) and (2) subtracted error 
datasets (simulated error dose map—error- free dose map) (Fig. 2). The error- free dose map represents the dose 
distribution extracted after planning for all control points at the original MLC location via RayStation. To gener-
ate a subtracted error-free dose map for dosiomics analysis, two error-free dose maps were required. If the same-
dataset error-free dose map (unmodified dose map) is used as a simulated error-free dose map to create sub-
error-free, the pixel values will be zero and the radiomics analysis cannot be performed. Therefore, the simulated 
error-free dose map was generated by systematically moving the error-free dose map by 0.01 mm. The similarity 
and correlation between simulated error-free and unmodified error-free dose maps were examined using Wil-
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Figure 1.  Schematic workflow of simulated systematic and random MLC errors.

Table 1.  MLC position-error types and numbers.

Number of beams Head and neck Prostate C-shape

Error-free 36 28 36

Systematic error 36 28 36

Random error 27 21 27

Total 99 77 99
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coxon signed-rank test and Spearman’s rank correlation. Their results showed statistically significant similarity 
(p value > 0.05) in Wilcoxon signed-rank test and the strong correlation (coefficient > 0.97 and p value < 0.001) in 
Spearman’s rank correlation (Supplementary Table S2). Therefore, it was confirmed that the simulated error-free 
had similarity enough to generate sub-error-free when used to run in this experiment. The subtracted dose maps 
were classified into three types: sub-error-free (simulated error-free dose map—error-free dose map), sub-sys-
tematic-error (simulated systematic error dose map—error-free dose map), and sub-random-error (simulated 
random error dose map—error-free dose map). Class-I included the error-free type and combined systematic-
error and random-error. Class-II consisted of error-free and systematic-error types. Class-III comprised error-
free and random-error types. Error-type classes in subtracted dose maps are summarized in Table 2.

This study performed the dosiomics analysis for Class-I, Class-II, and Class-III. The 275 fluence maps of the 
four treatment plans exported in the DICOM-RT file from the TPS were analyzed using the Local Image Features 
Extraction (LIFEx) version 7.1.0 software package (http:// www. lifex soft. org)41. For dosiomics index calculations, 
spatial resampling was 2 mm (X-direction), 2 mm (Y-direction), and 2 mm (Z-direction) in Cartesian coordi-
nates. The size of the bin in intensity discretization was 1. Thirty-four radiomics features were categorized into 
one conventional feature, two histogram features, and thirty-one texture  features42–44. Four matrices, namely 
CLCM, CLRLM, NGLDM, and  GLZLM26,42–44 were used to determine thirty-one texture features. GLCM was 
obtained in 13 directions in 3D with one voxel distance relationship between neighboring voxels to indicate the 
arrangements of pairs of voxels used to calculate textural features. GLRLM was calculated for the 13 different 
directions to represent the size of homogeneous runs for each gray level. NGLDM was related to the difference 
in gray levels between one voxel and its 26 neighbors in 3D. GLZLM was calculated directly in 3D to explain the 
size of homogeneous zones for each gray level. The radiomics features were extracted from the whole subtracted 
dose map and standardized them to obtain the standard score (z-score) (Supplementary Table S3).

Statistical analysis. All statistical analyses were performed using RStudio (version 2021.09.1-372; RStu-
dio Software Inc. (Boston, MA, USA)). The error-free data were labeled as “0,” and systematic error data and 
random error data were labeled as “1.” Gamma, SSIM, and dosiomics indices were examined and selected for 
developing the MLC position error prediction model. The independence of all the indices of the gamma, SSIM, 
and dosiomics was investigated to prevent overfitting using Spearman’s rank correlation, backward stepwise 
elimination, and multicollinearity. First, the indices with Spearman’s rank correlation coefficient higher than 
0.8 were removed after the Holm–Bonferroni correction method was applied for all p values to correct multiple 
test comparisons. Then, the remaining indices were filtered by performing backward stepwise elimination. The 
indices selected through these two steps were selected by the multicollinearity using the variance inflation factor 
(VIF < 4)45. In addition, univariate and multivariate logistic regression were also used for index selection.

Predictive model development and performance. Univariate and multivariate logistic regression 
models for MLC position error prediction was built in RStudio through the following process. To ensure repro-

Figure 2.  Dose maps. (a) Error-free dose map (b) Error-induced dose map (c) Subtracted (error-induced – 
error-free) dose map.

Table 2.  Error-type classes in subtracted dose map.

Class of error Errors

Class-I
Sub-error-free

Sub-systematic-error + Sub-random-error

Class-II
Sub-error-free

Sub-systematic-error

Class-III
Sub-error-free

Sub-random-error

http://www.lifexsoft.org
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ducibility of the random sampling, the ‘set.seed’ function was implemented. The dataset was loaded and split into 
training and testing sets using the ‘createDataPartition’ function. The numbers of training datasets corresponded 
to 60%–80% of the total number datasets (sub-error-free datasets: 36, sub-systematic-error datasets: 36, sub-
random-error datasets: 27) (Supplementary Table S4). The ‘trainControl’ function was used to define the training 
control object, which specified that tenfold cross-validation should be used, repeated 10 times using ‘repeatedcv’ 
method. The ‘twoClassSummary’ function was used to summarize the results of the cross-validation process, and 
‘classProbs’ was set to TRUE to enable probability estimates. The ‘grid’ was used to search for the best hyperpa-
rameters in the tuning grid. The ‘train’ function was then used to train a logistic regression model on the train-
ing data using the ‘glm’ method and the training control object. The ‘Accuracy’ metric was used to evaluate the 
accuracy of a classification model in the train function. The ‘predict’ function was used to predict the class labels 
for the test data, and the ‘confusionMatrix’ and ‘roc’ functions were used to evaluate the model in terms of sensi-
tivity, specificity, accuracy, and precision, the area under the curve (AUC) computed based on receiver operating 
characteristic curve (ROC). The workflow for developing the prediction error model is illustrated in Fig. 3.

DVH. DVHs for AAPM TG-11936 cases with planned IMRT treatment were generated using RayStation v5. 
The criteria for meaningful differences were underdosed for the PTV and 3% or more for the OAR based on 
studies on site-based patient quality assurance (QA)  standards46–48.

Results
Gamma and SSIM. The gamma index was analyzed between the error-free and induced error plans, 
and each documented angle and the total dose in a 3D dose file were analyzed. For the head and neck cases, 
the gamma-index ranges were 0.926–1.0, 0.848–1.0, 0.758–1.0, and 0.463–0.946 for the 3 mm/%, 2 mm/3%, 
2 mm/2%, and 1 mm/1% criteria, respectively. The average SSIM, luminance, contrast, and structure indices 
were 0.9023–0.9534, 0.9926–0.9995, 0.9983–1.000, and 0.9942–0.9999, respectively. The head and neck cases are 
summarized in Table 3. The other cases are listed in Supplementary Table S5 (Fig. 4).

Dosiomics analysis. The dosiomics indices were extracted from the 275 subtracted dose maps (Class-I, 
Class-II, and Class-III) generated by all beam fields of the four IMRT plans. Specifically, 34 dosiomics indices 
were selected through Spearman’s rank correlation, backward stepwise elimination, and VIF in all cases. Fig-
ure 5 illustrates the number of features according to the plan type. The gray-level run length matrix (GLRLMs) 
accounted for 35.8% of all features (19/53), and GLCMs approached approximately 28.3%. Eleven, 11, 16, and 
15 dosiomics indices were selected from the head and neck, prostate, C-shape easy, and C-shape hard, respec-
tively. The gray-level co-occurrence matrix energy (GLCM_Energy) was the most common dosiomics indices 
in Class-I and Class-III. Gray-level run length matrix long run high gray-level emphasis (GLRLM_LRHGE) was 
Class-II’s most common dosiomics index.

Figure 3.  Workflow for developing predictive error models.
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Predictive model development and performance. The independent indices of gamma, SSIM, and 
dosiomics were used to develop predictive models for detecting the MLC position errors after indices were 
excluded using Spearman’s rank correlation (coefficient > 0.8 and p-value < 0.05), backward stepwise elimination, 
and VIF (≥ 4) to avoid overfitting among the indices. The independent indices selected using Spearman’s rank 
correlation and confusion matrix are shown in Supplementary Table S6.

In the final prediction model, only dosiomics indices were selected as significant indices that satisfy the 
statistical criteria. Therefore, only dosiomics indices were used to develop a dose distribution-based MLC error 

Table 3.  Mean gamma index (2 mm/3%), mean SSIM index, and subcomponent (luminance, contrast, 
structure) indices for the head and neck cases.

Head and neck Gamma index SSIM index Luminance Contrast Structure

Systematic error

 0.5 0.9999 0.9366 0.9982 0.9997 0.9991

 1.0 0.9948 0.9360 0.9982 0.9997 0.9991

 1.5 0.9591 0.9346 0.9981 0.9997 0.9991

 2.0 0.9049 0.9323 0.9980 0.9997 0.9990

Random error

 0.0 1.0000 0.9361 0.9982 0.9997 0.9991

 0.5 0.9972 0.9362 0.9982 0.9997 0.9991

 1.0 0.9883 0.9357 0.9982 0.9997 0.9991

Figure 4.  SSIM: (a) systematic errors and (b) random errors. Y-error bar indicated standard deviation.

Figure 5.  Stacked bar plot showing the distribution of selected features as a function of plan type, with data 
labels showing the number of features.
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prediction model. The developed models were evaluated using an independent test dataset. Consequently, the 
final models were determined when the model’s accuracy, precision, sensitivity, and specificity were 0.8 or more 
(p < 0.05) in Class-I, Class-II, and Class-III. In Class-I, five univariate predictive models (one model each for 
the head and neck, one for prostate cases, two for the C-shape easy cases, and one for C-shape hard cases) were 
decided as the final models (Supplementary Table S7). In Class-II, five univariate final predictive models (two 
models each for the head and neck, one for the prostate, and C-shape easy and hard cases) were determined 
(Supplementary Table S7). In Class-III, four univariate models were finalized (one for head and neck, prostate, 
c-shape easy, and C-shape hard cases) (Supplementary Table S7). Six multivariate models were also developed 
(Supplementary Table S7).

DVH analysis. The DVHs of the error-free datasets were compared to those of the four systematic error 
datasets and three random error datasets in terms of clinical effectiveness. In the head and neck case, the rela-
tive percentage differences of Sys 1.5 mm, Sys 2.0 mm, and Ran 1.0 mm were greater than 3.0% compared with 
the DVH of the error-free cases. This indicates that the dose received by the cord and parotids was 3.0% higher. 
In the prostate case, the dose received by the bladder above the PTV was greater than 3.0% for Sys 1.5 mm, Sys 
2.0 mm, and Ran 1.0 mm. The rectum below the PTV received a 3% higher dose than in the error-free case for 
Sys 1.5 mm, Sys 2.0 mm, and Ran 1.0 mm. In the two C-shape cases, the dose of the cord was 3.0% higher than 
those in the error-free cases for all error types. The DVH relative percentage difference was almost linear in the 
systematic error. However, the DVH relative percentage difference of random error showed different tendencies 
depending on the location of the structure (Supplementary Fig. S1).

Discussion
In this study, the characteristics of the MLC position error under non-heterogeneous conditions were explained 
using only the dosiomics indices because they were statistically significant among the gamma, SSIM, and dosi-
omics indices. The determined dosiomics indices were used for the predictive MLC position error model. The 
clinical relationship of significant indices and prediction MLC position error model was examined using DVH.

For gamma-index results, even in the case of MLC position systematic 1.0 mm shift, it calculated 0.905 for 
the C-shape easy case and 0.710 for the C-shape hard case. These results indicate that the dose distribution was 
affected by plan complexity, and the gamma index was considered to be low. However, there was no significant 
difference within 3% in the DVH index for PTV and cord. The gamma index had a low correlation with the 
DVH parameter. The SSIM-index tendency according to the random MLC displacement was relatively small 
and irregular compared with the SSIM index according to the systematic MLC displacement (Table 3, Fig. 4, and 
Supplementary Table S5). For the systematic error, only the luminance SSIM subcomponent was more sensitive 
than the other SSIM subcomponents for the MLC position error. However, its sensitivity was relatively small 
compared with the dosiomics indices (Supplementary Table S5). For the random error, the gamma and SSIM 
indices did not convey any trend of the MLC position error.

Among the gamma, SSIM, and dosiomics indices, statistically significant indices representing the charac-
teristics of the MLC position error were extracted from dosiomics. In Class-I, GLCM_Energy was selected as 
the common significant index for all predictive models. It belongs to the GLCM, representing the dose distri-
bution with co-occurring pixel values at one offset. It was showed that increased error increased the difference 
between error-free and erroneous data and thus increased non-uniformity of gray level voxel pairs. In Class-II, 
GLRLM_LRHGE was selected as the common significant index for all cases, and it belongs to the GLRLM, 
representing the size of the homogenous run. GLRLM_LRHGE shows the distributions with long homogenous 
runs with high gray levels. As a result, the feature of long homogenous runs with high gray levels was presented 
for the MLC systematic position error. In Class-III, GLCM_Energy was chosen as the common significant dosi-
omics index, as in Class-I, except for C-shape hard cases where the significant index was gray-level zone length 
matrix (GLZLM) gray level_nonuniformity (GLNU). Our result that more than half of the statistically significant 
indices belonged to the GLCMs was consistent with that of Ma et al.4. In addition, GLRLM_LRHGE that can 
detect systematic errors, and GLCM_Energy that can detect nonuniformity or random errors, are consistent 
with the results of the paper published by Landon S. Wootton et al.26. These two studies were performed using 
different devices and techniques than ours, and while our study did not include clinical variations, these two 
studies did include them. Nevertheless, the significant dosiomics indices we found were consistent with those 
in these studies. These consistent results confirmed that the significant indices we found were a basic index that 
characterizes the MLC position error regardless of the measurement device, technique, and clinical variation.

The predictive models for the MLC position errors were developed using only dosiomics indices in Class-I, 
Class-II, and Class-III. The gamma and SSIM indices were disregarded because they were not dedicated adequate 
weights for developing the predictive models, compared to the dosiomics index. The final error prediction mod-
els using the significant dosiomics indices describing the characteristics of the MLC position error exhibited 
excellent performance with AUC > 0.9, and accuracy, sensitivity, and specificity ≥ 0.8 (p < 0.05), except for the 
C-shape hard case of Class-III. The more the plan complexity, the more distributed was the influence of the MLC 
position error; therefore, it was estimated that the accuracy, precision, and specificity values other than AUC 
and sensitivity values were less than 0.8.

In the DVH analysis, the relative percentage difference in systematic error was observed to increase almost 
linearly. This indicates that the larger the systematic error in which the MLC position is offset in one direction, 
the larger is the area where the dose distribution differs. For a random error in which the MLC position is offset 
in a random direction, the DVH analysis result showed that the relative percentage error increased with differ-
ent trends depending on the structure’s location. The reason was that the structures in different locations were 
affected differently for random errors because MLC position errors occur in a random direction. As a result, the 
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systematic error affected the size of the homogenous run in the dose-distribution difference. By contrast, the 
random error affected the voxel pairs in the dose-distribution difference. These results confirmed that the com-
mon significance index indicating the characteristics of the differential dose distribution for systematic errors 
was GLRLM_LRHGE, and that of random errors was related to GLCM_Energy. Regarding the complexity of 
the plan, the DVH result showed that the more complex the plan, the greater the relative percentage difference. 
However, no common significant index representing the dose-distribution difference was found. This is prob-
ably because the greater scatter of nonuniformity showing a significant common index as the complexity of the 
plan increases. These characteristics make different dose distributions depending on the plan complexity, and 
the significant dosiomics index also varies owing to the resulting random dose-distribution differences. This 
phenomenon was confirmed in the examples of the C-shape easy case and C-shape hard case. Each of them had 
two different significant indices, GLCM_Energy and GLZM_GLNU. While GLCM_Energy selected from the 
C-shape easy case considers a pixel pair with a specific value, the significant index GLZM_GLNU chosen from 
the C-shape hard case considers the connected voxels. Therefore, depending on the complexity of the plan, the 
DVH provides information on the dose–volume histogram but cannot show the localized texture differences 
between dose distributions. In the case of dosiomics analysis, it can provide essential additional information 
that DVH cannot offer because it can show differences in the local texture of the dose distribution depending 
on the complexity of the plan.

The results of our study are summarized in three key findings as follows. First, the discovery of principle 
common significance indices (GLCM_Energy, GLRLM_LRHGE) represents the characteristics of systematic and 
random MLC position errors and can be used as reference indices for future clinical applications. Second, the 
prediction MLC position error models developed using statistically significant dosiomics indices showed superior 
performance (AUC > 0.9). Predictive models have been developed based on specific clinical sites. However, given 
the significant common indicators found in this study, it is necessary to investigate whether models generated in 
mixed clinical settings can exhibit excellent predictive power through future studies. Third, the results of DVH in 
the primary state were confirmed to be related to dosiomics analysis, which represented the characteristics of the 
dose-distribution difference due to the MLC position error. In addition, it has been demonstrated that in cases 
with different plan complexity, dosiomics analysis can give more critical information that can be added to the 
information in the DVH. The results of our study can ultimately provide information related to the characteristics 
of localized texture using dosiomics analysis. This information could be made more clinically useful by providing 
additional information to the gamma index and DVH commonly provided by devices and technologies such as 
log file-based QA or electronic portable imaging devices for dosimetric impact assessment.

Although our results demonstrated the novel clinical findings mentioned above, our study has four limita-
tions. First, the dosiomics index was extracted from the subtracted dose distribution but the gamma and SSIM 
indices were extracted from dose distributions of the error-free and simulated error instead of their subtracted 
dose distribution. Second, because only one type of error (MLC position error) was studied under the condition 
that the factors affecting the error analysis are removed, the direct application of the result to various clinical 
processes is limited. Third, understanding the relationship between the grid size, preprocessing filter and MLC 
position error is necessary. In this study, the characterization analysis for the MLC position error uncertainty 
smaller than the grid size was established by referring to other  studies7,49,50. Although the MLC position error was 
smaller than the grid size, there was a difference in the dose distribution; however, the effect of the MLC position 
error was not fully reflected. Therefore, it is necessary to conduct a study considering the relationship between 
the grid size and MLC position error. Furthermore, filtered features such as wavelets and Laplacian-of-Gaussian 
filters were not used as they could potentially introduce noise and artifacts into the dose map which can affect 
the accuracy and reliability of the  results51. However, these filters play important roles in dosiomics by empha-
sizing specific image characteristics, such as edges, and extracting  biomarkers2,51,52. Therefore, further research 
is needed to investigate the use of these filters in dosiomics and to develop appropriate methods to mitigate the 
potential introduction of noise and artifacts. In addition, the features used in this study provide information 
about the spatial and statistical distribution of dose levels and have been considered sufficient for estimating 
the MLC error from subtractive dose maps. On the other hand, other  studies1,4 showed the predictive ability 
using more dosiomic features. Therefore, it needs to investigate the correlation between the number of dosiomic 
features and the predictive performance of radiomic models in future studies. Forth, this study used the plan 
results of static IMRT using segmented MLC to evaluate the characteristics of MLC. However, additional research 
is needed on how it is reflected when volumetric modulated arc therapy (VMAT) and dynamic MLC, which 
are clinically applied plan techniques, are applied. In the future, we plan to investigate the detection sensitivity 
utilizing dosiomics, SSIM, and DVH according to diverse error scenarios and complexities in heterogeneous 
environments for clinical application.

Conclusion
The characteristics of the MLC position error were investigated using dose-distribution comparisons of error-
free and simulated error datasets. Predictive models were developed and evaluated for the accurate and precise 
analysis of the MLC position error. Our study highlights three novel results. First, MLC position-error charac-
teristics were described using common significant dosiomics indices (GLCM_Energy, and GLRLM_LRHGE). 
Second, the finalized logistic regression model for MLC position error prediction showed excellent performance 
with AUC > 0.9. Third, it was confirmed that the effects of MLC position error on DVH are related to the dosi-
omics analysis and that the dosiomics analysis provides the important information on localized texture of dose 
distribution in addition to the DVH information. These clinically significant results are expected to be used as 
primary data to discover and study clinically meaningful indicators.
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