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Predicting the severity 
of postoperative scars using 
artificial intelligence based 
on images and clinical data
Jemin Kim 1,2,5, Inrok Oh 3,5, Yun Na Lee 4, Joo Hee Lee 4, Young In Lee 2,4, Jihee Kim 1,2 & 
Ju Hee Lee 2,4*

Evaluation of scar severity is crucial for determining proper treatment modalities; however, there is no 
gold standard for assessing scars. This study aimed to develop and evaluate an artificial intelligence 
model using images and clinical data to predict the severity of postoperative scars. Deep neural 
network models were trained and validated using images and clinical data from 1283 patients (main 
dataset: 1043; external dataset: 240) with post-thyroidectomy scars. Additionally, the performance of 
the model was tested against 16 dermatologists. In the internal test set, the area under the receiver 
operating characteristic curve (ROC-AUC) of the image-based model was 0.931 (95% confidence 
interval 0.910‒0.949), which increased to 0.938 (0.916‒0.955) when combined with clinical data. In 
the external test set, the ROC-AUC of the image-based and combined prediction models were 0.896 
(0.874‒0.916) and 0.912 (0.892‒0.932), respectively. In addition, the performance of the tested 
algorithm with images from the internal test set was comparable with that of 16 dermatologists. This 
study revealed that a deep neural network model derived from image and clinical data could predict 
the severity of postoperative scars. The proposed model may be utilized in clinical practice for scar 
management, especially for determining severity and treatment initiation.

Scarring is a common medical problem that affects patients cosmetically and can cause functional impairment 
and psychosocial burdens. Hypertrophic scars and keloids frequently develop after surgical procedures. The inci-
dence of hypertrophic scars after a surgical procedure is estimated to be 40‒70% without adequate  management1, 
and they can significantly impair quality of  life2. Post-thyroidectomy scars are particularly problematic because 
of their location (exposed area of the neck), the relatively young age of the affected patients, and the rapidly 
increasing incidence of thyroid  cancer3. Furthermore, since the underlying molecular mechanism of wound 
healing and scar formation is  complex4, the predisposing factors or prognostic markers for hypertrophic scarring 
are also not completely  understood5. Regarding post-thyroidectomy scars, several clinical risk factors related to 
hypertrophic scarring have been reported, such as young age, high body mass index (BMI), scar-related symp-
toms, incision site near the sternal notch, prominent sternocleidomastoid muscles, and a history of abnormal 
wound healing or pathologic  scarring3,5,6.

In the era of artificial intelligence (AI), convolutional neural networks (CNN) have been successfully intro-
duced, forming the basis for various emerging applications in  dermatology7. Current studies using CNN in 
dermatology have mainly focused on classifying skin diseases, especially skin  cancers8–11, or lesion identifica-
tion and quantification via segmentation  algorithms12,13. However, recent radiology studies have revealed that 
implementing a deep learning model that combines imaging and clinical data can predict disease severity, risk 
of progression, and treatment  response14–16.

Therefore, we aimed to develop an AI model that could predict the severity of postoperative scars using 
medical images and clinical data. Furthermore, we compared the performance of the AI model with that of 
dermatologists.
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Materials and methods
Study design and participants. We performed a retrospective study and identified patients with post-
thyroidectomy scars who presented to the Scar Laser and Plastic Surgery Center in the Yonsei Cancer Hospi-
tal, Seoul, Republic of Korea, from September 2015 to December 2021. The investigation conforms with the 
principles outlined in the Declaration of Helsinki and ethical principles for human research. The Institutional 
Review Board of Yonsei University Severance Hospital approved the research protocols including any relevant 
details in the method section in this manuscript (approval number 4-2022-0741). Also, informed consent from 
the study subjects was waived by the Institutional Review Board of Yonsei University Severance Hospital due to 
the retrospective study design. However, specific consent was obtained from the patient, who agreed to publish 
their clinical image as a figure in an online open-access publication. For inclusion in the study, we considered all 
patients who were referred to the dermatology clinic for scar minimization treatment after thyroidectomy pro-
cedures, such as conventional thyroidectomy, minimally invasive thyroidectomy (MIT), modified radical neck 
dissection (MRND), or transaxillary robotic thyroidectomy. Patients were excluded if medical images of the scar 
site were not captured during their clinic visit. Furthermore, even if photos were taken, patients were excluded 
if the quality of these images was compromised to such an extent (due to blurring or other factors) that it was 
difficult to discern the scars.

In the main dataset, we randomly assigned patients to the model training, validation, and internal testing 
datasets (7:1:2). We also independently collected data on post-thyroidectomy patients who presented to the 
Department of Dermatology at Severance Hospital, Seoul, Republic of Korea, from December 2010 to July 2015, 
who were assigned to the external testing dataset. High-resolution (≥ 6 million pixels) digital cameras captured 
medical images of the anterior neck or axilla at the initial visit and 3, 6, and 12 months of follow-up. We addition-
ally collected photographs of patients without scars in the anterior neck region at the same intuition as a control 
(‘normal’) group. Overall, 2724 images from 1043 patients were included in the main dataset, and 374 images 
from 240 patients were obtained from the external dataset (Supplementary Table S1).

Data acquisition and preprocessing. Clinical data were collected for each patient visit, including age, 
sex, BMI, date after surgery (scar age), history of keloids, operation site, clinical scar characteristics (itching, 
pain, adhesion, tightening, induration, or edema), treatment sessions (initial visit and 3, 6, and 12 months of fol-
low-up), and treatment response (for follow-up visits). The digital images of the anterior neck or axilla included 
in the study were de-identified and minimally cropped to contain adjacent anatomical structures around the 
scar; for example, we cut off the photos of the anterior neck to include the Adam’s apple to the sternal notch. 
In addition, each captured image was assigned a unique identifier and linked to corresponding clinical data. 
Importantly, when multiple images were taken from a single patient at different time points, each image was 
individually linked to two time-related factors (scar age and treatment sessions). Subsequently, these images 
were independently scored for scar severity by three board-certified dermatologists who specialized in scar 
treatment, using the  VSS17. Based on the VSS score and the required scar treatment modalities, as judged by 
scar-specialized dermatologists who are board-certified and have more than five years of clinical experience 
in specialized scar laser clinics, we classified the scars into four categories according to their severity: normal, 
mild, moderate, and severe (Supplementary Fig. S1)18. When there was a unanimous agreement on the score for 
a specific image among the three evaluators, we adopted that score directly as the gold standard label. In cases 
where the voting results were divided, the professionals gathered, reviewed the image together for consensus, 
and assigned a single label. Treatment response was defined as a VSS score ≥ 50% or ≥ 2 decrements of severity 
grade compared with the initial visit.

Neural network structure and training. We adopted the CBAM integrated with ResNet-50 for the 
image-based severity prediction model. CBAM consists of a channel and spatial attention submodules that focus 
on meaningful features and suppress unwanted  ones19. In addition, an MLP model was trained to distinguish 
each severity class based on 11 collected clinical variables for clinical data-based severity prediction. Finally, the 
combined model for severity prediction was obtained from the 6:4 ratio of the weighted sum of the image-based 
and clinical data-based prediction models. Furthermore, we developed an image-based regression model to 
estimate the VSS based on the score of each image. The detailed processes and architecture of the AI model are 
described in Supplementary Text S1, Figs. S2 and S3.

Evaluation of algorithm performance. The trained model was evaluated using the test datasets from the 
internal and external testing datasets. Next, the classification performance of the image-based severity predic-
tion model was compared with the evaluations of eight board-certified dermatologists and eight dermatology 
residents. We randomly selected 240 images from the internal test dataset (60 images from each severity class), 
presented them as original resolution photographs, and asked the clinicians to select the most appropriate clas-
sification (single choice). A class activation map (Grad-CAM and Guided Grad-CAM), which allows the visu-
alization of important features via gradient-based  localization20, was implemented to qualitatively understand 
the prediction made by the deep network model. In addition, we examined the internal features learned by the 
models using t-SNE, which reduces the 2048-dimensional vectors obtained using the classification models to a 
2-dimensional map.

Statistical analysis. Five-fold stratified cross-validation was performed to verify the robustness of the best-
fit model. The performance of each model was calculated using the Top-1 accuracy, sensitivity, specificity, and 
F1 score. ROC curves were drawn using sensitivity and specificity for each threshold, and AUCs were calcu-
lated. The 95% CIs were calculated using bootstrap resampling of the test dataset with the replacement N = 1000 
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 times21. Categorical variables were compared using Fisher’s exact or chi-square tests with adjusted residuals if 
the variables were in 2 × 3 categorical tables. A one-way analysis of variance was used to compare continuous 
variables. Statistical analyses were performed using Python version 3.9.0, and P values < 0.05 were considered 
statistically significant.

Ethic statement. The research adheres to the principles set forth in the Declaration of Helsinki and the 
ethical guidelines for human studies. The Institutional Review Board of Yonsei University Severance Hospi-
tal waived the need for informed consent from study participants due to the retrospective nature of the study 
(approval number 4-2022-0741). Nonetheless, explicit consent was acquired from the patient who consented to 
the publication of their clinical image as a figure in an online open-access journal.

Results
Patients and clinical characteristics. The study included a total of 1043 patients in the main dataset: 
109 (10.5%), 705 (67.6%), and 229 (22.0%) had mild, moderate, and severe degrees of scar severity, respec-
tively, according to the initial clinical presentation. When comparing the clinical variables between these severity 
groups, the following factors showed significant differences: BMI, date after surgery, minimally invasive thy-
roidectomy (MIT), modified radical neck dissection (MRND), transaxillary approach, itching/pain, adhesion/
tightening, and induration/edema (Table S2).

To identify the predictive factors associated with scar severity, we performed multinomial logistic regression 
using the significant variables (P < 0.10) shown in Supplementary Table S1, with the moderate group as the ref-
erence group. In the multivariate model, MIT (odds ratio [OR]: 2.18, 95% confidence interval [CI]: 1.32‒3.60) 
and the date after surgery (OR: 1.04, 95% CI 1.03‒1.06) were positively correlated with mild scar severity. The 
transaxillary approach (OR: 3.11, 95% CI 1.75‒5.50), date after surgery (OR: 1.07, 95% CI 1.05‒1.09), and itch-
ing/pain (OR: 1.52, 95% CI 1.03‒2.24) were positively correlated with severe scar severity; however, adhesion/
tightening (OR: 0.69, 95% CI 0.50‒0.97) and induration/edema (OR: 0.55, 95% CI 0.34‒0.89) were negatively 
associated with severe scarring (Table 1).

Model performance. We developed and validated three severity prediction models and one Vancouver 
scar scale (VSS) score regression model: (i) an image-based severity prediction model that integrated convo-
lutional block attention module (CBAM) with CNN architecture, (ii) a clinical-data-based severity prediction 
model that used a multilayer perceptron (MLP) model with clinical variables, (iii) a combined severity predic-
tion model derived from the weighted sum of models (i) and (ii), and (iv) an image-based regression model 
to predict the VSS score. The results for sensitivity, specificity, F1-score, receiver operating characteristic-area 
under the curve (ROC-AUC), and Top-1 accuracy of the severity prediction models are listed in Table 2. In the 
internal test dataset, the image-based model had a ROC-AUC of 0.931 (95% CI 0.910‒0.949), clinical data-
based model had a ROC-AUC of 0.905 (95% CI 0.877‒0.928), and combination of these two models yielded 
a ROC-AUC of 0.938 (0.916‒0.955). In addition, the combined severity prediction model was significantly 
improved (P = 0·042) compared with the clinical data-based model; however, it was statistically insignificant 
compared with the image-based model (P = 0.633). Trends were similar in the external test dataset, yet slightly 
lower ROC-AUC and Top-1 accuracy were noted compared with the corresponding values in the internal test set 
(Fig. 1a). The sensitivity, specificity, F1-score, and ROC-AUC of each severity class in the internal and external 
testing sets are displayed in Supplementary Table S3.

Table 1.  Multinomial logistic regression analysis by scar severity groups. Individual effect sizes (OR) and 95% 
CI refer to the comparison of the mild and severe severity group with the moderate scar severity group as a 
reference for the outcome. MIT, minimally invasive thyroidectomy; MRND, modified radical neck dissection; 
OR, Odds ratio; CI, confidence interval. *Statistically significant P values (< 0.05).

Independent variables

Mild Severe

OR (95% CI) P-value OR (95% CI) P-value

Age at diagnosis 1.02 (0.99–1.04) 0.077 0.99 (0.98–1.01) 0.63

Body mass index (BMI) 0.97 (0.91–1.03) 0.34 1.04 (0.99–1.08) 0.064

Date after surgery (months) 1.04 (1.03–1.06)  < 0.001* 1.07 (1.05–1.09)  < 0.001*

Location of surgery

 Conventional Ref Ref –

 MIT 2.18 (1.32–3.60) 0.002* 0.69 (0.42–1.16) 0.16

 MRND 0.41 (0.16–1.04) 0.061 1.31 (0.81–2.13) 0.27

 Transaxillary 1.31 (0.51–3.36) 0.58 3.11 (1.75–5.50)  < 0.001*

Clinical scar characteristics

 Itching/pain 1.10 (0.63–1.92) 0.74 1.52 (1.03–2.24) 0.034*

 Adhesion/tightening 1.10 (0.71–1.69) 0.67 0.69 (0.50–0.97) 0.032*

 Induration/edema 0.65 (0.37–1.17) 0.15 0.55 (0.34–0.89) 0.014*



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13448  | https://doi.org/10.1038/s41598-023-40395-z

www.nature.com/scientificreports/

The regression model for VSS score prediction utilized the mean absolute error (MAE), root mean square 
error (RMSE), and Bland‒Altman plot depicting the association between the predicted and measured VSS. The 
MAE of the internal testing set was 1.075 (95% CI 0.960‒1.184), and the RMSE was 1.418 (95% CI 1.269‒1.563). 
These values were slightly higher in the external testing set: 1.183 (95% CI 1.080‒1.283) for MAE and 1.561 
(95% CI 1.431‒1.680) for RMSE. The Bland‒Altman plot showed a positive linear slope, indicating a positive 
proportional bias (Fig. 1b).

Five-fold stratified cross-validation was performed, and the Top-1 accuracy of the image-based and combined 
models fluctuated in the range of ± 1.6% and ± 4.0%, respectively, demonstrating the robustness of the models.

Comparison between the neural network and dermatologists. We tested our model against eight 
board-certified dermatologists and eight dermatology residents to compare its performance. The overall Top-1 
accuracies of the board-certified dermatologists and dermatology residents were 0.746 and 0.729, respectively. 
Image-based and combined models could classify four scar severity groups with a level of competence compa-
rable with that of dermatologists (Fig. 2a–d). The confusion matrices of the neural network models and derma-
tologists over the four severity classes are shown in Fig. 2e and f. The AI models and dermatologists significantly 
confused mild and moderate scar lesions; the models had a slightly higher rate of misclassifying mild severity as 
moderate (7.5% vs. 4.3%), whereas humans had a higher rate of misclassifying moderate severity as mild (8.0% 

Table 2.  Performance of severity prediction models. ROC-AUC, area under the receiver operating 
characteristic curve; Ref, reference model; CI, confidence interval. Calculated by the micro-averaged value of 
each severity class for the given model, using bootstrap resampling (N = 1000) of the test dataset. a The P-value 
from the binomial test measures the difference in performance between the combined model and image- or 
clinical data-based model in terms of ROC-AUC.

Model (class)

Sensitivity Specificity ROC-AUC Accuracy

P-valuea(95% CI) (95% CI) (95% CI) (95% CI)

Internal testing set

 Image-based model 0.725 (0.672–0.774) 0.908 (0.888–0.926) 0.931 (0.910–0.949) 0.725 (0.667–0.780) 0.633

 Clinical data-based model 0.692 (0.638–0.750) 0.897 (0.879–0.917) 0.905 (0.877–0.928) 0.692 (0.638–0.750) 0.042

 Combined model 0.730 (0.675–0.783) 0.910 (0.892–0.928) 0.938 (0.916–0.955) 0.729 (0.675–0.783) Ref

External testing set

 Image-based model 0.695 (0.652–0.741) 0.898 (0.884–0.914) 0.896 (0.874–0.916) 0.695 (0.652–0.741) 0.260

 Clinical data-based model 0.658 (0.610–0.706) 0.886 (0.870–0.902) 0.875 (0.848–0.899) 0.658 (0.610–0.706) 0.023

 Combined model 0.733 (0.687–0.775) 0.911 (0.896–0.925) 0.912 (0.892–0.932) 0.733 (0.687–0.775) Ref

Figure 1.  (a) Receiver operating characteristic (ROC) curves of the severity prediction models. Blue curve: 
image-based model by convolutional block attention module (CBAM) integrated Resnet-50, Green curve: 
clinical-data-based model by multilayer perceptron (MLP), Orange curve: combined model from the weighted 
sum of the image-based and clinical-data-based models. (b) Bland‒Altman plot shows the association between 
the measured and predicted Vancouver scar scale (VSS) score in the regression model. The shaded areas 
correspond to 95% confidence intervals. MAE; mean absolute error, RMSE; root mean square error.
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Figure 2.  Scar severity classification performance of the convolutional neural network (CNN) and 
dermatologists. ROC (receiver operating characteristic) curves for each severity class were drawn for the image-
based (dotted curve) and combined prediction model (black curve). In addition, the prediction value of the 16 
dermatologists was plotted; Red dot = 8 board-certified dermatologists; Blue dot = 8 dermatology residents; Black 
cross = average value of 16 dermatologists. Performances for (a) Normal, (b) Mild, (c) Moderate, (d) Severe 
scars. (e) Confusion matrix of combined prediction model. (f) Confusion matrix of dermatologists.
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vs. 4.2%). In addition, both models and dermatologists tended to misclassify severe lesions as moderate (9.6% 
and 11.0%, respectively).

Visualization of the explanatory model. We adopted two visualization methods for the image-based 
model: dimensionality reduction via t-distributed stochastic neighbor embedding (t-SNE), and Gradient-
weighted Class Activation Mapping (Grad-CAM). Figure 3a shows the two-dimensional expression of the inter-
nal features extracted from the image-based classification model. The neural network model extracted distinct 
features for scar severity classification, and the cluster represented in each class occupied relative regions in the 
two-dimensional map corresponding to clinical features. For example, the mild class cluster is located between 
normal and moderate severity, and the moderate class is flanked by the mild and severe classes with some 
overlaps.

Figure 3b shows the results from the class activation mapping, in which the heatmaps represent the pixel areas 
activated by the deep neural network. The CBAM-integrated CNN model successfully distinguished postopera-
tive scars from wrinkles in the surrounding skin. In addition, it could detect coarse and hypertrophic portions 
of the lesion in moderate or severe scars.

Furthermore, to elucidate significant variables in predicting the outcome of the clinical-data-based model, 
we introduced the SHapley Additive exPlanations (SHAP) method for visualizing the importance ranking of 
the  features22. Figure 3c shows the importance ranking of all variables used in the clinical data-based model, 
evaluated by the average absolute SHAP value. Operation site, induration/edema, date after surgery, BMI, and 
itching/pain were the Top-5 dominating features for predicting scar severity.

Discussion
All undesirable scars are unacceptable for different  reasons23; thus, clinically, it is difficult to differentiate “unde-
sirable” scars. Various scar assessment scales have been developed for clinicians to evaluate scar severity, progres-
sion, and treatment response; however, a “gold standard” scar scale is yet to be  established24. Therefore, in this 
study, we aimed to evaluate postoperative scars using deep neural network models based on scar severity. Using 

Figure 3.  (a) t-distributed stochastic neighbor embedding (t-SNE) visualization of the last hidden layer 
representations in the image-based prediction model. The output of the neural network’s last hidden layer is 
projected onto a 2-dimensional map using the t-SNE method. Colored point clouds represent different severity 
classifications, showing how the algorithm clusters postoperative scars. (b) Visual explanations of postoperative 
scar cases via class activation mapping. Clinical images of each scar severity grade and corresponding heatmaps 
via gradient-based localization (Grad-CAM). The activation was focused on the hypertrophied region of the 
scar. (c) Interpretation of the clinical-data-based model via SHapley Additive exPlanations (SHAP) analysis. The 
importance ranking of variables used in the clinical-date-based model according to the mean (|SHAP value|).
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AI models based on the patients’ digital images and clinical information, we successfully classified postoperative 
scars according to their severity, and the performance of the models was comparable to those of dermatologists.

We intentionally collected and cropped digital images to include scars, adjacent skin structures, and artifacts 
such as clothes or rulers (Supplementary Fig. S1). Intensive preprocessing, including resizing and cropping the 
clinical image to include only lesions of interest for analyses, may help improve classification performance. 
However, this is a laborious and exhausting task far from the actual clinician’s viewpoint of scarring, which 
usually incorporates broader adjacent anatomical  structures6,25. Thus, we integrated the CBAM into the CNN 
architecture, which selectively and automatically focuses on salient lesions, much like the human visual percep-
tion  mechanism19,26. Therefore, our image-based model successfully classified scar severity while appropriately 
concentrating on the lesion of interest (Fig. 3b), without direct human labeling or cropping of the scar lesion.

To construct an image-based AI model, we classified postoperative scars into four subtypes based on the VSS, 
the first validated and most widely used scar scale to  date17. The VSS consists of four parameters related to scar 
characteristics: height, pliability, pigmentation, and vascularity, to generate a semi-quantitative score ranging 
from 0 to 13  points27. However, the VSS has a significant limitation in that it does not reflect various factors that 
determine scar severity other than the morphological scar  characteristics17,24. Therefore, we developed a neural 
network model trained with 11 clinical variables related to postoperative scars, including patients’ demographic 
features, symptoms, local complications, and scar age. The AI model based on clinical variables showed consider-
able performance in predicting the severity of postoperative scars; however, it was significantly lower than that 
with a combination of clinical variables and medical images. These results indicate the importance of utilizing 
scar-related clinical characteristics and morphological features when predicting the severity of the postoperative 
scar. Furthermore, we adopted the SHAP analysis to clarify the influential clinical features for predicting the 
severity of postoperative scars and provide a plausible interpretation of the model’s decision-making process. The 
SHAP method took account of the most critical risk factors for postoperative hypertrophic scarring, including 
scar location, increased BMI, and subjective symptoms. These results correspond with those of previous multi-
nomial logistic regression analysis and studies of postoperative scar risk  factors3,6,28.

AI has performed at least equal or superior to dermatologists for diagnosing or classifying various skin 
 diseases8,9,29,30. Our deep neural network model also showed performance comparable with board-certified 
dermatologists or dermatology residents in classifying postoperative scars according to their severity. We also 
need to consider the nature of the classification task in this study, which was not to distinguish different diseases 
but to grade the severity of the same disorder. Considering the semi-quantitative, rater-dependent, and subjec-
tive nature of the current scar-grading  system23, significant ambiguity and overlap was expected between the 
classification classes used in this study. The confusion matrices revealed striking similarities in misclassification 
between humans and neural network models. The AI models and dermatologists tended to misclassify mild or 
severe scars as moderate. One plausible reason for this phenomenon is the insufficient distinctive features of 
intermediate-grade scars compared with other severity  groups31; the other reason lies in the central tendency 
bias of visual perception, which is likely to estimate towards the mean of the  stimuli32.

Our study has several limitations. First, the AI model showed decreased performance in the external testing 
set compared with that in the internal testing set. This could have been due to the different image acquisition 
settings of different hospitals. In addition, since the VSS has two components directly related to the color of the 
image (pigmentation and vascularity), slight differences in input in the color channels by individual camera set-
tings may create substantial changes in the output of the  model33. Second, due to the study’s retrospective design, 
data imbalance in the training dataset and possible selection bias may restrict the application of this study to the 
broader general population with postoperative scarring. In addition, several studies have assessed scar scales 
with a photograph-based examination by scar-specialized  clinicians23,34,35; however, some VSS components (i.e., 
pliability or height) may be difficult to evaluate using only clinical images without examination of live scars. Last, 
our study cohort exclusively included Korean patients; hence, only patients with Fitzpatrick skin types III and IV 
were included in the dataset. Since darker skin type is one of the predisposing factors for hypertrophic  scars25, 
future studies with larger-scale datasets from different ethnic groups with various scar etiologies are needed.

In conclusion, an AI model based on images and clinical data can predict the severity of postoperative scars. 
Our neural network models were trained with a relatively small (< 5000) number of images; however, they 
efficiently classified the severity of postoperative scar lesions with performance comparable with that of derma-
tologists. These models can aid clinicians in scar management to determine scar severity and make treatment 
decisions. We anticipate extending our established dataset of postoperative scars to other types of scars (such as 
burns, trauma, and post-infectious scars) in future studies.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request. Also, the relevant source code for developing and validating the neural network and all pixel-wise 
annotations were published in our public repository (https:// github. com/ dbssk 6904/ Scar- Sever ity- predi ction- 
pytor ch).
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