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Comparisons of the prediction 
models for undiagnosed diabetes 
between machine learning 
versus traditional statistical 
methods
Seong Gyu Choi 1,8, Minsuk Oh 1,2,8, Dong–Hyuk Park 1, Byeongchan Lee 3, Yong‑ho Lee 4,  
Sun Ha Jee 5 & Justin Y. Jeon 1,2,6,7*

We compared the prediction performance of machine learning‑based undiagnosed diabetes prediction 
models with that of traditional statistics‑based prediction models. We used the 2014–2020 Korean 
National Health and Nutrition Examination Survey (KNHANES) (N = 32,827). The KNHANES 2014–
2018 data were used as training and internal validation sets and the 2019–2020 data as external 
validation sets. The receiver operating characteristic curve area under the curve (AUC) was used to 
compare the prediction performance of the machine learning‑based and the traditional statistics‑
based prediction models. Using sex, age, resting heart rate, and waist circumference as features, the 
machine learning‑based model showed a higher AUC (0.788 vs. 0.740) than that of the traditional 
statistical‑based prediction model. Using sex, age, waist circumference, family history of diabetes, 
hypertension, alcohol consumption, and smoking status as features, the machine learning‑based 
prediction model showed a higher AUC (0.802 vs. 0.759) than the traditional statistical‑based 
prediction model. The machine learning‑based prediction model using features for maximum 
prediction performance showed a higher AUC (0.819 vs. 0.765) than the traditional statistical‑based 
prediction model. Machine learning‑based prediction models using anthropometric and lifestyle 
measurements may outperform the traditional statistics‑based prediction models in predicting 
undiagnosed diabetes.

Abbreviations
WC  Waist circumference
WHtR  Waist to height ratio
RHR  Resting heart rate
DRS  Diabetes risk score
KNHANES  Korean National Health and Nutrition Examination Survey
ROC  Receiver operating characteristic
AUC   Area under the ROC curve
ML  Machine learning
TS  Traditional statistics
PPV  Positive predictive value
NPV  Negative predictive value
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PLR  Positive likelihood ratio
NLR  Negative likelihood ratio
SHAP  Shapely additive explanation
LightGBM  Light gradient boosting machine
XGBoost  Extreme gradient boosting machine
AdaBoost  Adaptive boosting
Bagging  Bootstrapping and aggregating

The Diabetes Fact Sheet in Korea 2020 from the Korean Diabetes Association reported that the prevalence of type 
2 diabetes (hereafter “diabetes”) in Korean adults aged ≥ 30 years in 2018 was 13.8% (approximately 4.9 million)1. 
However, detecting diabetes is challenging, given the asymptomatic state at an early stage of diabetes. Conse-
quently, many cases of diabetes are not diagnosed until after one’s diabetes complications have  deteriorated2, and 
the optimal timing of diabetes treatment is often  delayed3,4.

Therefore, it is imperative to identify an easy and accessible diabetes prediction at an early stage to effectively 
treat and manage diabetes and prevent its complications. Growing evidence has suggested some diabetes predic-
tion models using “non-invasive” data, including sociodemographic, clinical, and key health characteristics (e.g., 
age, waist circumference [WC], family history of diabetes, smoking status, alcohol consumption, and resting heart 
rate [RHR])5,6. Based on the magnitude of the relationships between candidate diabetes risk factors and diabetes, 
there are some (early stage) diabetes prediction models using either a self-report survey using the diabetes risk 
score (DRS)7,8 or applying various algorithms from a machine learning  perspective9,10.

In Korea, diabetes prediction models have been established using data from the Korean National Health and 
Nutrition Examination Survey (KNHANES) and the Korean Genome and Epidemiology Study. However, the 
previous Korean diabetes prediction models were limited by (1) insufficiently high (i.e., 0.74 to 0.765) the receiver 
operating characteristic curve area under the curve (AUC) in the  models5,6 and (2) low accessibility, given that 
the models used blood lipid profiles (e.g., fasting glucose, glycated hemoglobin [HbA1c], triglyceride, and total 
cholesterol)11,12. Furthermore, Jang et al. suggested a previous diabetes prediction  model13 may be valid in a spe-
cific condition only when adjusting for the proportion of diabetic vs. non-diabetic individuals at 1:1. Additionally, 
some research was at high risk of “overfitting” because the external validity of models was not examined given 
that the “training and internal validation set” and “external validation set” were not properly  differentiated14.

To fill the knowledge gap in the literature, the objective of this study was to compare the performance of 
machine learning (ML)-based prediction models and traditional statistics (TS)-based prediction models using 
non-invasive, highly accessible clinical variables (e.g., age, sex, anthropometry, family history of diabetes, lifestyle 
behaviors). We hypothesized that the prediction performance of the ML-based undiagnosed diabetes prediction 
models would be superior to that of the TS-based undiagnosed diabetes prediction models.

Methods
Study population (undiagnosed diabetes). We used the data from the Korean National Health and 
Nutrition Examination Survey (KNHANES), which is an ongoing nationwide cross-sectional health and nutri-
tion survey, to examine the health status of Koreans and to monitor trends in health risk factors and prevalence 
of major chronic diseases in  Korea15. The details of the KNHANES have been described  elsewhere15. Among 
individuals who participated in the 2014–2020 KNHANES (N = 113,091), we excluded those who were (1) 
aged < 19 or ≥ 80 years (N = 28,421); (2) diagnosed with diabetes (N = 11,337); and (3) missing data on predictor 
variables (N = 40,163; e.g., physical activity, family history of diabetes, WC, smoking status, RHR, sleep time, 
body mass index, alcohol consumption). Therefore, a total of 32,827 participants were examined. Figure 1 pre-
sents a flow chart of the study participants’ inclusion process.

Prediction algorithms and comparison between machine learning-based diabetes prediction model vs. tra-
ditional statistics-based diabetes prediction model.

We created ML-based prediction models based on the five ML classification algorithms: logistic regression, 
Random  Forest30, Light Gradient Boosting Machine (Light GBM)31, Extreme Gradient Boosting (XG Boost)32, 
and Adaptive Boosting (AdaBoost)33. We compared the ML-based and TS-based prediction models using the 
previously developed diabetes prediction  models5,6. These TS-based prediction  models5,6 employed the previously 
established diabetes risk  score8 and included easily accessible and publicly available clinical data from KNHANES, 
including sex, age, WC, family history of diabetes, hypertension status, smoking status, alcohol consumption, 
and/or RHR. Specifically, to compare ML-based prediction models and TS-based prediction models, we repro-
duced previous diabetes risk score  models5,6 and compared their performance on the same external validation set. 
We compared ML-based prediction models and TS-based prediction models in four different sets of variables: 
(1) sex, age, WC, and  RHR6; (2) sex, age, WC, hypertension status, alcohol consumption, smoking status, and 
family history of  diabetes5; (3) sex, age, WC, hypertension status, alcohol consumption, smoking status, family 
history of diabetes, and  RHR6; (4) in addition to the variables used in previous studies, features (i.e., predictor 
variables; e.g., physical activity, sleep time, and body mass index) that can maximize prediction performance 
were selected using the feature selection algorithm of machine learning. We utilized several methods of feature 
selection, including the Shapley value  method46, the Recursive Feature Elimination Cross-Validation  method47, 
and the Permutation feature selection  method48. These approaches were employed to identify and include the 
main variables commonly selected across the different methods in our analysis. AUC was used to compare the 
prediction performance of the ML-based and the TS-based prediction models. We used the Hanley and McNeil’s 
 methods16 to test the significant difference between the two AUC scores derived by the ML-based and TS-based 
prediction models.
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Measures. Target variable (undiagnosed type 2 diabetes). Undiagnosed diabetes was previously defined and 
 described6. Briefly, participants with fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5% yet had not been diagnosed 
or under any diabetes treatments, were considered undiagnosed diabetes.

Features (predictor variables). The methods of measurement have been previously described in detail. RHR 
was measured as a radial pulse in the right arm for 15 s after resting for 5 min in a seated position, and then 
multiplied by 4 and used as an RHR (beats/min). Age (years), family history of diabetes (yes, no), hypertension 
status (yes, no), smoking status (yes, no), and alcohol consumption (< 1, 1–4.9, 5 drinks/day) were measured 
using a general questionnaire administered by trained medical staff and interviewers. WC (cm) was measured at 
the narrowest point between the lower borders of the rib cage and the uppermost borders of the iliac crest at the 
end of a normal breath, using a standard protocol. The measurements of other features such as waist-to-height 
ratio (WHtR), body mass index (kg/m2), total physical activity (work-related, leisure-time, walking; metabolic 
equivalent task/week), and sleep time (h/day) are described in Supplemental Table 1.

Strategies for building diabetes prediction models. Figure 2 shows the process of building a diabetes 
prediction model. We combined the KNHANES data from 2014 to 2020, and the 2014–2018 data (N = 23,369) 
were used as the training and internal validation sets and the 2019–2020 data (N = 9,458) as the external valida-
tion set. We then performed fivefold cross-validation using the training and internal validation sets to select an 
optimal prediction algorithm, hyper-parameters, and features, and to reduce the variance of the prediction per-
formance (generated by the distribution of data when the data were randomly divided) to prevent overfitting of 
the  model17,18. For the cross-validation, we used “Stratified Cross-Validation”19 after adjusting for the proportion 
of undiagnosed diabetes in each cross validation set. In the cross-validation  process20, first, the prediction model 
was trained using the “Training set” and the performance of the trained model was examined using the “Internal 
validation set,” which was not included in the ‘Training set’. Second, we estimated the mean AUC values of the 
prediction performance level from the mutually exclusive 5 “Internal validation sets” after five iterations. Third, 
we selected the best prediction algorithm (when the estimated average of the AUC level was highest from the five 
internal validation sets), hyperparameters, and features for the prediction model. For reference, we utilized the 
Optuna  framework41, which automates the search for the most effective hyperparameter configuration. Optuna 
offers a user-friendly and adaptable interface for defining search spaces, specifying the objective function for 
optimization, and choosing optimization  algorithms41. Fourth, the highest mean AUC of the prediction model 
within the “Internal validation set” was validated using the 2019–2020 data (“external validation set”) and was 
compared with the TS-based Korean diabetes prediction models using risk  scores5,6.

Evaluation for the prediction performance of diabetes prediction models. We evaluated the per-
formance of the diabetes prediction models using AUC, sensitivity, specificity, Youden index, positive predic-
tive value (PPV), negative predictive value (NPR), positive likelihood ratio (PLR), and negative likelihood ratio 
(NLR). In general, the cutoff value of prediction models for predicting diabetes is determined when the Youden 

Total Data Set (2014 ~ 2020)

• N=113,091

Exclusion
• Age < 19 or ≥ 80, n=28,421 

• Diagnosed diabetes, n = 11,337

• Taking any diabetes medication on the day of the 

examination, n=343

Missing Data
• Leisure physical activity, n = 39,105

• Family history of diabetes, n=643

• Waist circumference, n=126

• Smoking status, n=124

• RHR, n=73

• Walking, n=44

• Sleep time, n=21

• SBP, n=19

• Work physical activity, n=4

• BMI, n=2

• Alcohol consumption, n=2

Preprocessed Data set
• N=32,827, Predictor variables=14

• Undiagnosed Diabetes, n = 1,494  (4.6%)

Training & Internal Validation Set 

(2014, 2015, 2016, 2017, 2018)

• N=23,369 (71%)

• Undiagnosed Diabetes, n = 1,008 (4.3%)

External Validation Set 

(2019, 2020)

• N=9,458 (29%)

• Undiagnosed Diabetes, n = 486 (5.1%)

Figure 1.  Flowchart of the study data set.
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index (sensitivity + specificity − 1) is the  highest21. However, considering the purpose of this study, we excluded 
the cutoff value of the highest Youden index (when sensitivity was low, and specificity was high) and determined 
the optimal cutoff value of the prediction model for diabetes when the sensitivity was greater than 80% and the 
specificity was greater than 50% (when the Youden index was highest).

Shapely additive explanation (SHAP) analysis for interpretable ML models. Unlike traditional 
statistical methods, ensemble  learning22,23, a type of ML algorithm (e.g., bagging and boosting) used in this 
study, is combined with multiple prediction models. Consequently, the prediction performance is superior to 
that of a single prediction model owing to the ensemble effect from combining multiple  models24. However, 
it is difficult to clearly examine the features that contribute to prediction  results25. To address this limitation, 
we adopted  SHAP26,27, which is a leading unified framework for interpreting the decision-making process of 
ML models and prediction  results28,29. For reference, SHAP analysis operates by assigning significance values, 
referred to as Shapley values (which represent the importance of each feature; positive values indicate a positive 
contribution), to the input features of a machine learning model. These values elucidate the extent to which each 
feature contributes to the model’s prediction for a given  instance26,27.

Statistical analysis. We used Python version 3.8.8. to develop ML-based models and SPSS version 25.0 
(Inc., Chicago, IL) for descriptive statistics, which includes frequency distributions and variability, were used to 
present the characteristics of the study participants. Differences between the non-diabetic and undiagnosed dia-
betes groups were examined using the t-test or chi-square test, as appropriate. The statistical difference of AUC 
between prediction models was examined using Hanley and McNeil’s  methods16.

Ethics approval and consent to participate. This study uses information disclosed to the public and 
was exempted from deliberation because it uses existing data that has already been generated information about 
the study subjects.

Results
Participant characteristics stratified by data split (training & internal validation, and external validation sets) 
are shown in Table 1. Participants with undiagnosed diabetes (vs. non-diabetes) were more likely to be older 
and smokers, have higher body weight, body mass index, WC, RHR, WHtR, systolic and diastolic blood pres-
sures, hypertension, more family history of diabetes, and greater alcohol consumptions (all P < 0.001) in both 
the “training & internal validation set” and “external validation set.” Furthermore, participants diagnosed with 
diabetes were more likely to be older and have a family history of diabetes and hypertension than participants 
with undiagnosed diabetes (all P < 0.05). For additional reference, the participant characteristics stratified by 
non-diabetes, undiagnosed diabetes, and diagnosed diabetes are presented in Supplemental Table 1.

The prediction performance comparison between the ML-based diabetes prediction model and TS-based 
prediction  model6 using sex, age, WC, and RHR is presented in Table 2. In the external validation set, the AUC 
and Youden index of the TS-based prediction model developed by Park et al.6 were 0.740 (95% CI 0.721–0.759) 
and 35.0 respectively. Because the Random Forest showed the highest mean prediction performance in the train-
ing and internal validation sets, it was selected when four features (i.e., sex, age, WC, and RHR) were included 
in the model. In the external validation set, the AUC and Youden index of the ML-based prediction model were 
0.788 (95% CI 0.722–0.804), 44.0, respectively. The AUC of the ML-based prediction model was significantly 
higher than that of the TS-based prediction model (P = 0.008).

A comparison between the ML-based and TS-based diabetes prediction  models5 using sex, age, WC, family 
history of diabetes, alcohol consumption, smoking status, and hypertension status is presented in Table 3. In an 
external validation set, the AUC and Youden index of the TS-based prediction model developed by Lee et al.5 
were 0.759 (95% CI 0.741–0.777), and 36.0 respectively. Because XGBoost showed the highest mean prediction 
performance in the training and internal validation sets, XGBoost was selected when seven features (i.e., sex, age, 
WC, family history of diabetes, alcohol consumption, smoking status, and hypertension status) were included 
in the model. In the external validation set, the AUC and Youden index of the ML-based prediction model were 
0.802 (95% CI 0.787–0.817), and 44.4 respectively. The AUC of the ML-based prediction model was significantly 
higher than that of the TS-based prediction model (P = 0.015).

A comparison between the ML-based diabetes prediction model and the TS-based prediction  model5 using 
sex, age, WC, family history of diabetes, alcohol consumption, smoking status, hypertension status, and RHR is 
presented in Table 4. In the external validation set, the AUC and Youden index of the TS-based prediction model 
developed by Park et al.6 were 0.765 (95% CI 0.738–0.792) and 42.0 respectively. Since LightGBM showed the 
highest mean prediction performance in the training & internal validation sets, LightGBM was selected when 
eight features (i.e., sex, age, WC, family history of diabetes, alcohol consumption, smoking status, hypertension 
status, and RHR) were included in the model. In the external validation set, the AUC and Youden index of the 
ML-based prediction model were 0.811 (95% CI 0.796–0.826) and 48.3, respectively. The AUC of the ML-based 
prediction model was significantly higher than that of the TS-based prediction model (P = 0.008).

In addition to the aforementioned features from previous TS-based diabetes prediction  models5,6, the feature 
selection algorithm determined a total of 11 features (previous features plus four additional features: body mass 
index, WHtR (replacement of WC), physical activity, and sleep time). A comparison between the ML-based 
diabetes prediction model and TS-based diabetes prediction  models5,6 using these 11 features is presented in 
Table 5. In the external validation set, LightGBM (the highest prediction performance in the training & internal 
validation sets) showed the highest prediction performance. The AUC and Youden index of this ML-based 
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prediction model were 0.819 (95% CI 0.805–0.833) and 47.4, respectively. The AUC of the ML-based prediction 
model was significantly higher than that of the TS-based prediction model (P = 0.001).

Figure 3 shows the highest 3 AUC of the ML-based diabetes prediction models and the model with the highest 
AUC among the previous TS-based diabetes prediction models developed by Park et al. 6 .

After validating the prediction performance, we used SHAP  framework26,27. Figure 4 shows the SHAP sum-
mary results of the top three machine-learning-based models. The SHAP values differed slightly among the 
prediction algorithms. The WHtR, age, hypertension status, body mass index, family history of diabetes, sex, 
and RHR were selected as important features with a high contribution to the detection of undiagnosed diabetes. 
According to the SHAP value, as the WHtR, age, body mass index, and RHR values increased, the probability 
that the prediction model predicted the participant to have diabetes increased. The contribution of lifestyle 
features (e.g., alcohol consumption, physical activity, sleep time, and smoking status) to the prediction results 
was relatively small compared with the anthropometric measures (e.g., WHtR, age, body mass index, and RHR). 
The lower the levels of physical activity and sleep time and the higher the work physical activity, the higher the 
probability of being diagnosed with undiagnosed diabetes. In the case of categorical features, the probability 
of predicting undiagnosed diabetes using the prediction model was higher in male, having a family history of 
diabetes, hypertension, current smoking, and high alcohol consumption.

Discussion
We compared the prediction performance of the ML-based prediction models with that of the TS-based diabetes 
prediction models with an external validation set in a large representative sample of Korean adults, using self-
reported clinical data. Our findings suggest that ML-based diabetes prediction models, regardless of the number 
of features used in developing models, were superior to TS-based prediction  models5,6 using the diabetes risk 

Table 1.  Participant characteristics according to data set. Data are presented as mean (standard deviation) 
or number (%), All variables were tested by the T-test or chi-square test. Significant differences were found 
between non-diabetes, undiagnosed diabetes (p < 0.05), *Significantly different from non-diabetes. BMI = Body 
mass index, WC = Waist circumference, WHtR = Waist to Height Ratio, RHR = Resting heart rate, SBP = Systolic 
blood pressure, DBP = diastolic blood pressure, Total physical activity = Work physical activity + Leisure 
physical activity + Walking.

Training & internal validation set External validation set

n = 23,369 (71.2%) n = 9,458 (28.8%)

Non-diabetes Undiagnosed diabetes

p-value

Non-diabetes Undiagnosed diabetes

p-valuen = 22,361 n = 1,008 n = 8,972 n = 486

Age, yr 48.0 (15.8) 57.2 (12.3)*  < 0.001 47.9 (15.9) 57.2 (12.7)*  < 0.001

Height, cm 163.4 (9.1) 163.0 (9.5) 0.187 164.46 (9.2) 163.75 (9.3) 0.095

Weight, kg 63.5 (12.2) 70.0 (13.6)*  < 0.001 64.8 (13.0) 71.8 (15.3)*  < 0.001

BMI, kg/m2 23.7 (3.5) 26.2 (3.9)*  < 0.001 23.8 (3.6) 26.6 (4.2)*  < 0.001

WC, cm 80.7 (9.9) 89.0 (9.6)*  < 0.001 83.1 (10.3) 92.0 (10.2)*  < 0.001

WHtR 0.5 (0.1) 0.5 (0.1)*  < 0.001 0.5 (0.1) 0. 6 (0.1)*  < 0.001

RHR, bpm 69.4 (9.4) 72.1 (10.8)*  < 0.001 69.5 (9.6) 72.1 (10. 8)*  < 0.001

SBP, mmHg 116.8 (16.1) 126.3 (16.6)*  < 0.001 117.5 (15.8) 126.3 (15.6)*  < 0.001

DBP, mmHg 75.4 (10.0) 79.3 (10.9)*  < 0.001 76.0 (9.7) 79.7 (9.9)*  < 0.001

Sleep time, (hour/day) 7.1 (1.3) 7.0 (1.4)*  < 0.001 7.0 (1.3) 6.8 (1.3)*  < 0.001

Physical activity (MET-min/week)

 Work physical activity 55.8 (275.3) 62.73 (369.3) 0.441 96.6 (666.8) 64.16 (519.0) 0.291

 Leisure physical activity 336.5 (818.2) 260.2 (738.8)* 0.004 326.9 (744.2) 239.9 (680.2)* 0.012

 Walking 832.3 (1184.6) 844.3 (1366.2) 0.754 777.9 (938.6) 802.8 (998.1) 0.570

 Total Physical activity 1714.3 (1985.7) 1643.3 (2317.2) 0.271 1614.3 (1803.3) 1603.1 (1861.0) 0.894

Sex  < 0.001  < 0.001

 Men, n (%) 9,328 (41.7) 550 (54.6) 3,904 (43.5) 266 (54.7)

 Women, n (%) 13,033 (58.3) 458 (45.4) 5,068 (56.5) 220 (45.3)

 Family history of diabetes, n (%) 4,719 (21.1) 330 (32.7)  < 0.001 1978 (22.0) 179 (36.8)  < 0.001

Alcohol consumption (drinks/
day),  < 0.001  < 0.001

 < 1 17,996 (80.5) 738 (73.2) 7,318 (81.6) 366 (75.3)

 1–4.9 3,606 (16.1) 200 (19.8) 1,371 (15.3) 96 (19.8)

 ≥ 5 759 (3.4) 70 (6.9) 283 (3.2) 24 (4.9)

Smoking, n (%) 8,260 (19.5) 425 (23.3)  < 0.001 1,639 (17.4) 119 (23.2) 0.003

Hypertension, n (%) 14,720 (34.7) 1,025 (56.2)  < 0.001 2,492 (26.5) 275 (53.5)  < 0.001
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score  method8. When the feature selection method was employed in our ML-based model, the AUC was 0.819, 
which was better than the highest AUC (0.765) among TS-based  models6.

Some assumptions explain why the ML-based diabetes prediction models used in this study were superior 
to the TS-based prediction models. First, the ML methods we used in our study were  bagging34 and  boosting35 
 algorithms22, which developed multiple prediction models, aggregated to determine the final prediction result. 
Since the final prediction result is determined by voting for various prediction results, an unbiased prediction 
result can be  obtained23,36. Compared with a single prediction model, these methods result in a more accurate 
 prediction34–39. Second, when compared to the ML-based approach, the TS-based  approach5,6,8 is challenging for 
researchers to develop prediction models by considering all possible cases that may result from multiple features 
and algorithms. In contrast, an ML-based method can select the optimal features to maximize the prediction 
performance using feature selection  algorithms40. In addition, by using hyperparameter tuners such as  Optuna41 
and  Hyperopt42, it is possible to determine how many single prediction models are combined to develop a final 
prediction model to maximize prediction performance while avoiding overfitting. Our findings suggest that 
diabetes prediction models developed by the ML-based method may be more time-efficient, cost-effective, and 
superior to the previous TS-based method.

For these reasons, there is growing evidence for the application of the ML-based approach and artificial 
neural network, a type of ML, to develop prediction models for  diabetes11,12,14,43,44. However, these prediction 
 models11,12,43 may be less accessible because they were developed using blood lipid variables (e.g., fasting glucose, 

Validation 

score 1

Validation 

score 2

Validation 

score 3

Validation 

score 4

Validation 

score 5

Training and Internal validation set 
(KNHANES 2014 ~ 2018 Data set , N=23,369)

External validation set 
(KNHANES 2019, 2020 Data set , N=9,458)

(1) Split the Data set to 5 folds cross validation set (Train : Internal validation = 4 : 1)

(2) Select the best prediction model based on 
the highest internal validation score 

Itertaion 1

Itertaion 2

Itertaion 3

Itertaion 4

Itertaion 5

Train Fold, n=18,696 Validation Fold,

n=4,673

Internal validation score = 
1
5
∑n=1
5 (Validation score)

(3) Evaluate the performance of the best prediction 
model from external validation set

2

1

3

Train fold Train fold Train fold Train fold
Validation 

Fold 1

Train fold Train fold Train fold
Validation 

Fold 2
Train fold

Train fold Train fold
Validation 

Fold 3
Train fold Train fold

Train fold
Validation 

Fold 4
Train fold Train fold Train fold

Validation 

Fold 5
Train fold Train fold Train fold Train fold

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Validation 

score 1

Validation 

score 2

Validation 

score 3

Validation 

score 4

Validation 

score 5

Training and Internal validation set 
(KNHANES 2014 - 2018 Data set , N=23,369)

STEP 1. Split the Data set to 5 folds cross validation set
(Train : Internal validation = 4 : 1)

Train Fold, n=18,696
Validation Fold,

n=4,673

STEP 2. Select the best prediction model based on 
the highest internal validation score 

Internal validation score 

External validation set 
(KNHANES 2019, 2020 Data set , N=9,458)

STEP 3. Evaluate the performance of the best 
prediction model from external validation set

Figure 2.  Conceptual schematic for prediction model building and performance evaluation.
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Table 2.  Performance of the new and Korean undiagnosed diabetes screening method in the development and 
validation datasets. *Park et al.  20226, When Park model’s performance was tested, data from 2019, 2020 were 
used to build prediction model and data from 2014, 2015, 2016, 2017, 2018 were used to validate. WC: Waist 
circumference, RHR: Resting heart rate, LGBM: Light Gradient Boosting Machine, XGB: Extreme Gradient 
Boosting), Ada: Ada Boost. AUC: The receiver operating characteristics curve under the curve. For this study, 
five different machine learning classification algorithms were used to predict undiagnosed diabetes. Based on 
their performance assessed by AUC, results from the best performed machine learning classification was used.

Model
Screening 
method Feature

AUC 
(95% CI) Youden index Sensitivity (%) Specificity (%) PPV NPV PLR NLR

Train & Internal 
Validation Set

Park* Risk score

Sex, Age, WC, 
RHR

0.745
(0.717 to 0.773) 37.00 70 66 0.08 0.98 2.09 0.45

Logistic Regres-
sion

Logistic Regres-
sion

0.780
(0.754 to 0.806) 41.90 80.94 60.92 0.09 0.98 2.07 0.31

Random Forest Random Forest 
Classifier

0.781
(0.756 to 0.806) 41.20 84.60 56.60 0.08 0.99 2.1 0.16

LGBM LightGBM Clas-
sifier

0.778
(0.752 to 0.804) 41.70 82.00 61.60 0.08 0.99 2.14 0.29

XGB XGBoost Clas-
sifier

0.778
(0.752 to 0.804) 41.50 82.40 59.10 0.08 0.98 2.12 0.23

Ada AdaBoost Clas-
sifier

0.780
(0.754 to 0.806) 41.80 82.60 59.20 0.08 0.99 2.03 0.29

External Valida-
tion set

Park* Risk score

Sex, Age, WC, 
RHR

0.740
(0.721 to 0.759) 35.00 75 61 0.09 0.98 1.9 0.42

Logistic Regres-
sion

Logistic Regres-
sion

0.786
(0.77 to 0.802) 43.30 80.25 63.04 0.11 0.98 2.2 0.31

Random Forest Random Forest 
Classifier

0.788
(0.772 to 0.804) 44.00 87.40 56.50 0.18 0.99 2.01 0.22

LGBM LightGBM Clas-
sifier

0.788
(0.772 to 0.804) 43.70 82.90 60.80 0.1 0.99 2.12 0.28

XGB XGBoost Clas-
sifier

0.788
(0.772 to 0.804) 44.00 85.80 58.20 0.1 0.99 2.05 0.24

Ada AdaBoost Clas-
sifier

0.779
(0.762 to 0.796) 42.40 81.20 61.30 0.1 0.98 2.1 0.31

Table 3.  Performance of the new and Korean undiagnosed diabetes screening method in the development and 
validation datasets. *Lee et al.  20125, When Lee model’s performance was tested, data from 2019, 2020 were 
used to build prediction model and data from 2014, 2015, 2016, 2017, 2018 were used to validate. WC: Waist 
circumference, RHR: Resting heart rate, LGBM: Light Gradient Boosting Machine, XGB: Extreme Gradient 
Boosting, Ada: Ada Boost, AUC: The receiver operating characteristics curve under the curve. For this study, 
five different machine learning classification algorithms were used to predict undiagnosed diabetes. Based on 
their performance assessed by AUC, results from the best performed machine learning classification was used.

Model
Screeing 
method Feature

AUC 
(95% CI) Youden index Sensitivity (%) Specificity (%) PPV NPV PLR NLR

Train & Internal 
Validation Set

Lee model* Risk score

Sex, Age, WC, 
Family history 
of diabetes, 
Hypertension 
status, Smoking 
status, Alcohol 
consumption

0.750
(0.722 to 0.778) 36 86 51 0.07 0.99 1.74 0.28

Logistic Regres-
sion

Logistic Regres-
sion

0.786
(0.761 to 0.811) 42.1 89.50 52.60 0.08 0.99 1.88 0.2

Random Forest Random Forest 
Classifier

0.781
(0.756 to 0.806) 43.5 82.70 60.80 0.08 0.98 2021 0.22

LGBM LightGBM Clas-
sifier

0.777
(0.751 to 0.803) 42.4 80.80 61.50 0.08 0.98 2.26 0.21

XGB XGBoost Clas-
sifier

0.786
(0.761 to 0.811) 42.7 82.80 61.20 0.08 0.98 2.31 0.18

Ada AdaBoost Clas-
sifier

0.785
(0.76 to 0.81) 42.4 80.30 62.10 0.08 0.99 2.12 0.32

External Valida-
tion set

Lee Risk score

Sex, Age, WC, 
Family history 
of diabetes, 
Hypertension 
status, Smoking 
status, Alcohol 
consumption

0.759
(0.741 to 0.777) 36 90 46 0.08 0.99 1.67 0.21

Logistic Regres-
sion

Logistic Regres-
sion

0.801
(0.786 to 0.816) 46.4 86.40 60.00 0.1 0.99 2.16 0.23

Random Forest Random Forest 
Classifier

0.792
(0.776 to 0.808) 46.1 83.00 63.10 0.11 0.99 2.25 0.27

LGBM LightGBM Clas-
sifier

0.795
(0.779 to 0.811) 45.8 81.90 64.00 0.11 0.98 2.27 0.28

XGB XGBoost Clas-
sifier

0.802
(0.787 to 0.817) 44.4 90.00 54.50 0.1 0.99 1.98 0.18

Ada AdaBoost Clas-
sifier

0.784
(0.768 to 0.8) 42.4 82.90 59.50 0.1 0.99 2.05 0.29
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Table 4.  Performance of the new and Korean undiagnosed diabetes screening method in the development and 
validation datasets. *Lee et al.  20125 and Park et al.  20226 When Lee model’s + RHR (Park et al., 2022) performance 
was tested, data from 2019, 2020 were used to build prediction model and data from 2014, 2015, 2016, 2017, 
2018 were used to validate. WC: Waist circumference, RHR: Resting heart rate, LGBM: Light Gradient Boosting 
Machine, XGB: Extreme Gradient Boosting, Ada: Ada Boost. AUC: The receiver operating characteristics curve 
under the curve. For this study, five different machine learning classification algorithms were used to predict 
undiagnosed diabetes. Based on their performance assessed by AUC, results from the best performed machine 
learning classification was used.

Model
Screening 
method Feature

AUC 
(95% CI) Youden index Sensitivity (%) Specificity (%) PPV NPV PLR NLR

Train and Inter-
nal validation set

Lee* + RHR Risk score

Sex, Age, WC, 
RHR, Family his-
tory of diabetes, 
Hypertension 
status, Smoking 
status, Alcohol 
consumption

0.756
(0.728 to 784) 39 70 69 0.09 0.98 2.24 0.44

Logistic Regres-
sion

Logistic Regres-
sion

0.799
(0.775 to 0.823) 45.4 83.20 62.20 0.09 0.99 2.21 0.27

Random Forest Random Forest 
Classifier

0.794
(0.77 to 0.818) 48.3 86.60 61.70 0.09 0.99 2.3 0.22

LGBM LightGBM Clas-
sifier

0.802
(0.778 to 0.826) 45.1 83.50 61.60 0.09 0.99 2.17 0.27

XGB XGBoost Clas-
sifier

0.796
(0.772 to 0.820) 44.9 81.40 63.50 0.09 0.99 2.35 0.23

Ada AdaBoost Clas-
sifier

0.796
(0.772 to 0.820) 44.3 80.80 63.50 0.09 0.99 2.21 0.3

External valida-
tion set

Lee* + RHR Risk score

Sex, Age, WC, 
RHR, Family his-
tory of diabetes, 
Hypertension 
status, Smoking 
status, Alcohol 
consumption

0.765
(0.738 to 0.792) 42 78 64 0.11 0.98 2.17 0.35

Logistic Regres-
sion

Logistic Regres-
sion

0.808
(0.793 to 0.823) 48.7 88.70 59.90 0.11 0.99 2.21 0.18

Random Forest Random Forest 
Classifier

0.807
(0.792 to 0.822) 47.6 83.50 64.03 0.11 0.98 2.32 0.26

LGBM LightGBM Clas-
sifier

0.811
(0.796 to 0.826) 48.3 84.00 64.30 0.11 0.99 2.35 0.25

XGB XGBoost Clas-
sifier

0.810
(0.975 to 0.825) 48 85.20 63.00 0.11 0.99 2.29 0.23

Ada AdaBoost Clas-
sifier

0.800
(0.784 to 0.816) 46.3 84.50 61.80 0.11 0.99 2.21 0.25

Table 5.  Performance of the new and Korean undiagnosed diabetes screening method in the development and 
validation datasets. *Lee et al.  20129 and Park et al.  202210 When Lee model’s + RHR (Park et al., 2022) performance 
was tested, data from 2019, 2020 were used to build prediction model and data from 2014, 2015, 2016, 2017, 
2018 were used to validate. WC: Waist circumference, RHR: Resting heart rate, LGBM: Light Gradient Boosting 
Machine, XGB: Extreme Gradient Boosting, Ada: Ada Boost, AUC: The receiver operating characteristics curve 
under the curve. For this study, five different machine learning classification algorithms were used to predict 
undiagnosed diabetes. Based on their performance assessed by AUC, results from the best performed machine 
learning classification was used.

Model
Screening 
method Feature

AUC 
(95% CI) Youden index Sensitivity (%) Specificity (%) PPV NPV PLR NLR

Train and Internal 
validation set

Lee* + RHR Risk score

Sex, Age, WC, 
RHR, BMI, 
Family history 
of diabetes, 
Hypertension 
status, Smoking 
status, Alcohol 
consumption, 
Physical activity, 
Sleep time

0.756
(0.728 to 0.784) 39 70 69 0.09 0.98 2.24 0.44

Logistic Regres-
sion

Logistic Regres-
sion

0.801
(0.777 to 0.825) 43.6 80.50 63.10 0.08 0.99 2.2 0.31

Random Forest Random Forest 
Classifier

0.788
(0.763 to 0.813) 44.8 82.30 62.40 0.09 0.98 2.35 0.19

LGBM LightGBM Clas-
sifier

0.803
(0.779 to 0.827) 45.9 80.70 65.20 0.09 0.99 2.58 0.17

XGB XGBoost Clas-
sifier

0.797
(0.773 to 0.821) 44.7 81.70 63.00 0.09 0.98 2.41 0.18

Ada AdaBoost Clas-
sifier

0.786
(0.761 to 0.811) 43.7 82.50 61.20 0.08 0.98 2.31 0.18

External valida-
tion set

Lee + RHR Risk score

Sex, Age, WC, 
RHR, BMI, 
Family history 
of diabetes, 
Hypertension 
status, Smoking 
status, Alcohol 
consumption, 
Physical activity, 
Sleep time

0.765
(0.748 to 0.782) 42 78 64 0.11 0.98 2.17 0.35

Logistic Regres-
sion

Logistic Regres-
sion

0.814
(0.799 to 0.829) 47.4 87.40 60.00 0.11 0.99 2.2 0.21

Random Forest Random Forest 
Classifier

0.815
(0.8 to 0.83) 48.7 88.70 60.00 0.1 0.99 2.2 0.19

LGBM LightGBM Clas-
sifier

0.819
(0.805 to 0.833) 49.6 84.80 64.80 0.11 0.99 2.41 0.23

XGB XGBoost Clas-
sifier

0.818
(0.804 to 0.832) 49.5 82.90 66.60 0.11 0.98 2.48 0.25

Ada AdaBoost Clas-
sifier

0.809
(0.786 to 0.816) 46.5 83.90 62.50 0.11 0.98 2.24 0.26
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HbA1c, triglyceride, and total cholesterol). In addition, another  study14 using XGBoost, an algorithm similar 
to our approach, reported a high AUC score of 0.92. However, this prediction  model14 may be at high risk of 
 overfitting45 given that the prediction model was developed without using the ‘external validation set’. In addition, 
the prediction performance of this  model14 was not assured, given that there was no verified result for unseen 
data. On the other hand, our ML-based prediction model developed using non-invasive data may be more 
accessible. Furthermore, the external validity of our prediction model was tested from the external validation 
set and we used the SHAP analysis to determine the predictive power of each predictor (feature) and to generate 
explainable models, while the previous artificial neural network prediction model for undiagnosed  diabetes44, 
deemed a black-box model, using non-invasive data (e.g., age, WC, body mass index, sex, smoking status, hyper-
tension, and family history of diabetes) did not validate their model through the application of SHAP analysis.

In addition, the aforementioned prediction models only mentioned the prediction performance and did 
not explain the importance or effect of the features that contributed to the prediction results. Therefore, it was 
impossible to interpret the prediction models used in these studies. To address this limitation, the ML-based 
prediction model of this study calculated the contribution and effect of each feature using SHAP and presented it 
to interpret its prediction results. Additionally, the sensitivity of our prediction model using age, WC, and RHR 
was 83.3%, which may be sufficiently valid.

This study has several limitations. First, given the nature of the cross-sectional study design, we could not 
determine causality between the features and undiagnosed diabetes. Thus, future studies on diabetes prediction 
models should employ longitudinal cohort data to examine the temporal relationships between features and 
incident diabetes. Additionally, RHR is highly affected by sleep quality, smoking status, alcohol consumption, 

Figure 3.  AUC Comparison of machine learning prediction models and risk score model.

Figure 4.  SHAP summary plot of the top 3 prediction models: contribution and effect of each feature.
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and/or major health characteristics; therefore, interpretation should be made with caution. Lastly, findings cannot 
be generalized to wider populations given that our study examined Korean data only. Thus, additional research 
with racially/ethnically diverse population data is needed to confirm our preliminary findings.

In conclusion, our study suggests that ML-based undiagnosed type 2 diabetes prediction models may improve 
the prediction performance of TS-based prediction models and methods. The continuous increase in the num-
ber of diagnosed and undiagnosed diabetes epidemics is a major public health concern. The study findings 
will inform public health researchers and healthcare professionals to apply efficient new diabetes prediction 
models for the prevention of diabetes and its adverse health consequences. A clear next step in future research 
is to identify our preliminary findings in a different setting of data with wider populations in order to better 
generalize the findings.

Data availability
All data generated or analyzed during this study are included in this published article and are available from the 
Korean National Health & Nutrition Examination Survey repositories.
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