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INTRODUCTION

Artificial intelligence (AI) is rapidly evolving in the field of radiology. Deep learning (DL) 
is a subfield of AI and machine learning (Fig. 1), and is characterized by an algorithm that 
uses a neural network with multiple layers. This technique is used to extract a hierarchy 
of structures and higher-level features from raw input data [1-3]. Additionally, from a 
clinical perspective, AI in healthcare has benefits for radiological workflow, such as im-
proving risk prediction and intervention, advising medical decision-making, and assisting 
with early triage [4] and radiological reports [5]. 

Magnetic resonance imaging (MRI) is a valuable imaging tool for diagnosing and treat-
ing musculoskeletal and spinal disorders by visualizing the anatomy and pathology rang-
ing from the bones and cartilages to muscles [6]. However, MRI has several drawbacks, in-
cluding image quality issues, radiologist errors, and long acquisition times, which can 
result in patient discomfort [7,8]. Herein, we discuss recent methods and future directions 
to overcome these drawbacks from the perspective of DL applications in the image inter-
pretation and reconstruction of musculoskeletal MRI. 

DL APPLICATIONS ON IMAGING DIAGNOSIS IN 
MUSCULOSKELETAL MRI

The DL interpretation of musculoskeletal MRI has emerged. In situations with a gradu-

Received: July 28, 2022
Revised: March 7, 2023
Accepted: March 17, 2023

Correspondence
Young Han Lee, MD
Department of Radiology, 
Research Institute of 
Radiological Science, and 
Center for Clinical Imaging 
Data Science (CCIDS),  
Yonsei University 
College of Medicine, 
50-1 Yonsei-ro, Seodaemun-gu, 
Seoul 03722, Korea.
E-mail:   radiologie@gmail.com

This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License 
(http://creativecommons.org/licenses/
by-nc/4.0/) which permits unrestricted 
non-commercial use, distribution, and 
reproduction in any medium, provided 
the original work is properly cited.

Review Article

eISSN 2384-1109
iMRI 2023;27(2);67-74
https://doi.org/10.13104/imri.2022.1102

Artificial Intelligence and Deep Learning 
in Musculoskeletal Magnetic 
Resonance Imaging
Seung Dae Baek, Joohee Lee, Sungjun Kim, Ho-Taek Song, and Young Han Lee
Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging 
Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Korea

The application of artificial intelligence (AI) and deep learning (DL) in radiology is rapidly 
evolving. AI in healthcare has benefits for image recognition, classification, and radiologi-
cal workflows from a clinical perspective. Additionally, clinical triage AI can be applied to 
triage systems. This review aims to introduce the concept of DL and discuss its applica-
tions in the interpretation of magnetic resonance (MR) images and the DL-based recon-
struction of accelerated MR images, with an emphasis on musculoskeletal radiology. The 
most recent developments and future directions are also discussed briefly.

Keywords:   Artificial intelligence; Deep learning; Musculoskeletal; Magnetic resonance 
imaging

http://crossmark.crossref.org/dialog/?doi=10.13104/imri.2022.1102&domain=pdf&date_stamp=2023-06-16


68 www.i-mri.org

Artificial Intelligence and Deep Learning in Musculoskeletal MRI | Seung Dae Baek, et al. 

ally increasing number of examinations, radiologists expect 
DL to reduce workloads. In this context, we describe DL appli-
cations for the interpretation of musculoskeletal images, es-
pecially MRI images.

Knee Anterior Cruciate Ligament
For diagnosing knee injuries, MRI is a useful and effective 

noninvasive imaging diagnostic tool with high spatial resolu-
tion and excellent soft tissue resolution that can clearly visual-
ize the overall structure of the knee joint. DL has been used to 
identify anterior cruciate ligament (ACL) injuries. DL has been 
demonstrated to have a statistically equivocal or slightly lower 
performance than experienced radiologists [9,10]; it has a sen-
sitivity of 96%–96.1%, specificity of 93.5%–96%, and an area 
under the receiver operating characteristic curve (AUC) of 0.935–
0.98, whereas radiologists have a sensitivity of 97.5%–98%, 
specificity of 98%–100%, and an AUC of 0.98–0.99. However, in 
another study employing binary detection (i.e., presence or ab-
sence of tears), DL outperformed radiologists in the detection 
of ACL tears [11]; radiologists had a sensitivity of 0.804–0.957 
and specificity of 0.820–0.860, whereas DL had a sensitivity of 
0.976 and specificity of 0.944. However, previous studies did 

not differentiate between partial- and full-thickness tears, and 
were restricted to the binary detection of ACL tears. More 
classification and multiple abnormality detection are required 
in future studies, not only for ACL tears, but also for cartilage 
defects and meniscal tears.

Several preprocessing techniques have been introduced for the 
detection of ACL tears to enhance DL performance. Equipped 
with cropped and additional randomly cropped image tech-
niques, DL had the best performance in cropped and additional 
five-slice image settings, with a sensitivity and specificity of 
100% and 93.3%, respectively [12]. In another study, two pre-
processed images of non-cropped whole images and manually 
segmented images of the ACL demonstrated a sensitivity, spec-
ificity, and AUC of 97.6%, 94.4%, and 0.960, respectively [11]. 
This result had an increased sensitivity of 4.4% and specificity 
of 2.2% compared to preprocessed images of whole images 
only. Recent studies using 3D convolutional neural networks 
(CNNs) have used a preprocessing algorithm in which DL cat-
egorizes distinct anatomic components of the knee and crops 
the image automatically to isolate the ACL [13,14]. 

Conventionally, DL has the typical weakness of a poor per-
formance on an external dataset. Some researchers have 
compared the performance on internal and external datasets 
and identified a strategy to boost DL performance by adding 
more training to external datasets. In both internal and exter-
nal MRI datasets, DL demonstrated unsatisfactory outcomes 
for external MRI, in which DL had a decreased sensitivity of 
6.5%, specificity of 7.3%, and AUC of 0.069 in the outside MRI 
dataset [10]. In the internal dataset, DL had a high AUC value 
of 0.965 for ACL tear detection, whereas the AUC in the ex-
ternal dataset was 0.824 [15]. After additional training on the 
external training set, DL achieved an increased AUC (0.911). One 
option for actual clinical applications is additional training us-
ing an external dataset. Although many studies have focused 
on the standalone AI/DL performance, AI/DL may also aid radi-
ologists and clinicians in image interpretation. The usefulness 
of DL-assisted image interpretation is crucial in clinical prac-
tice. General radiologists and orthopedic surgeons with DL as-
sistants considerably improved the specificity of identifying 
ACL tears (4.8%) [15]. Inexperienced trainees significantly im-
proved the agreement between experienced radiologists in the 
interpretation of cartilage, meniscus, and ACL abnormalities us-
ing DL-assisted grading [14]. In the future, DL-assisted diagnosis 
and grading in radiological reading rooms will be beneficial.

Knee Meniscus
Meniscal and cartilage abnormalities are frequently identi-

fied as pathologies on knee MRI scans. However, few studies 
on the application of DL have been conducted to date [15-22] 
because of the challenging training process for detection and 

Fig. 1. Venn diagram of the relationship between artificial intelli-
gence (AI), machine learning (ML), deep learning (DL), and a convo-
lutional neural network (CNN). AI is a branch of science and engi-
neering concerned with making intelligent systems perform tasks 
based on external data in the same way that humans do. ML is a 
subfield of AI that enables computers to perform tasks and learn 
without explicit programming. DL is a subset of ML in which the al-
gorithm studies comprehensive features that reflect a structural hi-
erarchy in the data. CNN is a deep learning architecture distin-
guished by structured multiple data processing arrays.
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classification (tear orientation, such as horizontal or vertical) 
compared with ACL tear detection. Automatic detection of 
meniscal tears had a poorer performance than the detection 
of ACL tears, in which the AUC of meniscal tear detection and 
classification was 0.7791–0.906 (Fig. 2). Using arthroscopy as a 
reference standard, the authors evaluated the sensitivity of DL 
in the medial meniscus and observed that it was significantly 
lower than that of the radiologist by 9%–12%, in which the 
sensitivities of the two radiologists was 93.0%–96.5% and that 
of DL was 84.2% [15,16]. Another study observed excellent di-
agnostic performance in both meniscal tear detection and lo-
calization with AUCs of 0.94 and 0.92, respectively [17]. 

Shoulder
DL applications in shoulder MRI have focused on the detec-

tion of rotator cuff tears and the evaluation of rotator cuff 
muscle atrophy. Few studies on the detection and classification 
of rotator cuff tears using DL have been reported [23-25]. DL 
has a relatively high performance for binary detection (tear or 
no-tear) of rotator cuff tears, with an accuracy of 87%–92.5% 
[24,25]. In the classification of partial thickness tears, full-
thickness tears, and normal tendons, DL demonstrated a poor 
performance; the sensitivity in the partial- and full-thickness 
groups was 72.5% and 100%, respectively [23]. The limited di-
agnostic performance in detecting partial-thickness tears may 
be due to misclassification between tendinosis and partial-
thickness tears. High performance in the segmentation of cer-
tain muscles and fractions of fat/muscle content was observed 
in the analyses of shoulder muscles [26-29]. For the supra-
spinous fossa and muscle regions, the dice similarity coeffi-
cient, which evaluates the similarity of two datasets (predict-
ed by DL and ground truth in these studies), ranged from 0.93 
to 0.99 [27-29]. 

Spine
In the field of spine imaging, DL has been applied to verte-

bral segmentation (separation of vertebrae from intervertebral 
discs), spine detection (localization and identification of inter-
vertebral discs and vertebrae), pathology detection (central 
canal stenosis and neural foraminal stenosis), and improve-
ment of workflow efficiency. DL has slowly and steadily im-
proved its diagnostic performance in detecting central canal 
stenosis [30,31], neural foraminal stenosis [32,33], and disc de-
generation [34,35]. In a recent study, DL demonstrated compa-
rable agreement with experienced radiologists (recall of > 99%) 
and statistically lower agreement with foraminal stenosis (re-
call of 84.5%) [36]. An impressive time reduction and improve-
ment in inter-observer agreement were recorded in a recent 
study that utilized DL to detect central canal, lateral recess, 
and neural foraminal stenosis [37]. With DL assistance, the im-
age interpretation time per spine MRI was reduced from a mean 
of 124–127 s to 47–71 s, and the interobserver agreement was 
improved from a kappa value of 0.39 to 0.70–0.71. 

DL-BASED IMAGE RECONSTRUCTION

Before the advent of AI/DL, parallel imaging (PI) [38] and 
compressed sensing (CS) [39] were commonly used to acceler-
ate magnetic resonance (MR) acquisition. PI and CS are tech-
niques based on undersampling k-space data. The major 
drawback of undersampled k-space data is that the sparsity 
of the reconstructed image results in image noise (low signal-
to-noise ratio, SNR) and aliasing. Although CS preserves SNR 
better than PI, compression methods may blur information 
and oversimplify the image [40]. DL-based reconstruction, a 
new and different approach to accelerated MRI, is an emerg-

Fig. 2. Magnetic resonance imaging of the knee of a 30-year-old male. A: A coronal short-tau inversion recovery image displays both me-
nisci (arrow). B: A sagittal intermediate-weighted image with fat-suppression at the junction of the body to the posterior horn of the medi-
al meniscus (arrow). C: Probability of a meniscal tear calculated by a convolutional neural network is represented by a heatmap. A horizon-
tal tear with extension to the posterior horn is observed at the body of the medial meniscus. The convolutional neural network estimated 
the probability of a tear at 99.9%. Adapted from Fritz et al. [16], Skeletal Radiology 2020;49:1207-1217, used under CC BY 4.0 license. The 
legend has been modified from the original version.
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ing method for overcoming the disadvantages of PI and CS 
(Supplementary Fig. 1). The DL-based reconstruction is gener-
ally based on supervised or unsupervised learning algorithms. 
The majority of applications use supervised learning, in which 
fully sampled and paired undersampled data are coupled with 
machine training. Unsupervised learning remains a topic of 
currently active research [41]. In the clinical field, recent stud-
ies on DL-based reconstructed MRI images have focused on 
image quality for diagnostic accuracy, artifacts, and time re-
duction. 

Ultrafast MRI can be performed with DL-based image recon-
struction, which is helpful for patients with claustrophobia. This 
imaging technique demonstrated comparable image quality 
and noise while maintaining diagnostic performance (Fig. 3). A 
5-minute 3D quantitative double-echo steady-state sequence 
of the knee with AI image quality enhancement demonstrated 
strong inter-reader agreement with the 20-minute conven-
tional knee MRI and near-equivalent diagnostic performance 
with an arthroscopic reference [42]. Recht et al. [40] compared 
the diagnostic performance of DL-based reconstructed accel-
erated knee MRI with conventional MRI. Axial fat-suppressed 
T2-weighted images, sagittal proton density (PD)-weighted 
images, sagittal fat-suppressed T2-weighted images, and coro-
nal PD-weighted images with and without fat suppression 
were all included in the DL-based reconstruction for knee im-
aging, which was performed within a four-fold acceleration of 
5 min. Several studies on faster MRI with deep-learning appli-
cations in musculoskeletal MRI are summarized in Supplemen-
tary Table 1.

DL-based reconstructed MRI have been evaluated in the 
shoulder and lumbar spine [43,44]. The examination times for 
accelerated sequences were reduced by 67% in the former 
(scan time: 3 min 5 s vs. 9 min 23 s) [44]. In a spine study [43], 
DL-based reconstructed 3D sequences had a higher image 
quality score than the two standard sequences and similar in-
ter-observer agreement for pathologies such as foraminal and 
central stenoses. These studies concluded that DL-based re-
construction has advantages in terms of time reduction, fewer 
artifacts, and diagnostic accuracy similar to conventional im-
age reconstruction. However, DL-based reconstruction produces 
unrealistic [45] and oversmoothed images [46] (Fig. 4), which 
can hinder the gradual adoption of new methods in the clini-
cal field [46]. The banding artifact produced by cartesian DL 
reconstruction was strong, especially in the low-SNR region of 
the reconstructed images [45,47]. These artifacts and unrealis-
tic over-smoothed images that radiologists are reluctant to 
obtain should be thoroughly overcome in clinical practice. 

Low-field (LF) MRI is another target of DL applications be-
cause of the increasing demands of LF MRI owing to its re-
duced maintenance cost, fewer susceptibility artifacts, and 
higher T1 contrast [48]. DL applications have inherent draw-
backs such as a low SNR and relatively long scan time in LF MRI 
image acquisition [49]. Although DL techniques have grown 
rapidly in MRI, they still have several drawbacks, including the 
limitations of DL algorithms, large training data, and general-
izability to different datasets or applications, such as LF and 
ultra-high-field MRI applications. 

Resolution and scan time in MRI have a tradeoff. By using 

A B

Fig. 3. Magnetic resonance imaging of the shoulder of a 66-year-old male. A: A coronal fat-suppressed T2-weighted with an acceleration 
factor 3 image indicates a supraspinatus tendon tear and fluid in the subacromial–subdeltoid bursa. The image demonstrates noisy patterns 
of the bone marrow and muscles. B: A corresponding deep learning-based compressed sensing reconstruction image demonstrates image 
quality enhancement with less noise. The torn supraspinatus tendon and vascular structures are clearly delineated. 
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fast MR technology, the scan time can be shortened, and the 
spatial resolution can be improved. Enhancements in spatial 
resolution beyond fast imaging, such as image super-resolu-
tion, have been investigated [50]. A promising method for ra-
diologic images is DL-based image super-resolution or super-
resolution generative adversarial networks because DL can 
predict high-resolution images from lower-resolution images 
[51,52]. Super-resolution imaging techniques are promising 
for musculoskeletal MRI when considering musculoskeletal 
joint imaging, which visualizes tiny structures in the joints. 

RADIOLOGIC WORKFLOW

Recently, milestone DL models with extremely low error 
rates and high computational efficiency have demonstrated 
remarkable performance in lesion detection, classification, and 
segmentation tasks. However, the applications of AI in radiolo-
gy are not limited to visual tasks. AI is expected to improve the 
efficiency of the radiological workflow beyond imaging acqui-
sitions and reconstructions, including initial patient schedul-
ing, optimized protocol, MRI reconstruction, image enhance-
ment, medical image-to-image translation, and AI-assisted 
image interpretation [53]. Radiology is facing increasing pres-
sure to improve productivity [54]. Radiologists can work more 
efficiently with intelligent hanging protocols in a picture ar-
chiving communication system (PACS), including appropriate 
preferred position, size syncing, and cross-referencing settings. 
AI has the potential to enhance PACS viewers using smart tools 
that process various available data [55]. These are essential ap-
plications for optimizing imaging workflows and improving 
noninterpretive tasks. For example, in clinical studies that re-

quire time, triage AI can be applied to automated DL-based 
triage systems for acute neurologic events [56]. It can gener-
ate a framework using computer-assisted surveillance of cra-
nial imaging by prioritizing more emergent imaging studies. 
This process reduces the time to triage, improves early treat-
ment, and improves patient outcomes. Similarly, the radiolog-
ical worklist to be read can be sorted using a higher-priority 
image study.

CONCLUSION

DL-based image reconstruction has already achieved image 
quality comparable to that of conventional imaging of the 
knee, shoulder, and spine. Realistic and non-oversmoothed im-
ages are challenging but conquerable issues that need to be 
resolved. Future studies should be directed toward enhancing 
pathology detection rates and improving training processes.

The rapid image acquisition and increased spatial resolution 
of musculoskeletal MRI permit the noninvasive evaluation of 
tiny morphological changes using PI, CS, and other accelerat-
ed imaging techniques [57]. Recent advancements in DL and 
CNNs can help to generalize super-resolution imaging using 
natural 2D images for applications in 3D medical imaging [58, 
59]. Furthermore, generative adversarial networks can gener-
ate realistic data and have received considerable attention in 
the field of DL [60]. AI/DL in musculoskeletal radiology is an-
ticipated to be the next step in future radiology because of its 
capacity to go beyond detection and classification and move 
toward efficient and fast image reconstruction capabilities. 
Although DL-based image reconstructions have a promising 
future in musculoskeletal radiology, their real-world applica-

A B

Fig. 4. Magnetic resonance imaging of the knee of a 67-year-old female. A: A coronal fat-suppressed T2-weighted with an acceleration fac-
tor 2 image indicates subchondral cysts and bone marrow edema with an osteochondral lesion in the medial femoral condyle. B: A corre-
sponding deep learning-based compressed sensing reconstruction image demonstrates image quality enhancement with less noise. However, 
the image textures of the bone marrow are slightly blurred and appear over-smoothened. 
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tion still requires large-scale clinical validation. Therefore, ra-
diologists need to understand the inherent properties of spe-
cific data within DL image reconstruction and to collaborate 
with other radiologists, MR physicists, MR engineers, and data 
scientists in the MRI world. 
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