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An interpretable multiparametric radiomics model of basal
ganglia to predict dementia conversion in Parkinson’s disease
Chae Jung Park 1, Jihwan Eom2, Ki Sung Park 3, Yae Won Park4,8✉, Seok Jong Chung 5,6,7,8✉, Yun Joong Kim5,6,7, Sung Soo Ahn4,
Jinna Kim4, Phil Hyu Lee 6, Young Ho Sohn6 and Seung-Koo Lee4

Cognitive impairment in Parkinson’s disease (PD) severely affects patients’ prognosis, and early detection of patients at high risk of
dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI
radiomics from basal ganglia can improve the prediction of dementia development in PD when integrated with clinical profiles. In
this retrospective study, 262 patients with newly diagnosed PD (June 2008–July 2017, follow-up >5 years) were included. MRI
radiomic features (n= 1284) were extracted from bilateral caudate and putamen. Two models were developed to predict dementia
development: (1) a clinical model—age, disease duration, and cognitive composite scores, and (2) a combined clinical and
radiomics model. The area under the receiver operating characteristic curve (AUC) were calculated for each model. The models’
interpretabilities were studied. Among total 262 PD patients (mean age, 68 years ± 8 [standard deviation]; 134 men), 51 (30.4%), and
24 (25.5%) patients developed dementia within 5 years of PD diagnosis in the training (n= 168) and test sets (n= 94), respectively.
The combined model achieved superior predictive performance compared to the clinical model in training (AUCs 0.928 vs. 0.894,
P= 0.284) and test set (AUCs 0.889 vs. 0.722, P= 0.016). The cognitive composite scores of the frontal/executive function domain
contributed most to predicting dementia. Radiomics derived from the caudate were also highly associated with cognitive decline.
Multiparametric MRI radiomics may have an incremental prognostic value when integrated with clinical profiles to predict future
cognitive decline in PD.
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INTRODUCTION
Cognitive impairment is a common non-motor symptom of
Parkinson’s disease (PD), and approximately 80% of patients
develop dementia within 20 years of diagnosis1. Dementia
significantly affects the morbidity and mortality in PD, and early
detection of patients at high risk of dementia conversion is
important for proper implementation of therapeutic and suppor-
tive strategies2. Although the neurobiology underlying the
cognitive decline in PD remains unclear, nigrostriatal degeneration
is the core pathologic feature of PD3, and basal ganglia are likely
to play a major role in the development of cognitive decline.
Ample evidence suggests that dopamine deficiency in frontos-
triatal circuits is associated with early executive dysfunction in
patients with PD4. In particular, the caudate has been proposed as
a strong candidate associated with cognitive function in PD5. A
recent study showed that a preferential dopamine loss in the
anterior putamen was associated with a greater risk of developing
PD with dementia (PDD)6. Further, several MRI studies have
reported that structural7,8 and functional changes9 in the basal
ganglia are associated with cognitive decline in PD.
Radiomics is an advanced technology extracting high-

dimensional quantitative imaging features, such as intensity
distributions, textural heterogeneity, and shape descriptors10.
Radiomics aims to discover meaningful “hidden” information
within radiological images, which is visually inaccessible to
clinicians. The strength of radiomics is that it can reveal

intralesional heterogeneity by quantification of texture informa-
tion through mathematical extraction of the spatial distribution of
signal intensities and pixel interrelationship11. In this study, we
hypothesized that a combination of clinical information and
radiomic features derived from MRI can help to accurately identify
patients at a high risk of PDD. We investigated whether a
multiparametric radiomics model of the basal ganglia (putamen
and caudate) can improve the PDD prediction in patients with PD
when integrated with clinical profiles.

RESULTS
Clinical characteristics of patients with PD
The baseline clinical characteristics of the 262 patients with PD in
the training set (n= 168) and test set (n= 94) are summarized in
Table 1. In all, 51 (30.4%) and 24 (25.5%) patients developed PDD
within 5 years of PD diagnosis in the training and test sets,
respectively. In both training and test sets, patients who developed
PDD within a defined time window were older, predominantly
male, and had higher UPDRS-III scores compared with the
characteristics of patients who did not develop PDD. The patients
who developed PDD showed lower K-MMSE scores (P < 0.001) and
lower composite scores for the visual memory/visuospatial
function (P= 0.004 and 0.003, respectively), verbal memory
function (P= 0.002 and 0.051, respectively), and frontal/executive
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function domains (P < 0.001) compared to those who did not
develop PDD.
The follow-up period was significantly longer in the training set

compared to the test set (median 8.0 vs. 5.6 years, P= 0.012),
which was expected as the training and test sets were allocated
temporally. There were no significant differences between the
training and test sets with regard to the age, sex, educational
attainment, duration of PD, and the UPDRS-III scores. Cognitive
performances were not significantly different between the
training and test set, except for the verbal memory function.

Selected features and model performances
The multivariable regression analysis revealed that among clinical
features, age and the composite scores of visuospatial/visual
memory, verbal memory, and frontal/executive function domains
had significant associations with dementia development, except
the disease duration, without multi-collinearity. The detailed
results are presented in Supplementary Table 1.
The performances of models for the prediction of PDD

development in the training and test sets are provided in Table 2.
In the training set, the clinical model showed an AUC, accuracy,
sensitivity, and specificity of 0.894 (95% confidence interval [CI],
0.845–0.943), 82.4%, 74.5%, and 85.5%, respectively. In the test set,

the AUC, accuracy, sensitivity, and specificity were 0.722 (95% CI,
0.606–0.838), 73.4%, 58.3%, and 78.6%, respectively.
In the combined clinical and radiomics model, a total of eight

features were selected: five clinical features (age, disease duration,
composite scores of visuospatial/visual memory, verbal memory,
and frontal/executive function domains) and three radiomic
features (Gray-Level Non-Uniformity Normalized from the less-
affected side of the caudate [GLRLM feature from T2], 10
Percentile from the more-affected side of the caudate [first-order
feature from T1], and Gray Level Non-Uniformity from the more-
affected caudate [GLDM feature from T1]). The results of Pearson
correlation analysis between the selected radiomic features and
clinical features are presented in Supplementary Table 2. The
representative figures from two patients with and without
dementia development with their values of selected radiomic
features are provided in the Fig. 1. In the training set, the AUC,
accuracy, sensitivity, and specificity were 0.928 (95% CI,
0.890–0.967), 84.5%, 78.4%, and 87.2%, respectively. In the test
set, the AUC, accuracy, sensitivity, and specificity were 0.889 (95%
CI, 0.820–0.959), 79.8%, 75.0%, and 81.4%, respectively.
Calibration curves of the combined models were obtained

(Fig. 2), demonstrating relatively good consistency between the
estimated and actual probability of dementia conversion in both

Table 1. Baseline clinical characteristics of the study participants.

Clinical variables Training set (N= 168) Test set (N= 94) P valueb

No PDD PDD P valuea No PDD PDD P valuea

n= 117 n= 51 n= 70 n= 24

Age (years) 66.2 ± 6.9 71.3 ± 7.5 <0.001 66.6 ± 8.4 76.2 ± 6.1 <0.001 0.212

Onset age (years) 64.9 ± 7.3 69.5 ± 7.9 <0.001 64.8 ± 8.4 74.7 ± 5.8 <0.001 0.295

Female, no. (%) 62 (53.0%) 16 (31.4%) 0.016 42 (60.0%) 8 (33.3%) 0.043 0.357

Education (years) 8.8 ± 4.5 9.9 ± 4.8 0.146 10.2 ± 3.9 7.3 ± 4.8 0.004 0.608

Time from symptom onset to diagnosis (months) 15.9 ± 14.0 22.0 ± 18.3 0.020 20.7 ± 19.2 18.0 ± 13.8 0.526 0.286

UPDRS-III 21.2 ± 10.2 25.1 ± 11.6 0.030 21.7 ± 8.7 25.6 ± 7.1 0.047 0.794

Cognitive performance

K-MMSE (/30) 27.3 ± 2.2 25.8 ± 2.7 <0.001 27.2 ± 1.9 23.6 ± 3.1 <0.001 0.096

Visual memory/visuospatialc 0.06 ± 0.90 −0.43 ± 1.16 0.004 0.11 ± 0.81 −0.47 ± 0.77 0.003 0.695

Verbal memoryc −0.01 ± 1.05 −0.57 ± 1.00 0.002 0.19 ± 0.93 −0.24 ± 0.94 0.051 0.044

Frontal/executivec 0.17 ± 1.03 −0.85 ± 0.96 <0.001 0.26 ± 0.91 −0.85 ± 0.88 <0.001 0.406

Attention/working memory/languagec 0.00 ± 1.17 −0.01 ± 1.32 0.968 −0.16 ± 0.84 −0.57 ± 0.75 0.034 0.065

PD Parkinson’s disease, PDD Parkinson’s disease with dementia, UPDRS-III Unified PD Rating Scale Part III, K-MMSE the Korean version of the Mini-Mental State
Examination.
Values are expressed as mean ± standard deviation or number (percentage).
aComparisons between patients with PD who progressed to dementia within 5 years after the diagnosis of PD and those who did not develop dementia
within 5 years.
bComparisons between the training and test sets.
cThe composite scores of each cognitive function domain were calculated according to the formula described in the previous work14.

Table 2. The performances of two models for prediction of PDD conversion in the training and test sets.

AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%) P value NRI

Training set

Clinical model 0.89 (0.85–0.94) 82.4 74.5 85.5

Clinical + Radiomics model 0.93 (0.89–0.97) 84.5 78.4 87.2 0.284 0.119

Test set

Clinical model 0.72 (0.61–0.84) 73.4 58.3 78.6

Clinical + Radiomics model 0.89 (0.82–0.96) 79.8 75.0 81.4 0.016 0.207

PDD Parkinson’s disease with dementia, AUC area under the curve, CI confidence interval, NRI net reclassification index.
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training and test sets. We also calculated the goodness of a
predicted probability score with Brier score, which is between 0.0
and 1.0, where a model with perfect accuracy has a score of 0.0
and the worst has a score of 1.0. The Brier score was 0.16 and 0.17
in the training and test set, respectively.

Comparison of model performances
In the training set, the combined clinical and radiomics model
tended to show superior performance compared to that of the
model with only clinical features (AUC: 0.928 vs. 0.894, P= 0.284,
NRI= 0.119). In the test set, the performance of the combined
clinical and radiomics model was superior to that of the clinical
model (AUC: 0.889 vs. 0.722, P= 0.016, NRI= 0.207) (Table 2 and
Fig. 3).

Model interpretability with SHAP
The SHAP values for each selected feature in the combined clinical
and radiomics model were calculated, and the relevant plots are
shown in Fig. 4. For each prediction, a positive SHAP value
indicates an increase in the risk of developing PDD. The plots
show that composite scores of the frontal/executive function
domain were the most important risk factors, followed by age and
composite scores of the visuospatial/visual memory and verbal
memory function. Regarding the radiomic features, Gray Level
Non-Uniformity Normalized from the less-affected side of the
caudate [T2] was the highest contributing factor in predicting
PDD.

DISCUSSION
In this study, we investigated whether the MRI radiomic features
of the basal ganglia can improve the prediction of the
development of dementia in patients with PD when integrated
with a machine-learning classifier. As a result, several key clinical
and radiomics features with significant association with PDD
conversion were identified. We also found that the combined
model of radiomics and clinical features achieved a superior

performance for predicting PDD conversion compared to the
clinical model (AUC 0.889 vs. 0.722 in the test set).
Cognitive impairment is commonly observed in patients with

PD even at the early stages and can severely affect the quality of
life and function, which necessitates identification of predictors of
future cognitive decline in PD12. Several predictors have been
proposed as markers for ongoing cognitive decline in PD,
including age, genetic variation in APOE and MAPT, gait
disturbance, motor assessments, non-motor symptoms, electro-
encephalogram analysis results, cognitive profiles, as well as
several plasma biomarkers (e.g., α-synuclein/Aβ40, MIA, CRP, and
albumin)13–16. In addition, several neuroimaging studies have
shown that structural and functional integrity measured by MRI
data can be a useful marker for early dementia conversion in
patients with PD8,17–20. Our previous works also demonstrated
that cortical thinning in the frontal areas and disrupted white
matter connectivity in frontal and posterior cortical regions were
associated with early dementia conversion in patients with PD18,20.
However, so far, inconsistent results have been reported for both
cortical thickness analyses and diffusion tensor imaging analyses,
and there are no validated neuroimaging biomarkers yet. Radio-
mics, which enables mining of high-dimensional quantitative
imaging features, has been frequently addressed in medical fields,
specifically in the field of neurodegenerative diseases including
PD. Numerous previous studies pointed out that radiomics can
predict the diagnosis of PD21,22, motor handicap23, identify PD
subtypes24, and predict PD progression assessed by Hoehn-Yahr
Scale25. Therefore, based on this potential of radiomics, we
hypothesized that radiomic features derived from classical MRI
parameters may provide complementary information to predict
PDD development. A few recent publications attempted to predict
cognitive decline in PD with radiomics and suggested its
prognostic role26,27, with applying radiomics to either T127 or
quantitative susceptibility mapping26. In our study, multipara-
metric radiomic features from T1, T2, and FLAIR images were
extracted for a relatively larger sample size, allowing for a more
comprehensive analysis. Further, radiomic features were inte-
grated with well-known clinical features to identify the added
prognostic value of radiomics, which was also validated in an

Fig. 1 The representative figures from two patients with and without dementia development with their radiomic feature values. Region
of interests were drawn on both sides of caudate and putamen. A 69-year-old male who did not develop dementia during the follow-up
period showed overall lower scores of selected three radiomic features compared to those from a 73-year-old female who develop dementia.
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independent test set. Our results showed that multiparametric MRI
radiomics, considered together with the clinical profile, has the
potential to predict the development of dementia in patients
with PD.
Among the selected features from the combined clinical and

radiomics model, the Gray Level Non-Uniformity Normalized
feature of GLRLM from the less-affected side of caudate,
significantly contributed to the prediction of PDD conversion.
The Gray Level Non-Uniformity feature measures the similarity of
gray-level intensity values in an image, such that a higher value
correlates with lesser similarity and greater heterogeneity28.
Previous studies have reported that patients with PDD tend to
exhibit iron deposition in the caudate29 and have a greater burden
of cerebral microbleeds compared with patients without cognitive
decline30. In addition, a higher severity in scoring of enlarged
perivascular spaces in basal ganglia was associated with cognitive
decline in PD8. Therefore, the frequently observed MRI findings in
PD with cognitive decline may be attributed to the heterogeneity
in the caudate, which might be captured by extracted radiomic
features. Interestingly, the corresponding feature extracted from
the less-affected side of the caudate rather than the more-affected
side contributed the most to prediction of PDD conversion.
Although the exact mechanism is unclear, much evidence has
shown that the less-affected striatum also demonstrates consider-
able degree of degeneration, reduced endogenous dopamine,
reduced dopamine uptake, and reduced fiber integrity, as
assessed using PET, MR spectroscopy, and diffusion tensor
imaging31. Further, the less-affected striatum appears to provide
compensatory support to maintain the dopaminergic activity in
the more-affected striatum, through crossed nigrostriatal path-
ways and alterations in subthalamic activity32. Therefore, the
radiomic feature from the less-affected side of the caudate may
provide clinically relevant information to predict PDD conversion.
In terms of the clinical variables, the frontal/executive function

was the single most significant factor for the prediction of
dementia. Several previous studies have attempted to identify
neuropsychological predictors for PDD, yielding heterogeneous
results. All cognitive domains, including the frontal/executive,
visuospatial, memory, and language functions, have been
associated with early PDD conversion2. A large community-
based cohort study from the United Kingdom33, proposed that
posterior cortical dysfunction, but not frontostriatal deficits, is a
predictor for early dementia conversion in PD. Meanwhile, our

previous works supported that the frontal/executive dysfunction
would make a greater contribution to the development of PDD
than dysfunction in other cognitive domains14,18,20. These
discrepant findings likely reflect the marked clinical heterogeneity
of PD14. The results of the present study are consistent with those
of our previous works14,18,20, which highlighted the contribution of
frontal/executive dysfunction to the early development of PDD,
even when the radiomic features from the basal ganglia are
additionally included as predictors. Although the exact mechan-
ism remains to be elucidated, impairment of the frontal/executive
function or frontal-subcortical pathways may further affect other
cognitive domains through disruption of the reciprocal cortico-
cortical connections or important nodes of information
integration34.
In our study, we attempted to predict whether the patients

develop dementia or not and performed classification analysis
for the prediction of binary outcomes, rather survival analysis
which predicts time to dementia development. Unlike deter-
mining the survival in cancer patients, the estimation of the
time of dementia conversion in PD could be inaccurate, even
though we made a great effort to determine whether patients
progressed to dementia at every visit. Given that a considerable
number of patients with PD eventually develop dementia and
each patient enrolled in this study had a different follow-up
period, we employed a 5-year time window for the determina-
tion of dementia development. The time from the diagnosis of
PD to dementia conversion was treated as a categorical variable
(i.e., whether a patient developed dementia within 5 years of PD
diagnosis) in the model, rather than a continuous variable for
the Cox proportional hazards model in the survival analysis.
Indeed, in studies of patients with PD, binary classification tasks
are frequently performed to predict dementia conversion20,35,36.
Further, rather using a conventional statistical method such as
binary logistic regression analysis, we applied machine-learning
techniques in our study. Regression analysis is designed for
relatively small datasets, and is not suitable when the number of
features or variables exceeds the number of observations (i.e.,
high-dimensional datasets)37. Regression analysis can also be
applied in the radiomics studies if appropriate feature selection
methods can be preceded, however, we chose machine-
learning techniques for the analysis as it is a more flexible
alternative for analyzing high-dimensional, right-censored, and
heterogeneous data37. Machine-learning techniques inherently

Fig. 2 Calibration curves and Brier scores of the combined model (clinical + radiomic features) in both training and test sets. The Brier
score was 0.16 and 0.17 in the training and test set, respectively.
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handle high-dimensional data and have been adapted to
handle censored data, therefore, can give more accurate results
than traditional statistical methods when modeling high-
dimensional data.
For the comparison of model performances, we used the two

statistical methods: DeLong’s method and NRI. NRI was proposed
either as an alternative or a supplement to C-index, as C-index has
been criticized as being relatively insensitive to changes in
absolute risk estimates and therefore having little power to detect
modest but potentially meaningful differences between risk
models38,39. Together with DeLong’s method, NRI is one of the
widely used statistics for the assessment of the two models’
relative ability to discriminate between events and nonevents by
quantifying the agreement between “upward” and “downward”
risk reclassifications and event status40,41. In the training set,
adding radiomics to the clinical model did not significantly
enhance the model performance when the performances were
compared with DeLong’s method. It may be attributed to the fact
that the pure clinical model performed well enough with high
AUC, comparable to that of the combined model, and the
difference in AUCs was subtle. However, NRI proved the super-
iority of the combined clinical and radiomics model. In the test set,
it was noteworthy that the combined model maintained a
superior performance therefore. the AUCs of the clinical and the
combined clinical and radiomics model exhibited a significant
difference when assessed by both DeLong’s method and NRI. We
believe that our study proved the added prognostic value of
radiomics with adequate statistics and validation.
There are several limitations in our study. First, it was a single-

center, retrospective study. Further studies with a larger dataset
and external validation are needed to evaluate the generalizability
of the models. Second, we used an automatic pipeline for brain
segmentation (i.e., volBrain), which simply divided the basal
ganglia into the putamen and caudate. More detailed segmenta-
tion of the striatum is needed to elucidate the association
between other striatal sub-regions (e.g., anterior putamen and
ventral striatum) and the risk for PDD conversion5,6.
In conclusion, we developed a model based on clinical and

radiomic features to predict dementia conversion within 5 years of
PD diagnosis. Its performance was superior to that of the model
based only on clinical profiles. These findings suggest that clinical
profiles and multiparametric MRI radiomics integrated with
machine-learning classifiers may help predict future cognitive
decline in patients with PD.

METHODS
Participants
We retrospectively reviewed the Yonsei Parkinson Center data-
base for medical records of 293 consecutive patients with newly
diagnosed PD who first visited the outpatient clinic at Severance
Hospital between June 2008 and July 2017. All the patients had
been followed up for more than 3 years. PD was diagnosed
according to the clinical diagnostic criteria of the United Kingdom
PD Society Brain Bank42. All patients underwent brain MRI and
detailed neuropsychological tests at the initial assessment. All
subjects underwent a standardized neuropsychological battery
called the Seoul Neuropsychological Screening Battery (SNSB) at
initial assessment43. The SNSB covers five cognitive domains:
attention and working memory (forward/backward digit span task
and letter cancellation); language and related functions (the
Korean version of the Boston Naming Test [K-BNT], calculation,
and praxis); visuospatial function (the Rey Complex Figure Test
[RCFT] copy), verbal and visual memory (immediate recall/delayed
recall/recognition test using the Seoul Verbal Learning Test [SVLT]
for verbal memory; immediate recall/delayed recall/recognition
test using the RCFT for visual memory); and frontal/executive
function (contrasting program and go/no-go test, the Controlled
Oral Word Association Test [COWAT], and the Stroop test). To
reduce the redundancy of neuropsychological subtests and the
possibility of overrepresenting a single cognitive function domain,
we first conducted a factor analysis based on age- and education-
specific z-scores of 14 scorable subtests of the SNSB (forward digit
span task, backward digit span task, K-BNT, RCFT copy, immediate
recall, delayed recall, and recognition items using the SVLT and
RCFT, COWAT for animal, COWAT for supermarket, COWAT for
phonemic fluency, and the Stroop color reading test) to yield four
cognitive function domains (visual memory/visuospatial [factor 1],
verbal memory [factor 2], frontal/executive [factor 3], and
attention/working memory/language [factor 4]) in patients with
PD14. The calculating formula are as follows:
Visual memory/visuospatial function = 0.422 × RCFT (immediate

recall)+ 0.417 × RCFT (delayed recall)+ 0.259 × RCFT copy+
0.179 × RCFT (recognition)− 0.033 × SVLT (delayed recall)−
0.098 × SVLT (recognition)− 0.056 × SVLT (immediate recall)−
0.096 × COWAT-semantic fluency [supermarket]− 0.048 × COWAT-
semantic fluency [animal]− 0.026 × COWAT-phonemic
fluency+ 0.076 × Color Stroop test - 0.148 × Forward digit span−
0.072 × Backward digit span+ 0.034 × K-BNT.
Verbal memory function=−0.016 × RCFT (immediate

recall)− 0.014 × RCFT (delayed recall)− 0.138 × RCFT copy− 0.025 ×
RCFT (recognition)+ 0.436 × SVLT (delayed recall)+ 0.437 × SVLT

Fig. 3 Receiver operating characteristics curves of the models in the training and test sets. a In the training set, the combined clinical and
radiomics model tended to show superior performance compared to that of the model with only clinical features (AUC: 0.928 vs. 0.894,
P= 0.284, NRI= 0.119). b In the test set, the performance of the combined clinical and radiomics model was superior to that of the clinical
model (AUC: 0.889 vs. 0.722, P= 0.016, NRI= 0.207). AUC area under the curve, NRI net reclassification index.
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(recognition)+ 0.378 × SVLT (immediate recall)− 0.030 × COWAT-
semantic fluency [supermarket]− 0.020 × COWAT-semantic fluency
[animal]− 0.073 × COWAT-phonemic fluency− 0.090 × Color Stroop
test− 0.043 × Forward digit span− 0.061 × Backward digit
span− 0.001 × K-BNT.
Frontal/executive function=−0.054 × RCFT (immediate

recall)− 0.034 × RCFT (delayed recall)+ 0.058 × RCFT copy−
0.149 × RCFT (recognition)− 0.060 × SVLT (delayed recall)−
0.126 × SVLT (recognition)+ 0.059 × SVLT (immediate recall)+
0.405 × COWAT-semantic fluency [supermarket]+ 0.373 ×
COWAT-semantic fluency [animal]+ 0.315 × COWAT-phonemic
fluency+ 0.305 × Color Stroop test− 0.111 × Forward digit
span+ 0.022 × Backward digit span+ 0.017 × K-BNT.
Attention/working memory/language function=−0.156 × RCFT

(immediate recall)− 0.163 × RCFT (delayed recall)+ 0.026 × RCFT
copy+ 0.227 × RCFT (recognition)− 0.069 × SVLT (delayed
recall)+ 0.039 × SVLT (recognition)− 0.098 × SVLT (immediate
recall)− 0.107 × COWAT-semantic fluency [supermarket]− 0.071 ×

COWAT-semantic fluency [animal]+ 0.081 × COWAT-phonemic
fluency− 0.055 × Color Stroop test+ 0.593 × Forward digit
span+ 0.449 × Backward digit span+ 0.233 × K-BNT.
Parkinsonian motor symptoms were assessed using the Unified

Parkinson’s Disease Rating Scale Part III (UPDRS-III), and the sum of
the scores of the UPDRS-III items was calculated for each side of
the body to identify the more-affected side.
Among 293 patients, 21 (7.2%) patients were not followed up

for the full 5 years and did not develop dementia until they were
lost to follow-up. In addition, 10 patients were excluded from the
study due to errors in the MRI dicom files, which resulted in
failures of radiomic feature extraction. Thus, a total of 262 patients
with PD were included in the final study population. Patients who
visited the clinic between 2008 and 2013 were allocated to the
training set (n= 168), and the patients who visited the clinic
between 2014 and 2017 were allocated to the test set (n= 94) to
perform external temporal validation (Fig. 5).

Fig. 4 Model interpretability of the combined clinical and radiomics model for the prediction of dementia conversion with SHapley
Additive exPlanations (SHAP) in the training set. a Variance importance plot listing the most significant variables. Features with greater
importance for the prediction of dementia conversion are positioned in the upper portion, and the features are presented in descending
order. b Summary plot of feature impact on the decision of the model showing positive and negative relationships of the predictors with the
target variable. A positive SHAP value indicates an increase in the probability of dementia conversion. c Decision plot showing how the model
predicts dementia conversion. Starting at the bottom of the plot, the prediction line shows how the SHAP values accumulate from the base
value to arrive at the model’s final score at the top of the plot, demonstrating how each feature contributes to the overall prediction. d Force
plot of a representative patient who developed dementia during the follow-up period. Red arrows represent features that drive the prediction
value higher, while blue arrows represent features that drive the prediction value lower. The size of each arrow represents the magnitude of
the effect of the corresponding feature. Note that factor 3 and age largely push the model prediction score higher. Factor 1 visual memory/
visuospatial function, Factor 2 verbal memory function, Factor 3 frontal/executive function.
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Standard protocol approvals, registration, and patient
consents
This study was approved by the Yonsei University Severance
Hospital institutional review board (4-2022-0650), and the need for
informed consent was waived due to the retrospective nature of
the study.

Assessment of dementia conversion
During the follow-up period, patients were diagnosed with PDD if
they fulfilled the clinical criteria for probable PDD based on the
Movement Disorder Society Task Force guidelines14,44. After
diagnosis of PD, patients visited the outpatient clinic at 3-month
intervals, and at every visit, they or their caregivers were asked
questions regarding their daily functioning. Additionally, all
patients underwent serial cognitive assessment using the Korean
version of the Mini-Mental State Examination (K-MMSE) and Clock
Drawing Test with a one-year interval (Level I tests)44. In case of
definite cognitive decline or evidence of impairments in daily life
due to cognitive changes (Level I45), most patients underwent the
SNSB to identify the pattern of cognitive deficits and diagnose
PDD at Level II44,46.
Since a considerable number of patients with PD eventually

develop PDD1,47, a definitive time window is needed to determine
whether the patient is at high risk of developing PDD18. A 5-year
time window was employed based on previous studies14,20.
Whether the patients developed PDD during the 5-year of follow-
up period was investigated. Among the 262 patients with newly
diagnosed PD, 75 patients had progressed to PDD within 5 years
after the diagnosis of PD.

MRI protocols
All scans were acquired with a 3T scanner (Achieva; Philips
Healthcare, Best, the Netherlands, or Ingenia CX; Philips Health-
care, Best, the Netherlands) with a 32-channel head coil. Head
motion was minimized with restraining foam pads provided by
the manufacturer. The MRI imaging protocol included T2-
weighted images (repetition time [TR]/echo time [TE],
2800–3000/80–100ms; field of view [FOV], 230–240mm; section
thickness, 5 mm; slice gap, 7 mm; matrix, 256 × 256), FLAIR (TR/TE,
9000–10,000/110–125 ms; FOV, 240mm; section thickness, 5 mm;
slice gap, 7 mm; matrix, 256 × 256), and noncontrast 3D T1-
weighted images (TR/TE, 6.9/3.2 ms; FOV, 230–240 mm; section
thickness, 1.2 mm; matrix, 256 × 256).

Image preprocessing and radiomic feature extraction
The detailed processes of image preprocessing and radiomic
feature extraction are described in Fig. 6. Automated mask
extraction of the basal ganglia, namely putamen and caudate, was
performed using volBrain (https://volbrain.upv.es/)48, which is a
robust automatic pipeline for brain segmentation with high
accuracy49. Preprocessing of the images was performed to
standardize the data analysis across patients. After removing
unwanted low-frequency intensity non-uniformity by applying the
N4 bias correction algorithm50, normalization of signal intensity
was performed via z-score. All images were resampled to 1-mm
isovoxels. T2 and FLAIR images were co-registered with T1 images
by affine transformation with normalized mutual information as a
cost function.
After image preprocessing, radiomic feature extraction from

bilateral caudate and putamen was performed using PyRadiomics
(version 2.0)51, which conformed to the Image Biomarker
Standardization Initiative52. Based on the more-affected side of
each patient (either right or left), radiomic features from the more-
affected caudate or putamen were distinguished from those of
the less-affected caudate or putamen. The radiomic features
included 14 shape features, 18 first-order features, and 75 second-
order features [such as gray-level co-occurrence matrix (n= 24),
gray-level run-length matrix (GLRLM, n= 16), gray-level size zone
matrix (n= 16), gray-level dependence matrix (GLDM, n= 14), and
neighboring gray tone difference matrix (n= 5)]. A total of 1284
(107 features × 2 sub-regions of the basal ganglia (caudate and
putamen) ×more-affected/less-affected side × 3 sequences) radio-
mic features were extracted.

Machine learning and model construction
Feature selection and machine-learning process were performed
using Python 3 with the Scikit-Learn library module (version
0.21.2). Because the number of radiomic features was greater than
the number of cases, the SelectKBest function in the Scikit-Learn
module was used for feature selection according to the k highest
scores53. Then, selected radiomic features were integrated with
the ExtraTrees classifier to build a predictive model with ten-fold
cross-validation. In the ten-fold cross-validation, the training set is
split into 10 folds. A fold is used in each iteration once as testing
data, while the remaining folds are used as training data54. The
process is repetitive until all dataset is evaluated, and the cross-
validation results in the average performance of the models.

Fig. 5 Flowchart of patient enrollment.
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Two types of models were trained as follows: (1) a clinical model
—age, disease duration, cognitive composite scores of visual
memory/visuospatial, verbal memory, and frontal/executive func-
tion domains, and (2) a combined model based on radiomics and
clinical features. The clinical features to predict PDD conversion
within 5 years of PD diagnosis were selected based on the Cox
regression analysis results of our previous study14. The two models
were developed from the training set and were validated in the
test set. The multivariable regression analysis was performed in
262 PD patients to examine whether each clinical feature had
independent and significant associations with the development of
dementia. Pearson correlation analysis was performed between
the selected radiomic features and clinical features to evaluate
whether they have a significant correlation. The area under the
receiver operating characteristic curve (AUC), accuracy, sensitivity,
and specificity were obtained. Additionally, the calibration curves
of the combined model (clinical and radiomic features) were
plotted in both training and test sets to examine the models’
accuracy, together with Brier score. Calibration refers to the
agreement between observed outcomes and predictions55. A
calibration plot is the primary graphical method for evaluating
calibration performance. A graphical assessment of calibration is
possible with predictions on the x axis, and the outcome on the y
axis. Perfect predictions should be on the 45° line. A slope close to
1 and an intercept close to 0 (i.e., the 45° line of the plot) indicates
good calibration56. For linear regression, the calibration plot is a
simple scatter plot. For binary outcomes, the plot contains only 0
and 1 values for the y axis57. Smoothing techniques can be used to
estimate the observed probabilities of the outcome (p(y= 1)) in
relation to the predicted probabilities.
The Brier score is not a measure of either discrimination

performance or calibration performance alone, but a measure of
overall performance, which incorporates both the discrimination

and calibration aspects of a model that predicts binary out-
comes58. Therefore, it is desirable to present both the Brier score
and the calibration plot.
The Brier score is calculated as follows:

Brier score ¼ 1
n

Xn

i¼1

ðpi � oiÞ2

where n is the number of subjects, pi is the probability of event
predicted by the model for the ith subject, and oi is the observed
outcome in the ith subject (i.e., 1 for event or 0 for non-event)57.
Therefore, a score closer to 0 indicates a better predictive
performance.
The AUCs of those two models were compared by DeLong’s

method59 and the net reclassification index (NRI)60. A NRI value
greater than zero indicates superior performance of a new model
over an old model. Multiple comparisons were corrected using a
false-discovery rate approach, and a false-discovery rate-corrected
P value < 0.05 was considered statistically significant. All statistical
analysis was performed using statistical software R (version 4.0.1; R
Foundation for Statistical Computing, Vienna, Austria).

Model interpretability with Shapley Additive exPlanations
(SHAP)
SHAP was used to interpret and evaluate the significance of each
radiomic feature from the radiomics model61. SHAP, originating
from game theory, assesses the contribution of each variable of
the model to its output61,62. The output of each possible
combination of other variables is collected. SHAP analysis enables
the quantification of continuous and categorical variables in the
texture features only and the combined models. Features listed
higher on the left vertical axis indicate a stronger influence on the
overall model outcome. Feature values are color-coded: red data
points indicate higher values, and blue data points indicate lower

Fig. 6 Workflow of image preprocessing, radiomics feature extraction, and machine learning. (1) Preprocessing and segmentation: For the
radiomic feature extraction, registration of T2 and FLAIR to T1 images and normalization of signal intensities was performed. The regions of
interest were put on the bilateral putamen and caudate. (2) Feature extraction: Three different categories of radiomic features—shape feature,
first-order features, and second-order features were obtained. (3) Radiomics model construction: SelectKBest feature selection method
combined with ExtraTrees classifier were used to develop two predictive models—clinical and combined (clinical + radiomics) model. The
models were developed in the training set, then validated in the test set. (4) Model interpretation: We performed SHAP analysis to understand
the contributing role of each selected radiomic feature and obtained decision plot, summary dot plot, and force plot.
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values63. In addition, this allows the quantification of the impact of
each variable on the prediction, not only on a global level (on the
overall population) but also locally (on a subset or one patient)64.
Thus, Shapley values for each variable are additive, which makes
the contribution of each variable convertible to a share of the
output classification probability. This provides an intuitive
visualization for clinicians using this model. SHAP measured the
contribution of each feature of the model to the increase or
decrease in the probability of PDD development within a 5-years’
time window.

DATA AVAILABILITY
All data and codes used for this study is available from the corresponding author on
request.
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