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Background: Children with chronic kidney disease (CKD) are at high risk of mineral bone
disorder (MBD), which leads to fractures, growth retardation, and cardiovascular disease.
We aimed to comprehensively understand the relationship between renal function and
factors related to MBD and evaluate the prevalence and distribution characteristics of
MBD, specifically among Korean patients from the KNOW-PedCKD cohort.
Methods: From the baseline data of the KNOW-PedCKD cohort, we examined the
prevalence and distribution of MBD in 431 Korean pediatric CKD patients, including the
level of corrected total calcium, serum phosphate, serum alkaline phosphatase, serum
intact parathyroid hormone (iPTH), fibroblast growth factor 23 (FGF-23), serum vitamin
D, fractional excretion of phosphate (FEP), and bone densitometry Z-scores.
Results: The median serum calcium level remained relatively normal regardless of the
CKD stage. The levels of 1,25-dihydroxy vitamin D, urine calcium-to-creatinine ratio,
and bone densitometry Z-score significantly decreased with advancing CKD stage,
while those of serum phosphate, FGF-23, and FEP significantly increased with CKD
stage. The prevalence of hyperphosphatemia (17.4%, 23.7%, and 41.2% from CKD
stages 3b, 4, and 5, respectively) and hyperparathyroidism (37.3%, 57.4%, 55.3%, and
52.9% from CKD stages 3a, 3b, 4, and 5, respectively) significantly increased with the
CKD stage. Prescriptions of medications, such as calcium supplements (39.1%, 42.1%,
82.4%), phosphate binders (39.1%, 43.4%, 82.4%), and active vitamin D (21.7%, 44.7%,
and 64.7%) significantly increased with CKD stage 3b, 4, and 5, respectively.
Conclusions: The results demonstrated the prevalence and relationship of abnormal
mineral metabolism and bone growth according to CKD stage in Korean pediatric CKD
patients for the first time.
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Introduction

Mineral bone disorder (MBD) represents a systemic disorder

manifested by either one or a combination of abnormal mineral

metabolisms, abnormal bone growth or strength, making bone more

vulnerable to fracture and extra-skeletal calcification, all of which are

closely interrelated and contribute to the morbidity and mortality of

patients with chronic kidney disease (CKD), including those with

cardiovascular disease (1). In 2006, the Kidney Disease: Improving

Global Outcomes (KDIGO) working group addressed this revised

terminology, replacing the previous concept of renal osteodystrophy,

which described only the bone pathology in patients with CKD,

stressing the systemic effects, including cardiovascular implications (2).

Mineral metabolism exerts a more profound influence in children

with CKD as the development and maturation of the skeletal and

vascular systems occur during childhood. CKD-MBD in children

causes bone deformity and growth failure and may be accompanied

by extra-skeletal cardiovascular calcifications with serious outcomes

(3–5). Thus, monitoring and managing abnormal mineral metabolism

from childhood throughout life is crucial. Although many studies

have investigated CKD-MBD in adult patients, investigations solely

into pediatric CKD-MBD are lacking. Studies from the United States

conducted with the CKD in Children (CKiD) cohort reported the

prevalence of abnormal mineral metabolism. They described

fibroblast growth factor 23 (FGF-23) as the first factor to rise,

followed by hyperphosphatemia and hyperparathyroidism across the

CKD stages (6, 7). While their findings were comparable with the

known adult studies regarding the prevalence of MBD, the study

population mainly included Caucasian, African–American, and

Hispanic ethinicities and the analysis was cross-sectional. Some

studies have evaluated the bone markers and fracture risk in pediatric

CKD patients according to race and ethnicity, showing African–

American or Hispanic patients with lower 25-hidroxy vitamin D

levels and a lower risk of fracture compared with Caucasian patients,

although the data may be inaccurate and subjective because self-

reporting was used to determine fracture history (8). To the best of

our knowledge, few studies in Asia have evaluated CKD-MBD in

pediatric CKD, including objective measurements regarding bone

mass. Park et al. recently demonstrated the overall baseline

characteristics of the Korean cohort study for Outcome in patients

with Pediatric CKD (KNOW-Ped CKD) cohort featuring some of the

characteristics associated with CKD-MBD, including

hyperphosphatemia and hyperparathyroidism, but not focusing on

many other factors associated with CKD-MBD (9).

Therefore, the objectives of this study were to comprehensively

understand the relationship between renal function and factors

related to MBD and change in bone mass and evaluate the

prevalence and distribution characteristics of MBD, specifically

among Korean patients from the KNOW-PedCKD cohort.
Materials and methods

Study design and population

From April 2011 to April 2016, a total of 469 patients < 20 years

of age with CKD stages 1–5 were enrolled in the KNOW-PedCKD
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study, a nationwide, 10-year prospective and observational cohort

study from seven major pediatric nephrology centers in Korea.

Patients undergoing kidney replacement therapy or those who had

cancer or had been treated for cancer within the previous five

years were excluded from this cohort. The KNOW-PedCKD study

is registered at ClinicalTrials.gov with the designation number

NCT02165878 (submitted on June 11, 2014) and was approved by

the Institutional Review Boards of all participating centers.

The detailed study protocol for comprehensive assessment of

clinical findings and structured follow-up has been reported

previously (10). The authors used the baseline data when the

patients were enrolled in the cohort. Clinical data was also

collected, such as chronological age, bone age at baseline, serum

corrected total calcium, serum phosphate, serum alkaline

phosphatase (ALP), serum intact fibroblast growth factor 23 (FGF-23),

serum intact parathyroid hormone (iPTH), serum vitamin D

(25-hydroxyvitamin D and 1,25-dihydroxyvitamin D), urine calcium-

to-creatinine ratio, fractional excretion of phosphate (FEP), and bone

densitometry Z-scores, as well as the intake of calcium supplements,

non-calcium phosphate binders, and active vitamin D. Among the

patients initially recruited, 431 were finally included in this study;

patients aged > 18 years and those with missing data of interest were

excluded.
Clinical and laboratory measurements

The estimated glomerular filtration rate (eGFR) was calculated

using the bedside CKiD formula (11). According to the KDIGO

guidelines, CKD was defined and staged in patients older than two

years as kidney damage with normal or mildly decreased GFR

(GFR≥ 60 ml/min/1.73 m2) (stages 1, 2) or GFR < 60 ml/min/

1.73 m2 (stages 3–5) lasting more than 3 months (12). For patients

less than two years of age, CKD was staged as previously

demonstrated by the design and baseline characteristics of the

KNOW-Ped CKD cohort (9, 10). The serum-corrected total

calcium was calculated as follows: serum-corrected total calcium =

serum total calcium + 0.8 × (4 –serum albumin). The reference

range for all parameters in normal children are as follows;

corrected total calcium 8.8–9.7 mg/dl, phosphate 4.8–8.2 mg/dl

(0–5th day), 3.8–6.5 mg/dl (1st–3rd year), 3.7–5.6 mg/dl (4th–11th

year), 2.9–5.4 mg/dl (12th–15th year), 2.7–4.7 mg/dl (16th–19th

year), alkaline phosphatase 145–420 IU/l (1st–9th year), 140–560

IU/l (10th–11th year), 105–495 IU/l (12th–13th year), 70–525 IU/l

(14th–15th year), 50–260 IU/l (16th–19th year), 25-hydroxyvitamin

D 30–80 ng/ml, 1,25-dihydroxyvitamin D 70–100 pg/ml (infancy),

30–50 pg/ml (childhood), 40–80 pg/ml (adolescent) (13). While

the reference ranges for iPTH among adults are 10–65 pg/ml,

normal reference ranges among children for iPTH are not well

established. FGF-23 has no established reference range for both

adult and pediatric ages. Unlike normal healthy children, in the

case of CKD-MBD patients, the criteria of disordered status were

used as follows according to the management target. Hypocalcemia

and hypercalcemia were defined when the serum-corrected total

calcium was < 8.8 mg/dl and > 9.7 mg/dl, respectively.

Hyperparathyroidism was defined according to the CKD stage:

serum iPTH > 70 pg/ml in CKD stages 1 through 3, serum iPTH >
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110 pg/ml in CKD stage 4, and serum iPTH > 300 pg/ml in CKD

stage 5. Vitamin D deficiency was defined as follows:

25-hydroxyvitamin D < 30 ng/ml and 1,25-dihydroxyvitamin D <

60 pg/ml. These cutoff values were adopted from the Kidney

Disease Outcomes Quality Initiative K/DOQI practice guidelines

(14). Hyperphosphatemia was defined based on the normal

phosphate levels according to age: serum phosphate > 8.2 mg/dl

(0–5th day), > 7.35 mg/dl (6th day–0.99th year), > 6.5 mg/dl

(1st–3rd year), > 5.6 (4th–11th year), > 5.4 (12th–15th year), or >

4.7 (16th–19th year) (13). Serum intact-FGF-23 was measured

using a commercially available enzyme-linked immunosorbent

assay (ELISA) kit (Immutopics, San Clemente, CA, United States).

The ΔBone age% was calculated as follows: ΔBone age % = (bone

age – chronological age)/chronological age × 100. The bone

densitometry Z-score was calculated based on the reference values

from the study by Lim et al. (15) as demonstrated with healthy

Korean children and adolescents.
Statistical analyses

Continuous variables are presented as the mean ± standard

deviation and median (range). We compared the level of each

variable according to the CKD stage using the Kruskal–Wallis test.

The incidence of disordered mineral metabolism and distribution

of medication intake were compared using the Chi-square test or

Fisher’s exact test. The relationship between variables and the

eGFR was analyzed using linear, inverse, and compound models.

The correlation between MBD and prescribed medications for

MBD was analyzed using a multivariate analysis of covariance

(MANCOVA). A P-value < 0.05 was considered to be statistically

significant. We performed all statistical analyses using SAS version

9.4 (SAS Institute Inc., Cary, NC) and IBM SPSS Statistics for

Windows, version 25.0 (IBM Corp., Armonk, N.Y., United States).
Results

The patterns of mineral metabolism
according to CKD stages

The patterns of mineral metabolism according to the CKD stages

and the distribution of patients are described in Table 1. The median

serum calcium level was within the normal range, regardless of the

CKD stage, with no significant difference between different stages.

The serum phosphate, serum iPTH, serum FGF-23, and FEP levels

significantly increased (P < 0.001) with advanced CKD stages; the

median serum phosphate level (mg/dl) was 4.60, 4.90, 5.10, and

5.80 in CKD stages 3a, 3b, 4, and 5, respectively, and the levels of

iPTH, FGF-23, and FEP constantly increased as the CKD stage

advanced from stage 1 to 5 (P < 0.001). In contrast, the levels of

1,25-dihydroxyvitamin D, urine calcium-to-creatinine ratio, and

bone densitometry Z-scores decreased with advancing CKD stages;

the median 1,25-dihydroxyvitamin D level decreased as the CKD

stage advanced from stage 1 to 4 (P < 0.001). The urine calcium-to-

creatinine ratio and bone densitometry Z-scores significantly

decreased (P < 0.001) as the CKD stage advanced from stage 1 to
Frontiers in Pediatrics 03
3. The ΔBone age % consistently showed negative values across all

CKD stages, with no statistically significant difference between stages.
The prevalence of disordered mineral
metabolism according to CKD stages

The prevalence of disordered mineral metabolism, including

hypocalcemia, hypercalcemia, hyperphosphatemia, hyperparathyroidism,

vitamin D deficiency, and prescribed medication according to the

CKD stages, is presented in Table 2. Abnormal serum calcium levels

were categorized into hypocalcemia and hypercalcemia for separate

analyses. There was a tendency for an increasing prevalence of

hypercalcemia in patients with advanced CKD stages (16.67%, 24.35%,

21.33%, 20.29%, 31.58%, and 47.06% at CKD stages 1, 2, 3a, 3b, 4, and

5, respectively; P = 0.0627), although not statistically significant.

Likewise, there was a tendency for an increasing prevalence of

hypocalcemia in patients with advanced CKD stages (17.95%, 15.65%,

13.33%, 13.04%, 21.05%, and 29.41% at CKD stages 1, 2, 3a, 3b, 4, and

5, respectively; P = 0.4863), although to a lesser extent than

hypercalcemia. Furthermore, the prevalence of hyperphosphatemia and

hyperparathyroidism significantly increased (P < 0.001) with CKD stage

(hyperphosphatemia: 2.56%, 6.90%, 9.33%, 17.39%, 23.68%, and 41.18%

across CKD stages 1–5, respectively, and hyperparathyroidism: 6.41%,

13.27%, 37.33%, and 57.35% across CKD stages 1–3b, respectively).
Use of medications according to CKD stages
and their impact

The use of medications for CKD-MBD according to the CKD

stage is shown in Table 3. The prevalence of calcium supplements

(4.0%, 39.13%, 42.11%, and 82.35% among the CKD stages 3a, 3b,

4, and 5, respectively) and non-calcium phosphate binder

(sevelamer or lamthanum carbonate) prescriptions (4.0%, 39.13%,

43.42%, and 82.35% among the CKD stages 3a, 3b, 4, and 5,

respectively) showed a significant increase according to the CKD

stages (P < 0.001). The prevalence of active vitamin D supplements

(alfacalcidiol or calcitriol) also showed significant increase

(P < 0.001) through all CKD stages (0.0%, 4.27%, 10.67%, 21.74%,

44.74%, and 64.71% among CKD stages 1–5, respectively).

Multivariate analysis of covariance (MANCOVA) was performed to

determine whether there was a statistically significant difference

between the patients who received medications (calcium and non-

calcium phosphorus binder and active vitamin D supplements) and

non-users on CKD-MBD variables controlling for GFR (Table 4).

Patients taking phosphorus binders had a significantly higher

serum iPTH level than non-users. Those taking active vitamin D

supplements showed a higher serum calcium level and a lower

phosphorus level than those not taking them.
Relationship between the parameters of MBD
and eGFR

We further investigated the relationship between each variable of

mineral metabolism and the eGFR (Figure 1). The urine calcium-to-
frontiersin.org
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TABLE 1 Disordered mineral metabolism in the KNOW-Ped CKD cohort according to CKD stages.

Variables Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5 P-value

Corrected total calcium (mg/dl)

Patient number 78 115 75 69 76 17 0.438

Mean ± standard deviation 9.3 ± 0.6 9.4 ± 0.7 9.3 ± 0.6 9.4 ± 0.6 9.4 ± 0.8 8.9 ± 2.0

Median (minimum–maximum) 9.2 (8.1–11.5) 9.3 (7.7–12.7) 9.3 (7.9–10.8) 9.3 (8.1–11.1) 9.5 (7.4–11.4) 9.6 (3.9–10.4)

Serum phosphate (mg/dl)

Patient number 78 116 75 69 76 17 < 0.001

Mean ± standard deviation 4.7 ± 0.7 4.6 ± 0.9 4.6 ± 0.9 4.9 ± 1.0 5.2 ± 1.3 5.8 ± 1.2

Median (minimum–maximum) 4.8 (3–5.9) 4.6 (2.7–7.9) 4.6 (3–7.4) 4.9 (2–6.9) 5.1 (3.3–11.8) 5.8 (4.1–8.7)

Serum alkaline phosphatase (IU/L)

Patient number 78 116 75 69 76 17 0.446

Mean ± standard deviation 229.0 ± 142.1 234.1 ± 158.1 246.2 ± 182.8 238.3 ± 153.5 271.2 ± 185.5 255.7 ± 101.3

Median (minimum–maximum) 213.5 (73–1191) 208 (46–1068) 225 (39–1366) 212 (42–902) 242.5 (56–1128) 237 (34–421)

Serum intact parathyroid hormone (pg/ml)

Patient number 78 113 75 68 76 17 < 0.001

Mean ± standard deviation 32.8 ± 22.4 47.7 ± 30.1 71.1 ± 49.8 105.3 ± 98.7 201.2 ± 216.8 437.3 ± 438.2

Median (minimum–maximum) 27 (5.8–172) 45.4 (4.8–243) 58.1 (6.5–319.8) 79 (3.3–469.1) 135.8 (3.4–1244) 305.9 (19.8–1617)

25-hydroxyvitamin D3 (ng/ml)

Patient number 74 109 71 65 73 17 0.552

Mean ± standard deviation 20.9 ± 8.3 22.4 ± 10.4 22.2 ± 12.2 23.2 ± 12.1 21.6 ± 11.4 19.1 ± 12.6

Median (minimum–maximum) 20.3 (5.4–40.1) 21.9 (4.0–62.6) 19.3 (6–74.3) 20.6 (2.7–58.0) 19.6 (3.7–62.3) 15.1 (4.2–47.1)

1,25-dihydroxyvitamin D3 (pg/ml)

Patient number 74 106 72 65 71 15 < 0.001

Mean ± standard deviation 41.8 ± 17.4 39.7 ± 26.2 36.6 ± 13.56 29.6 ± 12.8 29.5 ± 16.7 35.4 ± 26.8

Median (minimum–maximum) 38.6 (10.8–96.3) 33.4 (11.4–220) 34.6 (9.9–71.5) 27.4 (7.3–77.1) 26.4 (4.1–91.3) 31 (7.3–119)

Intact- FGF-23 (pg/ml)

Patient number 38 71 50 53 56 15 < 0.001

Mean ± standard deviation 31.7 ± 37.2 34.1 ± 48.5 39.6 ± 40.5 63.3 ± 88.6 107.9 ± 210.4 207.8 ± 209.0

Median (minimum–maximum) 20.5 (1.5–166) 21.4 (1.3–288) 30.4 (1.5–238) 32.5 (0–472.5) 44.2 (1.5–1400) 105 (11.1–738.1)

Urine calcium-to-creatinine ratio

Patient number 74 115 73 66 71 15 0.001

Mean ± standard deviation 0.09 ± 0.1 0.08 ± 0.14 0.04 ± 0.05 0.04 ± 0.08 0.05 ± 0.07 0.06 ± 0.06

Median (minimum–maximum) 0.05 (0–0.61) 0.03 (0–0.8) 0.02 (0–0.2) 0.02 (0–0.57) 0.02 (0–0.42) 0.05 (0–0.2)

Fractional excretion of phosphate

Patient number 74 114 74 65 72 15 < 0.001

Mean ± standard deviation 0.07 ± 0.04 0.12 ± 0.07 0.17 ± 0.09 0.25 ± 0.1 0.38 ± 0.25 0.53 ± 0.27

Median (minimum–maximum) 0.07 (0–0.22) 0.11 (0–0.52) 0.15 (0.04–0.46) 0.25 (0.05–0.61) 0.35 (0.04–1.75) 0.52 (0.15–1.03)

Bone densitometry Z-score

Patient number 47 76 44 43 46 11 0.009

Mean ± standard deviation −0.43 ± 0.85 −0.33 ± 1.25 −0.98 ± 0.82 −0.85 ± 1.36 −0.79 ± 1.19 −0.16 ± 1.03

Median (minimum–maximum) −0.4 (−2.5–1.3) −0.5 (−3.1–4.6) −1.15 (−2.7–1.7) −1 (−4.7–1.8) −0.8 (−3.6–2) 0.1 (−1.6–1.3)

(continued)
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TABLE 1 Continued

Variables Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5 P-value

△Bone age %

Patient number 67 103 66 62 63 15 0.224

Mean ± standard deviation −8.2 ± 19.3 −4.6 ± 19.6 −7.6 ± 14.8 −11.6 ± 16.4 −7.28 ± 14.76 −9.9 ± 16.4

Median (minimum–maximum) −5.0 (−59.5–33.3) −3.4 (−70–118.2) −3.4 (−57.1–22.3) −7.8 (−70.6–15.4) −4.7 (−55.1–16.8) −7.8 (−44.2–20)

The statistical significance level was set at P < 0.05.

TABLE 2 Prevalence of disordered mineral metabolism in the KNOW-Ped CKD cohort according to CKD stages.

Laboratory findings Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5 P-value

Hypocalcemia 14/78 (18.0%) 18/115 (15.7%) 10/75 (13.3%) 9/69 (13.0%) 16/76 (21.1%) 5/17 (29.4%) 0.486

Hypercalcemia 13/78 (16.7%) 28/115 (24.4%) 16/75 (21.3%) 14/69 (20.3%) 24/76 (31.6%) 8/17 (47.1%) 0.063

Hyperphosphatemia 2/78 (2.6%) 8/116 (6.9%) 7/75 (9.3%) 12/69 (17.4%) 18/76 (23.7%) 7/17 (41.2%) < 0.001

Hyperparathyroidism 5/78 (6.4%) 15/113 (13.3%) 28/75 (37.3%) 39/68 (57.4%) 42/76 (55.3%) 9/17 (52.9%) < 0.001

25 (OH)vitamin D deficiency 64/74 (86.5%) 88/109 (80.7%) 56/71 (78.9%) 48/65 (73.9%) 60/73 (82.2%) 14/17 (82.4%) 0.573

1,25 (OH)2vitamin D deficiency 63/74 (85.1%) 97/106 (91.5%) 68/72 (94.4%) 64/65 (98.5%) 66/71 (93.0%) 14/15 (93.3%) 0.092

The statistical significance level was set at P < 0.05.

TABLE 3 Medications for CKD-MBD in the KNOW-Ped CKD cohort according to CKD stages.

Medications Stage 1 Stage 2 Stage 3a Stage 3b Stage 4 Stage 5 P-value

Calcium supplement 4/78 (5.1%) 9/117 (7.7%) 3/75 (4.0%) 27/69 (39.1%) 32/76 (42.1%) 14/17 (82.4%) < 0.001

Active vitamin D 0/78 (0.00%) 5/117 (4.3%) 8/75 (10.7%) 15/69 (21.7%) 34/76 (44.7%) 11/17 (64.741%) < 0.001

Phosphate binder 4/78 (5.1%) 9/117 (7.7%) 3/75 (4.0%) 27/69 (39.1%) 33/76 (43.4%) 14/17 (82.4%) < 0.001

TABLE 4 MANCOVA to determine the difference between the patients with and without medications on CKD-MBD variables.

CKD-MBD variables Phosphorus binder F P-value Partial η2

User (n = 92) Non-user (n = 347)

Corrected Calcium (mg/dl)* 9.4 ± 0.9 9.3 ± 0.7 0.581 0.446 0.001

Phosphorus (mg/dl)* 5.1 ± 1.3 4.7 ± 0.9 2.230 0.136 0.005

Intact parathyroid hormone (pg/ml)* 189.0 ± 237.2 77.0 ± 115.0 10.689 0.001 0.024

CKD-MBD variables Active vitamin D F P-value Partial η2

User (n = 81) Non-user (n = 358)

Corrected Calcium (mg/dl)* 9.5 ± 0.6 9.3 ± 0.7 5.104 0.024 0.012

Phosphorus (mg/dl)* 4.7 ± 0.9 4.8 ± 1.0 6.718 0.010 0.015

Intact parathyroid hormone (pg/ml)* 112.6 ± 97.7 130.4 ± 160.8 1.388 0.239 0.003

*eGFR was controlled for CKD-MBD variables.

The statistical significance level was set at P < 0.05.

Jung et al. 10.3389/fped.2023.994979
creatinine ratio and eGFR showed a significant linear association

(corrected R2 = 0.013, F = 6.402, P = 0.012), while the linear

associations between corrected total calcium level and eGFR, and

between 25-hydroxyvitamin D3 and eGFR were not significant.
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Moreover, 1,25-dihydroxyvitamin D showed a statistically

significant exponential relationship with the eGFR (corrected

R2 = 0.088, F = 39.807, P < 0.001). Serum phosphate, serum iPTH,

FGF23, and FEP showed statistically significant inverse relationships.
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FIGURE 1

Relationship between each variable of mineral metabolism and the eGFR. (A) Relationship between corrected calcium level and eGFR, (B) Relationship
between serum phosphate level and eGFR, (C) Relationship between intact parathyroid hormone level and eGFR, (D) Relationship between
25-hydroxyvitamin D3 level and eGFR, (E) Relationship between 1,25-dihydroxyvitamin D3 level and eGFR, (F) Relationship between fibroblast growth
factor-23 and eGFR, (G) Relationship between Urine calcium/creatinine ratio and eGFR, (H) Relationship between fractional excretion of phosphate and eGFR.
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Discussion

MBD is a crucial complication that should be closely monitored

in pediatric patients with CKD. This study first demonstrated the

prevalence of disordered mineral metabolism and its relationship

with the eGFR in Korean pediatric patients with CKD for the first

time in Asia.

The median serum calcium concentration remained relatively

normal regardless of the CKD stage (Table 1). The stable serum

calcium level until the eGFR fell below 20 ml/min/1.73 m2

(Figure 1) was in accordance with the course of serum calcium

level in a previous study on adults with CKD (16). However,

looking at the proportion of patients with hypercalcemia and

hypocalcemia separately, both show an increasing tendency across

the CKD stages, which is more predominant in those with

hypercalcemia (Table 1). This finding was in accordance with the

findings from adult CKD, in which hypocalcemia does not appear

until an advanced stage of 4–5, at the expense of high PTH levels

from stage 3. The increasing prevalence of hypercalcemia might be

attributed to the increasing prescription of calcium supplements

and active vitamin D in patients, or to tertiary

hyperparathyroidism in long-standing CKD patients. In this regard,

the recent 2017 KDIGO guidelines highlighting caution against
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hypercalcemia have profound significance due to the accumulating

evidence suggesting that hypercalcemia is associated with increased

mortality and nonfatal cardiovascular events (17–19). Therefore,

maintaining serum calcium levels within the normal range for

adults is being emphasized in clinical practice. However, owing to

the lack of controlled studies and high-grade guidelines for

pediatric CKD patients, and due to the negative effect on bone

mass in children and adolescents, the strict criteria that are

cautious in adults seem to be applied a little weakly in children to

maintain calcium levels within the normal range in the age group.

In this context, analysis of the follow-up data of our study might

aid in evaluating calcium control in pediatric patients with CKD.

The inverse relationship between the serum phosphate level and

eGFR was highlighted in our study cohort. The rapid rise in the

serum phosphate level in stage 4–5 CKD (Table 1, Figure 1) was

earlier than shown in previous adult CKD data from the SEEK

study, while the CKiD cohort showed relatively stable phosphate

levels until the eGFR fell to < 20 ml/min/1.73 m2 (6, 16). Higher

median phosphate levels in earlier CKD stages might be associated

with differences in age distribution, leading to the baseline

difference in normal phosphate levels and dietary consumption. In

our study, the phosphate binder prescription increased according

to the increasing CKD stage, as did the rising serum phosphate
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level across the CKD stages. However, the lack of demonstrated

efficacy of phosphate binders for lowering serum phosphate in

CKD stages 3a–4, the unproven safety of phosphate binders, and

the uncertainty regarding the improvement in prognosis with

dietary phosphate restriction in adult studies led the treatment goal

to change from “maintaining phosphate within a normal range” to

“treating patients with progressive hyperphosphatemia” (19–22).

This revised recommendation may also have significance in

children with CKD regarding the management target of the serum

phosphate level and dietary modification. Although prospective

studies with pediatric patients with CKD are lacking, the choice of

phosphate binders and the level of dietary restriction should be

prudently titrated in pediatric patients based on the trend of

phosphate levels during follow-up.

The significant increase in the iPTH level with increasing CKD

stage was especially remarkable among advanced CKD stages

(CKD stage 4–5) (Table 1, Figure 1), corresponding with the

established adult data of hyperparathyroidism in CKD stage 3–5

(16, 23). However, the prevalence of hyperparathyroidism increased

with CKD stages 1 through 3b and remained stable throughout

CKD stages 4 and 5 (Table 2). This result may be explained by the

increase in the reference range of the serum iPTH level in

advanced CKD stages and the increased administration rate of

active vitamin D supplements according to increasing CKD stages.

While Japan, a neighboring nation from Asia, sets the iPTH target

level slightly lower at 60–240 pg/ml and adjusts it strictly, the

Korean society aims to control iPTH based on the target suggested

by the K/DOQI guidelines that are universally applied to both

adults and children (14, 24). Because active vitamin D, phosphate

binders, and calcimimetics are relatively accessible in Korea with

reimbursement, the results from this study regarding the iPTH

trend can be generally applied worldwide.

The serum 25-hydroxy vitamin D deficiency and serum 1,25-

dihydroxy vitamin D deficiency remained high regardless of the

CKD stage (> 70.0% in all stages) (Table 1), and only the serum

1,25-dihydroxy vitamin D level showed a significant decrement with

increasing CKD stage in an exponential manner. This phenomenon

may be caused by a decrease in the degree of 1-α-hydroxylation of

25-hydroxy vitamin D owing to progressive damage to the proximal

renal tubule with advancing renal deterioration, leading to a decline

in the 1,25-dihydroxy vitamin D level (25). In contrast, the median

level of 1,25-dihydroxy vitamin D showed a slightly higher value in

stage 5 than in stage 4 CKD. This slight rebound of the 1,25-

dihydroxy vitamin D level at CKD stage 5 from our study was in

agreement with the results from the CKid study (6), where the 1,25-

dihydroxy vitamin D level significantly decreased with decreasing

eGFR but slightly increased with an eGFR < 20 ml/min/1.73 m2.

These findings can be explained by the higher prescription rate of

active vitamin D supplements in patients with an eGFR < 20 ml/

min/1.73 m2 and those with CKD stage 5 in the CKid and our study.

MANCOVA results showing the correlation between phosphorus

binders or vitamin D and CKD-MBD variables are confusing in

Table 4. In this analysis, phosphorus binders and active vitamin D

did not show a significant effect on serum phosphorus and iPTH

levels. These findings might be due to a limitation of this cross-

sectional study, which only reveals simultaneous clinical situations

without defining a time sequence between the medication and
Frontiers in Pediatrics 07
laboratory findings. For example, when patients with

hyperphosphatemia are prescribed a phosphorus binder, they

might have normal phosphorus levels at the sampling time, while

those with normal phosphorus levels not receiving phosphorus

binders would continue to have normal phosphorus levels, thereby

disturbing the causal relationship.

The increase in the FGF-23 level with the decrease in renal function

observed in our study was similar to previous findings from studies

with children (6, 26, 27). FGF-23 is a bone-derived circulating

hormone that stimulates phosphate excretion through renal proximal

tubular cells and suppresses the renal synthesis of 1,25-dihydroxy

vitamin D and their level, and increases to lower the levels of serum

phosphate toward a normal range, which was shown from the CKid

study as the earliest detectable abnormality in mineral metabolism

(6). FGF-23 secretion increases as CKD progresses, and the serum

phosphate level is theoretically maintained at a relatively normal level

until progression to advanced CKD (28). Our study demonstrated

this mechanism well with the inverse relationship between eGFR and

FGF-23 and between eGFR and FEP. However, as patients progress

to advanced CKD, although the excretion of phosphate is increased

from each renal unit, the overall excretion of renal phosphate

diminishes due to a decline in the absolute number of functioning

nephrons. Therefore, hyperphosphatemia inevitably ensues.

Increasing FEP with CKD progression, as shown from our study, is a

sign of nephron stress, which the physiologic adaptive mechanism

has become maladaptive, leading to over-excretion of phosphate and

compensation for the absolute number of nephron loss as CKD

progress (29). This phenomenon was also shown from previous adult

studies showing increasing FEP with decreasing creatinine clearance,

leading to neutral phosphorus balance in some CKD stage 3/4 stage

patients (21, 30). Several studies have reported that increased FGF-23

levels are associated with CKD progression, left ventricular

hypertrophy, and premature death (31–34). Accumulating evidence

suggests that FGF-23 levels are further associated with cognitive

dysfunction and even host defense and inflammation (35–37).

Although there are no guidelines for reducing FGF-23 levels in

patients with CKD, dietary phosphate restriction, non-calcium

phosphate binders, intensified dialysis, and renal transplantation

seem to be reliable options in both children and adults with CKD.

As active vitamin D further stimulates FGF-23 secretion, using a

minimal dosage of active vitamin D to reach the target iPTH value

should be emphasized in clinical practice (38).

As CKD progresses in children, more patients are at risk of

decreased bone density caused by CKD-MBD. For the first time,

we demonstrated the progressive deterioration in bone density as

CKD progressed from stages 1 through 3 (Table 1). Although the

bone density improves in CKD stages 4–5, it consistently falls

behind the bone age compared to chronological age across all CKD

stages among the KNOW-Ped CKD cohort. The decreasing bone

density then rebounds according to the increasing CKD stage,

which can be partly explained by the increasing interventions,

including the intake of vitamin D, calcium, and phosphate binders.

Bone densitometry has limitations as an indicator of the

comprehensive status of bone disease. Because of the age

distribution and different growth velocities among patients, it does

not indicate the state of bone turnover, making it difficult to assess

the presence of adynamic bone disease. Additionally, because it
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relies on areal density rather than volumetric density, the bone

density of short statured children is usually underestimated (39–

41). However, we believe understanding the current status of the

bone density distribution has certain significance in the setting of

limited bone biopsy due to its invasiveness and burden.

This study has several limitations that warrant discussion. First,

missing data or unavailable information, a different number of

patients for each CKD stage might have caused biased results,

skewing the tendency of mineral concentration across the CKD

stages. Second, the level of dietary restriction and compliance with

each patient’s medications, which may have impacted the serum

mineral or hormone levels, were not included. Third, risk factor

analysis was not conducted, nor the subgroup analysis according to

different etiology was not performed as the cohort was composed

of patients with heterogeneous etiologies (including

glomerulopathy, congenital anomalies of kidney and urinary tract,

cystic kidney disease, etc.) and progression rates. Therefore, we

determined that it was unconvincing to demonstrate the

association of a single factor with CKD-MBD progression since

CKD “per se” can also influence the factor. Fourth, we did not

analyze baseline cardiovascular parameters in this study due to the

low prevalence of detectable extra-skeletal calcifications. Finally,

owing to the multicenter study design, there may have been

potentially significant inter-study variations among individual

center settings. However, the strength of this study lies in that this

is the first nationwide cohort study of pediatric CKD-MBD and

the first prospective and most extensive pediatric CKD cohort

study in Asia, demonstrating the distribution and prevalence of

CKD in Asian ethnicity and presenting the relationship between

eGFR change and variables associated with CKD-MBD in a

pediatric population. As Korea has good access to CKD-MBD-

related medications and a relatively well-established reimbursement

system, the management of Korean pediatric CKD patients closely

conforms to universal guidelines, and thus the results of this study

may be applicable worldwide. Therefore, the baseline study of

mineral metabolism is meaningful as a cornerstone of future

research. We will follow the study participants for ten years. We

expect further studies regarding dynamic changes in mineral

metabolism and growth, including analysis by underlying etiologies

in children with CKD from the full-length cohort data to be available.
Conclusion

Among Korean pediatric patients from the baseline data of the

KNOW-PedCKD cohort, the median calcium level remained

relatively normal with increasing use of calcium supplements and

active vitamin D across the CKD stages. Disordered mineral bone

metabolism with respect to serum phosphate, serum FGF-23,

hyperparathyroidism, and bone densitometry Z-score was evident

with advancing CKD stages. Further study with follow-up data

showing the trajectory or course of CKD-MBD stratified with

underlying CKD etiologies might elucidate the progression and the

impact of medical management on CKD-MBD in pediatric

patients. Furthermore, a comparative study and consensus on what

modality should be used for assessment of bone disease, growth,

and extra-skeletal calcification are needed.
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