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Abstract: In this study, a combined convolutional neural network for the diagnosis of three benign
skin tumors was designed, and its effectiveness was verified through quantitative and statistical
analysis. To this end, 698 sonographic images were taken and diagnosed at the Department of
Dermatology at Severance Hospital in Seoul, Korea, between 10 November 2017 and 17 January
2020. Through an empirical process, a convolutional neural network combining two structures,
which consist of a residual structure and an attention-gated structure, was designed. Five-fold cross-
validation was applied, and the train set for each fold was augmented by the Fast AutoAugment
technique. As a result of training, for three benign skin tumors, an average accuracy of 95.87%, an
average sensitivity of 90.10%, and an average specificity of 96.23% were derived. Also, through
statistical analysis using a class activation map and physicians’ findings, it was found that the
judgment criteria of physicians and the trained combined convolutional neural network were similar.
This study suggests that the model designed and trained in this study can be a diagnostic aid to assist
physicians and enable more efficient and accurate diagnoses.

Keywords: convolutional neural network; ultrasound image; benign skin tumor; class activation map

1. Introduction

Ultrasound is an attractive modality for the noninvasive evaluation of subcutaneous
lesions because it is simple to use, safe, and relatively inexpensive [1–4]. In the field of
cutaneous oncology, an ultrasound examination performed before surgery can provide
information about tumor type and size, locate the existence of surrounding vessels, identify
the best location for the incision, and set the range while viewing the ultrasound screen in
real-time with the patient [5–7].

However, it is difficult to apply ultrasound imaging to diagnosis owing to limitations
such as noise, artifacts, and complexity [8]. In the ultrasonic image, unlike in other fields,
there are additional acoustic noise and speckle noise, which can make it more difficult
to extract features from the ultrasound image. Moreover, various artifacts occur due to
assumptions such as consistency of speed of sound, beam axis straightness, attenuation
consistency in tissue, and pulse only going to the target. Furthermore, the anatomical
complexity of the human body is added, the more difficult it is to interpret the image
information [9]. Therefore, physicians often make a diagnosis through a specific biopsy
rather than simply making a diagnosis on ultrasound images.

Recently, convolutional neural networks (CNNs), which are one of the artificial intelli-
gence fields, have been actively applied to various medical vision modalities, including
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ultrasound imaging [10]. It is also widely used in the diagnosis of skin lesions in ultrasound
imaging [11–18]. The CNNs used in these studies produced expert-level diagnostic accu-
racy compared to histopathological results. Also, since it is a real-time level of diagnostic
speed, it can serve as an excellent diagnostic aid.

Therefore, we believe that the deep-learning model can achieve accurate predictions
and classifications of various skin diseases based on ultrasound images. In this study, using
combined CNN, we designed an automatic ultrasound image diagnosis algorithm and
applied it to three benign skin tumors (BSTs), including epidermal cyst, the most common
cutaneous cyst; lipoma, the most common benign soft-tissue neoplasm; and pilomatricoma,
the most common appendage tumor in children [19]. The proportion of the three tumors
has been surveyed to account for approximately 70% of BSTs in South Korea [20]. Then
statistical analysis was also performed on the trained combined CNN’s prediction using
class activation map (CAM) [21] and physicians’ findings.

2. Materials and Methods
2.1. Study Subjects

The institutional review board (IRB) of Yonsei Severance Hospital (Approval Number:
4-2020-0910) approved this retrospective, single-center study, and the written informed
consent of patients was waived. All research was performed in accordance with relevant
guidelines and regulations.

The images for datasets were taken and diagnosed at the Department of Dermatology
at Severance Hospital in Seoul, Korea, between 10 November 2017 and 17 January 2020. In
addition, sonographic imaging was performed using a Noblus ultrasound system (Hitachi,
Inc., Tokyo, Japan) with two probes (7–13 and 5–18 MHz). The inclusion criteria for
this study were patients who underwent surgery for benign skin tumors and received
ultrasound examination. On the other hand, the exclusion criteria involved patients who
did not undergo ultrasound examination or did not have skin pathology testing performed
on the excised tissues after surgery.

The dataset consists of 698 images from 250 patients; mean [SD] age of 46.4 [16.6] years;
156 men (62.4%); 149 patients with epidermal cysts, 74 patients with lipoma, and 32 patients
with pilomatricoma. Additionally, there were 4 patients who received diagnoses of both
epidermal cysts and lipoma and 1 patient who received diagnoses of both pilomatricoma
and lipoma. Each patient’s benign tumor type was determined by histopathological
examination through biopsy. The example images of each benign skin tumor can be seen
in Figure 1.

2.2. Data Preprocessing

The entire original data contains a number of Doppler images to identify the char-
acteristics of blood flow. In the Doppler-colored region of the images, the morphological
characteristics of benign tumors would be partially damaged, which may cause perfor-
mance degradation when performing deep learning. Therefore, it is necessary to fill the
corresponding colored areas using image processing method. In this study, in order to fill in
the areas, a traditional inpainting technique that fills the empty areas using the surrounding
information of the original image was used [22]. In addition, all the outer parts other than
the skin area displayed in the center of the original image are all black with a value of 0,
so it is unnecessary information. Therefore, for all data sets, the middle skin areas are all
cropped to be used as dataset.

Data augmentation is a method of increasing the amount of data by acquiring new
data through image transformation in an existing data set. There are dozens of ways to
transform an image, including geometric methods such as translate and rotate, methods
that transform pixel values such as invert, solarize, and equalize, and methods of adding
noise such as Gaussian and speckle. However, it takes a lot of effort and time to select the
most suitable transformation methods for the given data because it requires many trials,
including deep-learning model training. Therefore, in this study, Fast AutoAugment [23],
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one of state-of-the-art data augmentation methods that automatically finds transformation
methods suitable for a given data set, was applied. Through this, it was possible to
compensate for the performance degradation of the deep learning model caused by the
small number of data sets.
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Figure 1. Example images of three skin lesions correctly classified by the convolutional neural
network algorithm. The various symbols in the figure are for the services provided by the ultrasound
imaging equipment, including the measurement of lesion size. (a) Sample image of a patient with
epidermal cyst. Our algorithm predicts this image with 73.85%, 9.97%, and 16.18% probability rates
for three classes (epidermal cyst, lipoma, pilomatricoma) in order. (b) Sample image of a patient
with lipoma. Our algorithm predicts this image with 6.76%, 77.11%, and 16.12% probability rates for
three classes (epidermal cyst, lipoma, pilomatricoma) in order. (c) Sample image of a patient with
pilomatricoma. Our algorithm predicts this image with 13.93%, 10.50%, and 75.56% probability rates
for three classes (epidermal cyst, lipoma, pilomatricoma) in order.

2.3. Combined CNN Structure

Two CNN model structures were combined to produce a new CNN model suitable
for the current data set and task (Figure 2). The first structure is a residual structure [24]
that has been used to achieve high performance in various tasks since the publication
of the paper. The second is attention-gated structure [25], one of the state-of-the-arts in
the classification field in ultrasound images. Compared with training using only residual
structure, higher performance was obtained when training by combining attention-gated
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structure. The output of the combined CNN is generated as probability values for three
benign tumors.
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of the feature map and the attention map.

2.3.1. Residual Structures

For the residual structure in the combined CNN, the structure up to the 4th residual
block in the pretrained ResNet18 architecture was used. By inputting the feature maps in
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blocks 2 and 3 into the attention gate, each new feature map is obtained. Then, the feature
map of block 4 and the two newly obtained feature maps are flattened and aggregated after
passing through a fully connected layer to obtain the final output. The output obtained
in this way finally goes through the softmax activation function and returns a probability
value for each benign skin tumor.

2.3.2. Attention-Gated Structures

The overall flow of the attention-gated structure is shown in Figure 3. First, a compat-
ibility score is calculated using the current feature map and the global feature map, and
the calculated compatibility score is normalized. The map created at this time is called an
attention map. Finally, the output of the attention unit is completed through element-wise
multiplication of the calculated feature map and the attention map. The equation for
computation of the attention map is as follows:

A
(

Fl , G
)
= Wcσ

(
W f f l

i + Wggi + bg

)
+ bc

where, σ = eCi
l /

I

∑
i=1

eCi
l

(1)

First, Fl means the feature maps of the current layer l, and G becomes a global feature
for the feature map. On the right side of the equation, Wc, W f and Wg all mean weights,
which are trainable parameters, and are weights for compatibility, feature map, and global
feature map, respectively. Then, in order to match the dimensions of the feature map and
the global map, each weight is multiplied and then the sum of the two maps is calculated.
Through this process, the compatibility map c = W f f l

i + Wg g + bg is completed. Then,
normalization is performed using the softmax function σ. Multiplying the result by the
weight once again and adding the bias, the attention map for the current feature map is
completed. By performing element-wise multiplication of the completed attention map
with the original feature map, the final attended feature map is obtained (Equation (2))

Fatd

(
Fl
)
= A

(
Fl , G

)
·Fl (2)

Performing global average pooling and propagating the completed attended feature
map separately from the existing feature map is done by an attention-gated structure. This
structure is robust to the final classification result because it adds critical information to the
feature maps for each layer.

As shown in Figure 3, a global feature map is created through grid max pooling.
Unlike methods that converge to a single value, such as global average pooling (GAP)
or global max pooling (GMP), since max pooling for each grid of a specific size is used,
local information can be preserved in a given feature map. In general, medical imaging
images have extremely local features, and thus using grid max pooling can improve the
performance of deep-learning models.

2.4. Optimizing Combined CNN

Optimization of combined CNN was performed on an NVIDIA RTX 2080Ti graphics
processing unit (GPU) 11 GB. The development environment of deep-learning algorithm is
Python 3.9.5 using pytorch 1.7.1 with CUDA 10.1.

2.4.1. Data Preparation

For five-fold cross-validation, patients were divided into five groups of 50 each; one
group was set as a test set, and the other groups were set as a training set. In addition,
as a result of Fast AutoAugment, sub-policies consisting of image transformation meth-
ods, probability, and magnitude values were determined, and data augmentation was
performed for each train set. The detail of Fast AutoAugment algorithm is introduced in
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Supplementary Materials. By data augmentation, the number of train sets increased by
twenty-one times, and the overall data distribution can be seen in Table 1.
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Table 1. Data distribution for each fold of the five-fold cross-validation dataset. This table summarizes
the number of images of training set and test set for each iteration of five-fold cross-validation and
the number and ratio of the three classes in each dataset.

Dataset
Total No. of Images Images, No. (%)

(Augmented a) Epidermal Cyst Lipoma Pilomatricoma

1st fold
Training set 548 (11,508) 310 (56.6) 183 (33.4) 55 (10.0)
Test set 150 76 (50.7) 49 (32.7) 25 (16.7)

2nd fold
Training set 544 (11,424) 311 (57.2) 165 (30.3) 68 (12.5)
Test set 154 75 (48.7) 67 (43.5) 12 (7.8)

3rd fold
Training set 579 (12,159) 317 (54.7) 198 (34.2) 64 (11.1)
Test set 119 69 (58.0) 34 (28.6) 16 (13.4)

4th fold
Training set 558 (11,718) 322 (57.7) 177 (31.7) 59 (10.6)
Test set 140 64 (45.7) 55 (39.2) 21 (15.0)

5th fold
Training set 558 (11,718) 301 (53.9) 207 (37.1) 50 (9.0)
Test set 140 85 (60.7) 25 (17.9) 30 (21.4)

a Fast AutoAugment method was used for augmentation only to the training dataset.

2.4.2. Training Details

When training the designed combined CNN, the optimum hyperparameters were
determined by multiple experiential processes. The hyperparameters determined are as
follows: first, the focal loss is used as the loss function, the alpha value is set to 0.25, and the
gamma value is set to 3. For the optimizer, adaptive moment estimation (Adam) [26] was
used with learning rate of 1 × 10−4 (β_1 = 0.9 and β_2 = 0.999). In addition, a scheduler that
sets the learning rate to decrease by 0.1 for every 7th epoch was used. The early stopping
technique, which stops training if it is not optimized above a certain level, is used, and the
model weights values of the epoch, which had the best performance, are adopted. The
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input image size was set to 224 × 224 according to the cited structure, and the mini-batch
size was set to 64, which pooled the best performance among the multipliers of 2 that did
not exceed the GPU capacity. Five-fold cross-validation was performed, and evaluation of
each fold was performed based on confusion matrix.

2.5. Statistical Analysis

Statistical analyzes were performed to determine whether the judgment criteria of
physicians and the judgment criteria of the trained CNN model were similar. First, the
thresholded CAM images for all data are extracted in an overlapping form with the original
images. After showing the CAM images to the physician, the degree of how much the
judgment criteria were matched for each data was assigned a level from 0 to 2. In this
study, the level distribution of all data created was called decision consistency. Further,
when diagnosing three benign skin tumors on ultrasound skin images, the sonographic
features that physicians use as a standard are shown in Table S1 in Supplementary Materials.
During the analysis, the clinicians were blinded to the categories of benign skin tumors
when reviewing the CAM images. This blinding was performed to ensure unbiased
evaluation and minimize any potential bias that could affect the results.

The decision consistency made with levels 0, 1, and 2 is compared with the confidence
distribution of the trained model for statistical analysis. In this case, the confidence distri-
bution is made with the distribution of probability values for the corresponding classes
when the trained model makes predictions. Categorical variables were presented as the
number and proportion of patients and were compared using the Pearson chi-square test.
Continuous variables are presented as mean and were analyzed using two-way analysis of
variance (ANOVA). Two statistical analyses consisting of linear-by-linear association and
ANOVA tests were performed on these two distributions. Two statistical analyses were
done at the 95% confidence interval, so it would be statistically significant if the p-value in
each case was less than 0.05. This means that the more the trained model makes a judgment
with high confidence, the more similar the focus on the image is to the physician’s. In
other words, the designed model was trained to diagnose three benign skin tumors with
criteria similar to physicians’ judgment. The IBM SPSS software version 25 was used for
statistical analysis.

3. Results
3.1. Quantitative Evaluation

Table 2 and Figure 4. Show the five-fold cross-validation results for 698 total ultrasound
skin images. Figure 4 shows the plots of the receiver operating characteristic (ROC)
curves for the test set with each iteration through cross-validation results. Table 2 shows
a summary of the cross-validation results of the test set over five iterations specified for
each BST. The classifier demonstrated excellent performance for classifying all three types
of BST, exceeding 90% in nearly all metrics. However, the F1 score and sensitivity for
pilomatricoma remained at around 70%.

Table 2. Summary of the five-fold cross-validation result. This table shows the results for each benign
skin tumor for five-fold cross-validation. Abbreviations: AUROC, area under the receiver operating
characteristic curve; CI, confidence interval.

Tumor Types Accuracy, %
Mean a (95% CI b)

AUROC,
Mean a (95% CI b)

F1 Score,
Mean a (95% CI b)

Sensitivity,
Mean a (95% CI b)

Specificity,
Mean a (95% CI b)

Epidermal cyst 94.9 (91.3–98.5) 0.962 (0.931–0.993) 95.5 (93.2–97.9) 97.9 (95.4–100.0) 92.4 (84.5–100.0)

Lipoma 98.2 (95.7–100.0) 0.996 (0.986–1.000) 97.6 (94.7–100.0) 96.5 (91.7–100.0) 98.9 (97.4–100.0)

Pilomatricoma 94.5 (90.6–98.4) 0.905 (0.804–1.000) 78.8 (63.3–94.3) 75.9 (50.6–100.0) 97.4 (94.4–100.0)
a Average of the values obtained for each class (epidermal cyst, lipoma, pilomatricoma). b Confidence Interval.
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Figure 4. Receiver operating characteristic (ROC) curve for the test set for each iteration in cross-
validation. In each graph, the curves and area under the receiver operating characteristic curve
(AUROC) values for the three classes are displayed. Subfigures (a–e) illustrate the ROC curves for
the first to fifth fold of the dataset.

3.2. Statistical Analysis

When a deep learning model predicts, CAM visually shows which parts of a given
image are concerned. The examples of the CAMs extracted from trained combined CNN
are shown in Figure 5. Through the CAMs in the figure, it can be visually confirmed that
the trained combined CNN is well activating the expression location of each benign skin
tumor. The results of statistical analysis between the consistency distribution made by
comparing physicians’ findings with CAMs and the confidence distribution of the trained
model are as follows. First, as a result of the linear-by-linear association test, a p-value
of <0.001 was obtained. Second, as a result of the ANOVA test, there was a significant
difference in the confidence score between the three decision consistency groups (p < 0.001).
Additionally, in the pairwise comparisons, the confidence scores in the all-matched cases
were significantly greater than those in the case with non-matched (p < 0.001) or partially
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matched (p < 0.001) after the Bonferroni correction. The box plot and combined matrix for
statistical analysis are shown in the Supplementary Materials.
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Figure 5. Example of the class activation map for each benign tumor of the trained model. Among
the images accurately predicted by the trained model, they are examples of class activation maps
corresponding to (a) epidermal cyst, (b) lipoma, and (c) pilomatricoma in order from left column.
The color bar on the right side indicates the normalized class activation map value corresponding to
each image.

4. Discussion

Over the past years, the development of ultrasound imaging technology has been in the
spotlight as a first-line screening modality by enabling real-time observation of the location,
size, and shape of skin tumors. Particularly in the dermatologic surgeon’s position, it has
the advantage of notifying the existence of surrounding vessels before surgery, identifying
the best location for the incision, and setting the range while viewing the ultrasound screen
in real-time with the patient [6]. It is known that, particularly in cases like epidermal cysts,
the risk of cystic rupture can lead to irregular shapes and potentially increase peripheral
blood flow [5,27,28]. Furthermore, in conditions like pilomatricoma, the significance of
detecting calcification has been proven, where ultrasound excels in identification [5,6].
After surgery, it can also help the surgeon evaluate whether the tumor is completely
removed [7]. However, a suitable and reliable diagnosis of soft-tissue tumors requires long-
term training for inexperienced physicians [29]. To solve this problem, a computer-aided
diagnosis (CAD) system performed by extracting and analyzing morphologic or texture
features was introduced, and the results were reported to be equivalent to the radiologists’
evaluation [30].

Recently, studies on the diagnosis of skin disease by analyzing skin images using
artificial intelligence such as CNN have been actively conducted [31–37]. In particular, when
applied to dermoscopic images, accuracy increases and significantly supports physicians’
decisions [38–40]. Unlike the CAD system, the diagnostic method using deep learning, as
in this study, combines the two stages of feature extraction and classification into one, and
the entire classification process is automated. In addition, it is advantageous in terms of
time and labor because the features are automatically extracted and classified regardless of
tumor type. However, to gain expert confidence in the diagnosis result of deep learning, it
is necessary to analyze which features the model considers. Because the features are directly
determined in CAD, this secondary work is not necessary. This can be a disadvantage of the
diagnostic method using deep learning. However, if it is continuously proved that the deep
learning model showed a high level of diagnostic results based on meaningful features, as
in this study, it can be expected that such shortcomings will gradually disappear.

Nevertheless, there are few studies that analyze ultrasound images using artificial
intelligence and apply them to diagnosis. The reason for such few publications may be due
to the rare occurrence, but various types of soft-tissue tumors have limited the accumulation
of results in a clinical database [29]. In addition, the ultrasound image is a device capable
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of intervening subjective factors in the inspection, such as changes or artifacts in the image
depending on the pressure, direction, and position of the inspector pressing the probe.

The findings of this study show that our diagnosis algorithm using combined CNN
showed high performance of diagnosis based on the histopathologic results of three benign
tumors. Specifically, the model achieved a classification accuracy of 94.9, 98.2, and 94.5
for epidermal cysts, lipoma, and pilomatricoma. However, the F1-score and sensitivity
for classifying pilomatricoma exhibited limited performance, primarily attributed to the
restricted representation caused by insufficient data compared to the other two classes. In
addition, we conducted three statistical tests, and the results revealed p-values below 0.001.
It was found that the judgment area of physicians for the diagnosis from ultrasound images
and that of the CNN classifier expressed in the CAM were significantly correlated. These
statistical findings provide additional evidence supporting the reliability and precision
of our CNN-based classifier in correctly pinpointing the regions of interest for diagnosis.
Similar results have been shown in other ultrasonography of thyroid [41,42], liver [43],
breast cancer [44,45], lymph node [46], fetal brain [47], and chest ultrasound diagnoses for
Coronavirus disease (COVID-19) [48].

In contrast to many other clinical departments, dermatology is a unique department,
benefiting from the visible accessibility of the skin, which allows for feasible examination
and diagnosis. Furthermore, it is widely recognized that ultrasonography in dermatology
has predominantly been employed for the assessment of malignant skin cancers, such as
basal cell carcinoma, squamous cell carcinoma, and melanoma [49]. Consequently, there has
been a lack of extensive use of ultrasonography for benign skin tumors, while these benign
tumors constitute approximately 70% of benign skin tumors, making them of significant
clinical importance. As a faithful diagnostic aid, showing the activation site in real-time is
expected to help doctors identify areas to see and compliment areas that may be overlooked.
The improvement in the accuracy of automatic diagnosis is expected to exceed its value as
an auxiliary diagnostic tool.

However, there are some limitations to the retrospective design of this study. Because
the number of image data collected for each disease is nonuniform, there is a limit to
comparative analysis. Likewise, it is expected that the accuracy of this algorithm may
be lowered when other rare tumors are added. Another limitation is that this study
included only sonographic images taken with a single model. An additional train with a
larger dataset is required to achieve consistent performance for images taken in different
environments. Moreover, a prospective clinical trial is required to investigate the efficacy
of its usage in real clinical settings and improve patient outcomes. Therefore, in order to
conduct a prospective clinical trial, a web service for the model trained in this study was
developed, and a demo video was produced for it (Supplementary Materials).

5. Conclusions

Ultrasound imaging technology is widely utilized in skin tumor examination and sur-
gical support. At the same time, CAD systems based on skin images have been extensively
developed, but a technology for diagnosing skin tumors automatically has been lacking. In
this study, we created a CNN-based classifier to automate the diagnosis of skin tumors and
revealed a significant correlation between the assessments of physicians and the results of
the CNN. However, there were limitations that required validation and improvement of the
efficacy of the model in real clinical settings with a larger dataset. This research indicates
the potential for future automation of skin tumor diagnosis and furthermore, the possibility
of applying learned features of skin diseases to large-scale disease understanding systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23177374/s1, Figure S1: Overall flow of Fast AutoAugment; Figure
S2: Joint distribution between the categorized confidence distribution and decision consistency;
Figure S3: Confidence distribution and decision consistency distribution; Video S1: The demo video
of web service for diagnosis; Table S1: Summary of sonographic features.
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