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Abstract: Background and Objectives: Analysis of urine stone composition is one of the most important
factors in urolithiasis treatment. This study investigated whether a convolutional neural network
(CNN) can show decent results in predicting urinary stone composition even in single-use flexible
ureterorenoscopic (fURS) images with relatively low resolution. Materials and Methods: This study
retrospectively used surgical images from fURS lithotripsy performed by a single surgeon between
January 2018 and December 2021. The ureterorenoscope was a single-use flexible ureteroscope
(LithoVue, Boston Scientific). Among the images taken during surgery, a single image satisfying the
inclusion and exclusion criteria was selected for each stone. Cases were divided into two groups ac-
cording to whether they contained any calcium oxalate (the Calcium group) or none (the Non-calcium
group). From 506 total cases, 207 stone surface images were finally included in the study. In the
CNN model, the transfer learning method using Resnet-18 as a pre-trained model was used, and only
endoscopic digital images and stone classification data were input to achieve minimally supervised
learning. Results: There were 175 cases in the Calcium group and 32 in the Non-calcium group. After
training and validation, the model was tested using the test set, and the total accuracy was 81.8%.
Recall and precision of the test results were 88.2% and 88.2% in the Calcium group and 60.0% and
60.0% in the Non-calcium group, respectively. The area under the receiver operating characteristic
curve of the model, which represents its classification performance, was 0.82. Conclusions: Single-use
flexible ureteroscopes have financial benefits but low vision quality compared with reusable digital
flexible ureteroscopes. As far as we know, this is the first artificial intelligence study using single-use
fURS images. It is meaningful that the CNN performed well even under these difficult conditions
because these results can further expand the possibilities of its use.

Keywords: artificial intelligence; neural networks; computer; ureteroscopy; urolithiasis

1. Introduction

The analysis of urinary stone composition is one of the most important factors in
the treatment of urolithiasis [1]. In both intraoperative and postoperative management,
the composition of urinary calculi plays an important role. For example, during opera-
tions, in order to efficiently break the stone, it is important to properly select the laser
energy and frequency according to the stone’s composition and size [2]. When it comes to
postoperative management, depending on the stone’s components, there are various diet
control management strategies, behavioral therapies, and pharmacotherapies that optimize
metabolic factors and reduce the urinary supersaturation of stone composition to lower the
urinary calculi recurrence rate [3].
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The methods for analyzing the composition of urinary calculi are optic polarizing
microscopy, scanning electron microscopy, infrared spectroscopy, X-ray powder diffraction,
elementary distribution analysis, and so on. Among these methods, Fourier transform
infrared spectroscopy (FTIRS) is an efficient, reliable, accurate, and rapid method and, cur-
rently, one of the most widely used [4,5]. However, it takes several weeks to receive FTIRS
results, and no test can predict urinary stone composition intraoperatively or immediately
after surgery.

The field of artificial intelligence is developing dramatically, and neural networks are
going beyond human recognition. Neural networks demonstrate excellent performance,
particularly in handling large-scale data processing, complex pattern recognition, and
achieving high accuracy and consistency. Recent studies have predicted urinary stone
components using neural networks and digital images. Kristian et al. reported favorable
results in identifying kidney stone composition from digital photographs taken in vitro
using a deep convolutional neural network (CNN) [6]. Furthermore, Estrade et al. showed
decent results using intraoperative ureterorenoscopic (Olympus URF-V CCD sensor) digital
images and endoscopic morphological criteria, which the authors proposed in a previous
study [7,8]. Thus far, studies for autonomic recognition have utilized high-quality images,
and no existing studies have used single-use flexible ureteroscopic (fURS) images. We
investigated whether a deep CNN can also show decent results in predicting urinary stone
composition even in single-use fURS images with relatively low resolution.

2. Materials and Methods
2.1. Study Design

This study was approved by the Institutional Review Board of Severance Hospital,
Yonsei University Health System (no. 4-2022-0797). We retrospectively used surgical videos
of ureterorenoscopic lithotripsy performed by a single surgeon (JYL) between January 2018
and December 2021. The ureterorenoscope used in this study was the LithoVue single-use
flexible ureteroscope (Boston Scientific, Boston, MA, USA). From the photographs captured
during surgery, one picture was chosen for each stone that met the pre-defined conditions.
These images went through minimal image pre-processing to get rid of unnecessary blank
spaces and trademarks. The results of the urinary calculi composition analysis were
obtained through FTIRS and used to divide the photographs into two groups: the Calcium
group and the Non-calcium group. The pre-processed images and the classified FTIRS
results were used to train the CNN model.

2.2. Image Standardization and Pre-Processing

fURS images are affected by various factors, such as who the surgeon was and what
devices were used. Therefore, image standardization is one of the key factors for decent
results in this research. Each picture should include the entire surface of the stone. A single
image was selected for each stone. Cases with poor visibility because of clots or debris and
cases in which proper stone images could not be obtained due to video recording errors
were excluded. Cases with multiple FTIRS values resulting from multi-location stones
were excluded because there was no one-to-one match between the results and the stone.
As a result, only cases that exactly matched the image and the stone composition analysis
results were included in this study. Of the 506 total cases, 207 were finally included in this
study. Regarding the bias due to differences in equipment, LithoVue has an advantage in
that it has its own workstation platform. Reusable digital fURS cameras require separate
workstations and light source equipment, and the choice of workstation can impact the
quality of images. On the other hand, with LithoVue, it is possible to minimize the bias
caused by the difference in additional equipment.

Image pre-processing was minimized in this study. In the obtained images, black
margins and trademarks were deleted. Other than that, no additional processes were
applied. We did not marginate the stone, mark the renal calyx, or comment at all, even if a
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part of the guidewire was visible in the image. The whole inclusion and exclusion process
and image pre-processing are shown in Figure 1.
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Figure 1. (A) Inclusion and exclusion processes and (B) image pre-processing. Image pre-processing
was minimized by erasing only the black margins and leaving the central image. Note that the
guidewire is still visible in the final image. FTIR: Fourier transform infrared.

2.3. Classification of the Urinary Calculi

For each patient, the FTIRS results after surgery were collected. In this study, as a
preliminary study of autonomic recognition, we tried to simplify the classification crite-
ria given that the image quality was somewhat inferior because the images were taken
retrospectively. Calcium oxalate is the most common component of urolithiasis. We hy-
pothesized that the hardness of the stone may vary and that the cracking pattern of the
stone during laser fragmentation may be different depending on the presence or absence of
calcium. The endoscopic morphology classification introduced by Estrade et al. in 2021
noted a difference in morphology depending on the presence of calcium oxalate [8]. For
these reasons, the FTIRS results were divided into two groups according to whether they
contained any calcium oxalate (the Calcium group) or none (the Non-calcium group). There
were 175 cases in the Calcium group and 32 cases in the Non-calcium group.

2.4. Convolutional Neural Network Model Building

CNNs were first introduced by Yann Lecun in 1989 and are now mainstream in neural
network research using images [9]. Images as input data are huge, and not all areas of the
data are important for classification; instead, only a specific part of the data is important,
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and that feature may appear anywhere in the image. Therefore, in order to use image data,
a means of filtering features from huge amounts of data is required. Since CNNs extract
features from image data with convolution kernels, they have an advantage in processing
image data. Transfer learning is a method that uses a model that has been pre-trained and
verified with high-quality data, and it can efficiently perform learning tasks with small and
relatively low-quality data [10]. There are various pre-trained models. Of these, Resnet
is currently one of the most widely used CNN structures. Resnet is a model that enables
better network optimization through residual learning and shortcut connections [11]. In
this study, we chose the transfer learning method and Resnet-18 as the pre-trained model.
By applying the well-trained network from Resnet-18 to the target domain, only the new
classifier layers need to be trained instead of all layers. Therefore, an advantage of transfer
learning is that it can efficiently perform learning with small and relatively low-quality
data. The entire CNN model training structure is shown in Figure 2.

Medicina 2023, 59, x FOR PEER REVIEW 4 of 10 
 

 

CNNs extract features from image data with convolution kernels, they have an advantage 

in processing image data. Transfer learning is a method that uses a model that has been 

pre-trained and verified with high-quality data, and it can efficiently perform learning 

tasks with small and relatively low-quality data [10]. There are various pre-trained mod-

els. Of these, Resnet is currently one of the most widely used CNN structures. Resnet is a 

model that enables better network optimization through residual learning and shortcut 

connections [11]. In this study, we chose the transfer learning method and Resnet-18 as 

the pre-trained model. By applying the well-trained network from Resnet-18 to the target 

domain, only the new classifier layers need to be trained instead of all layers. Therefore, 

an advantage of transfer learning is that it can efficiently perform learning with small and 

relatively low-quality data. The entire CNN model training structure is shown in Figure 

2. 

 

Figure 2. Structure of the model used in this study. 

The whole dataset was divided into a training set, a validation set, and a test set. To 

solve the data imbalance problem between the Calcium group and the Non-calcium 

group, images from the Non-calcium group were augmented to achieve the same number 

of images as the Calcium group. Among the 207 images, 22 were first designated as the 

test set, and then augmentation for the Non-calcium group was performed. Moreover, the 

remaining data were randomly divided into the train set and validation set in an 8:2 ratio, 

respectively. As a result, the training dataset included 163 images, and the validation set 

included 22 images. In the train and validation sets, there were 141 and 17 images from 

the Calcium group and 22 and 5 images from the Non-calcium group, respectively. Since 

the data imbalance between these two groups could distort the training process of the 

model, we performed three-fold data augmentation for the Calcium group and eight-fold 

data augmentation for the Non-calcium group. An image rotation maneuver was used for 

the Calcium group, and both image rotation and image flipping maneuvers were used for 

the Non-calcium group. 

In one epoch of the training process, the model conducts model training with the 

train dataset and then performs an intermediate test with the validation dataset to calcu-

late the error before propagating it back to proceed with the next training. There were 

seven epochs in total. Following the training, the model’s performance was finally tested 

with the test data. The Adam optimizer was used to optimize the model. 

2.5. Localization Heat Maps 

Figure 2. Structure of the model used in this study.

The whole dataset was divided into a training set, a validation set, and a test set.
To solve the data imbalance problem between the Calcium group and the Non-calcium
group, images from the Non-calcium group were augmented to achieve the same number
of images as the Calcium group. Among the 207 images, 22 were first designated as the
test set, and then augmentation for the Non-calcium group was performed. Moreover, the
remaining data were randomly divided into the train set and validation set in an 8:2 ratio,
respectively. As a result, the training dataset included 163 images, and the validation set
included 22 images. In the train and validation sets, there were 141 and 17 images from the
Calcium group and 22 and 5 images from the Non-calcium group, respectively. Since the
data imbalance between these two groups could distort the training process of the model,
we performed three-fold data augmentation for the Calcium group and eight-fold data
augmentation for the Non-calcium group. An image rotation maneuver was used for the
Calcium group, and both image rotation and image flipping maneuvers were used for the
Non-calcium group.

In one epoch of the training process, the model conducts model training with the train
dataset and then performs an intermediate test with the validation dataset to calculate the
error before propagating it back to proceed with the next training. There were seven epochs
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in total. Following the training, the model’s performance was finally tested with the test
data. The Adam optimizer was used to optimize the model.

2.5. Localization Heat Maps

After building the model and completing the training, we plotted localization heat
maps to analyze which part of the image had a significant influence on the decision process
of the model. The gradient-weighted class activation mapping (Grad-CAM) method was
used [12]. Localization heat maps were made for a total of 22 test set images. We marginated
the stone in the image and quantitatively analyzed it by comparing it with the distribution
of the hot spots. The images were classified into two groups depending on whether the hot
spots were more or less evenly distributed within the stone.

3. Results
3.1. Stone Characteristics

When the composition of urolithiasis was classified using the Mayo Clinic classifica-
tion, there were 92 (44.4%) calcium oxalate stones, 83 (40.1%) struvite stones, 28 (13.5%) uric
acid stones, and 4 (1.9%) calcium apatite stones. There were no cysteine or brushite
stones [13]. The Mayo Clinic classification and these results are shown in Table 1. The Ko-
rean stone composition analysis data presented in a previous study showed a distribution
of 46.3% calcium oxalate stones, 29.6% struvite stones, 19.5% uric acid stones, 3.6% calcium
apatite stones, 0.7% brushite stones, and 0.4% cysteine stones. Compared with these data,
the proportions of calcium oxalate, struvite, and uric acid stones were similar, higher,
and lower, respectively [14]. These differences may be due to the fact that this study was
conducted only on cases that had undergone surgery.

Table 1. The composition of urolithiasis by Mayo Clinic classification.

Stone Composition Value

Calcium oxalate 92 (44.4%)
Struvite 83 (40.1%)

Uric acid 28 (13.5%)
Carbonate apatite 4 (1.9%)

Total 207
Data are shown as numbers (%).

3.2. Performance of the Neural Network Model

After the training was complete, the total accuracy in the validation set was 89.0%, and
recall and precision were 86.3% and 93.6% for the Calcium group and 92.5% and 84.1% for
the Non-calcium group, respectively. After training and validation, the model was tested
using the test set, and the total accuracy was 81.8%. Recall and precision of the test results
were 88.2% and 88.2% in the Calcium group and 60.0% and 60.0% in the Non-calcium
group, respectively. The area under the ROC curve (AUC) of the model, which represents
the classification performance of the model, was 0.82 (Figure 3). In general, if the AUC
is 0.5 or less, the model is considered to have no discrimination capability. AUC values
of 0.7–0.8 are “acceptable”, values of 0.8–0.9 are “excellent”, and values of 0.9 or higher
imply “outstanding” model performance [15]. Therefore, the model used in this study can
be considered to have excellent classification performance.

3.3. Localization Heat Maps

In the localization heat maps (Figure 4), 17 (77.3%) images had hot spots located in the
stone, and five (22.7%) had hot spots outside of the stone. All five cases of hot spots outside
the stone were in the Calcium group and correctly predicted by the model (true positive).
Among the 18 images in the true positive group, 13 (72.2%) had a hot spot located in the
stone, and five (27.8%) did not. This section may be divided by subheadings. It should
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provide a concise and precise description of the experimental results, their interpretation,
and the experimental conclusions that can be drawn.
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and all of these cases were in the Calcium group and the true positive group.

4. Discussion

The field of artificial intelligence is progressing rapidly. In the medical field, research
on artificial intelligence is being actively conducted, and autonomic recognition of urolithi-
asis is an emerging topic. If autonomic recognition of urolithiasis is developed enough to
be commercialized in the future, various aspects of the treatment guidelines for urolithiasis
can be changed. For example, during ureteroscopic lithotripsy, the laser intensity can be
pre-adjusted before laser firing by predicting the composition of the calculi immediately
upon discovering the stone in the ureteroscopic endoscope. As a result, more efficient
and faster lithotripsy may become possible. In addition, because dietary changes and
behavioral therapy can be applied immediately after surgery, various stone-forming factors
can be minimized. In addition, experienced surgeons can have a rough ability to predict the
composition of urinary stones, but currently, there is no objective and quantitative method
for such predictions. Autonomic recognition, however, allows any user, regardless of exper-
tise, to predict the composition of urinary caculi objectively and quantitatively. Through
more elaborately planned prospective studies with more high-quality data, autonomic
recognition of urolithiasis can become a reality.

The treatment methods for urolithiasis are becoming increasingly diverse and ad-
vanced. For example, endoscopic combined intrarenal surgery, which combines per-
cutaneous nephrolithotomy with retrograde ureteroscopy, is being widely used as it
shows higher stone-free rates for complex stones compared with traditional percutaneous
nephrolithotomy alone [16]. Additionally, robotic stone surgery has gained attention as it
reduces radiation exposure for the surgeon and assistant while achieving good treatment
outcomes [1,17,18]. If autonomic recognition technologies are combined, they could lead to
even faster operations and better results.



Medicina 2023, 59, 1400 8 of 10

This is the first study to present a CNN model for autonomic recognition using single-
use fURS images. The LithoVue single-use flexible ureteroscope has a CMOS image sensor,
which is inferior in image quality and sensitivity to the CCD image sensor in the Olympus
URF-V [19]. However, it has several advantages. First, it is cost-effective. Reusable digital
flexible ureteroscopes cost more to purchase, repair, service, clean, and sterilize. By contrast,
single-use flexible ureteroscopes have no maintenance-related costs other than purchase
and storage costs [20]. Second, they have less risk of contamination. Maintenance of
reusable digital flexible ureteroscopes inevitably requires the use of high-level disinfection
methods because, if not properly sterilized, they can transmit infections [20]. Since LithoVue
is a single-use flexible ureteroscope that does not have this problem, it has an advantage in
terms of the risk of possible contamination. Third, single-use flexible ureteroscopes have
an advantage in research using medical images. It is essential for researchers to consider
variables that are changed by the different protocols or machines used in each hospital.
However, LithoVue has its own workstation platform, and the monitor, light source, and
image processing software are all mounted on a single mobile cart. Thus, there is no
need to consider mechanical differences in research using LithoVue. Single-use flexible
ureteroscopes are currently used by many hospitals because state-of-the-art devices cannot
be supplied to all institutions for economic reasons. It is significant that the accuracy of the
CNN model can reach 86.0% even with single-use fURS images.

In this study, transfer learning was chosen as a method of CNN model building.
Transfer learning is a machine learning method that uses a pre-trained model as the starting
point for a new target model. A pre-trained model is one that has already been trained on a
large number of high-quality images and whose performance has already been verified.
Transfer learning has the advantage of being able to create a model with good classification
performance even with a few low-quality images. Therefore, it can be highly recommended
to consider applying for studies of low-quality images and diseases with few cases due to
low incidence rates.

This study has another important implication in that it proceeded with minimal
supervised learning. We only used images after minimal pre-processing and classification
of the results of the urinary calculi component for model training. In this study, there was
no need for the researchers to classify the morphology of the stone or to marginate any
stone or other anatomical findings. As each image pixel is data in itself and the model
interprets and learns patterns from the data through convolution, it is assumed that good
results can be obtained even if the intervention of the researcher is minimized.

We created localization heat maps, and the hot spots were located in the stone in
17 cases (77.3%). This result serves as significant evidence that the model focused on the
stone itself rather than other structures within the image, such as renal parenchyma or
guidewire, to predict the composition of the stone. However, in this study, there was no
case in which the hot spot was outside of the stone in the Non-calcium group, and this
seems to be because the number of cases was too small.

Data imbalances are one of the most important issues in neural network research. It is
ideal to have data in equal proportions for each group in machine learning research, but this
balance is difficult to achieve in the real world. In this study, the Calcium group included
175 cases, and the Non-calcium group included 32 cases. To overcome the data imbalance
problem, we conducted image augmentation. Image augmentation was performed by
image flipping and rotation maneuvers. In this study, the data imbalance problem was
solved with a relatively simple method because the data were simply classified into two
groups. However, complex classification is required to enable autonomic recognition in the
future, and the issue of data imbalance should be dealt with in greater detail.

This study has several limitations. First, this study was retrospectively designed. The
images used in this study were inevitably of lower quality than those taken precisely in
prospectively planned studies. In addition, section images of urinary calculi were not
included in this study. The composition of the surface and core can differ in urolithiasis [21].
If section images are included in later research and images of better quality can be taken,
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more detailed predictions of composition can be possible, and the performance of the neural
network model can be dramatically improved. Second, the FTIRS results were subject to
only binary classification, which divided them into the Calcium and Non-calcium groups.
There are many different components of urolithiasis, including uric acid, struvite, brushite,
cysteine, and so on. In addition, the pathogenesis and etiology of urinary calculi formations
differ by composition. To apply appropriate behavioral or dietary management strategies
to patients in actual clinical practice, it is necessary to predict the detailed components. The
finer the classification, the more complex artificial intelligence models are needed. With
the development of artificial intelligence technology and further studies using high-quality
data, it will be possible to solve this problem. Although this study has several limitations,
it has significant meaning in the field of autonomic recognition of urolithiasis as it is the
first study using single-use fURS images, and the CNN showed decent results even with a
relatively small number of cases and low-quality images.

5. Conclusions

Single-use flexible ureteroscopes have financial benefits, but they have low vision
quality compared with reusable digital flexible ureteroscopes. As far as we know, this is
the first artificial intelligence study using single-use fURS images. It is very meaningful
that the performance of CNN showed good results even under these difficult conditions,
in that it can further expand the possibilities of CNN’s use. If autonomic recognition of
urinary stone composition during operations becomes possible in the future, the paradigm
of urolithiasis management may change.
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