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ABSTRACT Breathing can be measured in a non-contact method using a thermal camera. The objective of
this study investigates non-contact breathing measurements using thermal cameras, which have previously
been limited to measuring the nostril only from the front where it is clearly visible. The previous method is
challenging to use for other angles and frontal views, where the nostril is not well-represented. In this paper,
we defined a new region called the breathing-associated-facial-region (BAFR) that reflects the physiological
characteristics of breathing, and extract breathing signals from views of 45 and 90 degrees, including the
frontal view where the nostril is not clearly visible. Experiments were conducted on fifteen healthy subjects
in different views, including frontal with and without nostril, 45-degree, and 90-degree views. A thermal
camera (A655sc model, FLIR systems) was used for non-contact measurement, and biopac (MP150, Biopac-
systems-Inc) was used as a chest breathing reference. The results showed that the proposed algorithm could
extract stable breathing signals at various angles and views, achieving an average breathing cycle accuracy of
90.9%when applied compared to 65.6%without proposed algorithm. The average correlation value increases
from 0.587 to 0.885. The proposed algorithm can be monitored in a variety of environments and extract the
BAFR at diverse angles and views.

INDEX TERMS Breathing, thermal camera, physiological features, noncontact, Markov random field.
(Clinical Impact)The proposed algorithm shows the feasibility of non-contact breathing reliable monitoring
that versatile and accurate than previous methods. The proposed algorithm could be used to monitor breathing
in various clinical environments, including isolated wards, operation rooms, and intensive care units with high
infection risks.

I. INTRODUCTION
Breathing reflects the human physiological state, and breath-
ing signals provide valuable vital information that is sensitive
to clinical conditions [1], [2], [3], [4]. Breathing provides
clinical information about cardiac arrest, emotional stress,
cognitive loads, and severe pneumonia [5], [6], [7], [8].
It is important to reliably monitor breathing signals. Breath-
ing signals are generally measured using contact methods

(e.g., respiration belts [9], spirometers [10], [11], capnog-
raphy [12], [13], and thoracic impedance tomography
(TIG) [14], [15]). However, contact methods are inconvenient
and increase infection risks. In particular, TIG interferes
with body impedance during some measurements, such as
electrosurgical units (ESUs) and movements. Another way
to measure breathing is the noncontact method. Technolog-
ical advances have made it possible to measure breathing
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signals with noncontact methods (e.g., Wi-Fi Sensing [16],
RGB cameras [17], [18], [19], Microphones [20], Doppler
radar [21], [22], depth cameras [23], [24], and thermal cam-
eras [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]).
These methods including thermal cameras avoid the dis-
advantages of the contact method but are limited by the
difficulty of reliably measuring breaths. In particular, thermal
camera has the advantage of being able to measure in dark-
ness and scalability to measure physiological information
related to the temperature.

In order to measure reliable breathing non-contact, the
breathing-associated region should be well-defined. RGB
cameras obtain the visible light area around an object, and
depth cameras obtain the depth information of an object;
both cameras generate two-dimensional information based on
light rays reflected by the object’s structure. Therefore, these
cameras can provide highly accurate structural information.
However, thermal cameras do not directly measure structural
information and instead indirectly measure the radiation gen-
erated by the structure, which results in a relative loss of
structural information. Breathing-Associated Facial Region
(BAFR) segmentation using structural methods has lim-
ited performance due to the characteristics of these thermal
cameras.

In previous studies, breathing signals were estimated
according to temperature changes in the nostril region. The
Region of Interest (ROI) is defined by measuring the temper-
ature changes around the nostril using anatomical properties.
Fei and Pavlidis [27] proposed a measurement region of
interest (MROI) using the shape property of the nasal tissue.
TheMROIwas defined to calculate the horizontal and vertical
projection profiles of the nasal tissue. The projection profiles
were obtained by averaging the row and column pixel values.
With this method, the position of the gradient changes if the
angle of the nose in the camera view is not perpendicular.
Thus, the angle data must be preprocessed to identify the
intended nostril position. Moreover, Basu et al. [36] proposed
a semiautomatic method in which the ROI was selected as
a circular region around the nose by identifying the coldest
point on the face and manually tuning the region. Alkali
et al. [37] proposed a method of localizing the nose using
gradients across the face; this method determines the position
of the nose by dividing the facial position with the largest
gradient by the point on the x and y-axes. Maurya et al. [38]
extracted the location coordination of the nose based on RGB
camera data by simultaneously acquiring information with
RGB and thermal cameras. Although this method may be
more accurate in distinguishing structures than the use of
a thermal camera alone, it is limited by its high cost. And
the inclusion of the nostril region had an important effect on
the ability of the method to structurally find BAFRs using
thermal cameras because of significant breathing and tem-
perature changes in the nostril area in the thermal face data.
However, structuralmethods cannot be usedwhen the thermal
face is obtained from a view that excludes the nostril area.

Additionally, even if the nostril region is included, the size
and shape of the nostril vary considerably between individ-
uals, and the location is specified according to a rule-based
structural method. As a result, these methods using structural
information cannot obtain accurate BAFRs in thermal face
data. Furthermore, large errors may occur depending on the
angle or view of the nose when the temperature gradient of
the thermal face structure is used. When breathing signals are
extracted at various angles and views, more BAFRs that are
unassociatedwith breathing are included thanwhen breathing
signals are extracted from the front view. The BAFRs and the
nostril are obscured and observed asymmetrically depending
on the view. BAFRs are important for obtaining an accurate
breathing rate; the breathing cycle cannot be detected because
the temperature change in the nose region due to breathing is
insignificant.

In this study, we propose a method based on the physio-
logical feature that temperature changes with breathing and
that the physiological features of breathing are expressed
as temperature changes in thermal camera data. Tempera-
ture changes due to breathing occur not only in the nostril
area, where the breathing-associated effects are greatest, but
also in other regions that are affected by air flow. The pro-
posed algorithm extracts the breathing-associated probability
map and labels the pixels into breathing-associated and non-
breathing regions usingMarkov Random Fields (MRFs). The
breathing-associated probability map is calculated using the
temperature difference due to breathing and periodical fea-
tures of the breathing waveform. The proposed algorithm is
not designed to identify the location of the nostril hole but
to label the regions displaying temperature changes due to
breathing in pixels, regardless of the angle or thermal cam-
era view. This proposed segmentation algorithm can extract
breathing-associated regions near the nose region accord-
ing to thermal camera data, regardless of the nose angle.
The proposed segmentation algorithm can extract reliable
breathing signals to calculate the accurate breathing rate in
various clinical environments such as isolated wards, ICUs,
and operation rooms etc.

In addition, the proposed algorithm does not simply define
the BAFR as the nostril hole but visualizes the actual BAFR
due to breathing. The visualization of the BAFRs has the
potential insight to be utilized as a method to monitor breath-
ing. We acquired thermal face data during breathing at var-
ious angles and camera views and simultaneously extracted
breathing signals with a chest belt sensor as a reference.
The camera views used in the experiment included the front,
45 degrees, and 90 degrees. In the frontal view, thermal
face data with and without the nostril hole were acquired.
A segmentation mask was extracted by applying the pro-
posed algorithm to each set of acquired data. Additionally,
the breathing signals were extracted with and without the
application of a segmentation mask. Each extracted breathing
signal was compared to the reference obtained with the chest
belt sensor.
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The main contributions of this paper are summarized as
follows:

1) The proposed algorithm defines a BreathingAssociated
Facial Region (BAFR) which reflects the physiological
features of breathing in thermal camera.

2) The proposed algorithm extracts reliable breathing sig-
nals from views of 45 and 90 degrees, including the
frontal view where the nostril is not clearly visible.

3) The proposed algorithm has a potential clinical impact,
as it could be used to stable monitor breathing in vari-
ous clinical environments, including high-risk areas.

II. METHODOLOGY
We applied pixel-clustering algorithm for breathing-
associated segmentation using a thermal camera. Segmenta-
tion tasks can be modeled by MRFs. MRFs have been used
in many segmentation applications [39], [40], [41], [42]. The
proposed MRF segmentation approach aims to estimate the
breathing-associated pixel labels with respect to the physio-
logical breathing features. The flow of air due to breathing
occurs through the nostril passages. However, not only does
the shape, and size of each individual’s nostril vary, but the
range of pixel regions affected by the thermal energy gradient
is represented in an arbitrary form. This study uses MRF
segmentation based on a pixel-clustering method to consider
the unstructured local dependence. MRF segmentation is
suited for pixel-wise clustering of breathing-associated tem-
perature gradients. A key component of the MRF model is
the energy, defined as the sum of the feature field’s energy
and the label field’s energy. In our approach, the feature field
corresponds to breathing-associated features, while the label
field comprises two classes: breathing-associated and non-
associated regions. The energy of the feature field provides a
measure of howwell the breathing-associated probability fea-
ture values of the pixels fit the segmentation model, whereas
the energy of the label field gauges how well the pixel
labels correspond to the local dependence of thermal changes
associated with breathing. This segmentation estimation
is formulated as a maximum a posteriori (MAP) estima-
tion using the iterated conditional modes (ICM) approach,
which is a greedy algorithm that iteratively updates the
breathing-associated pixel labels of the MRF nodes. During
each iteration, the MRF node is allowed to change its label;
the updates are applied to all nodes until the algorithm reaches
convergence. In this study, the ICM algorithm is iterated for
30 epochs. As this MRF method is sensitive to initialization,
we estimated a prior map of breathing-associated features.
An initialization was created for each frame based on the
middle probability in the prior map.

A. RELATIONSHIP BETWEEN BREATHING AND THERMAL
CHANGES
To define the breathing-associated pixels, it is necessary to
know the physiological characteristics of breathing and how
these characteristics are expressed in thermal camera data.

FIGURE 1. Relationship between breathing and thermal changes at
around nostril holes.

Breathing is a periodic outflow of internal lung air and inflow
of external air. The periodical features vary depending on the
breathing cycle, but inhalation and exhalation are generally
present. Thermal cameras can be used to observe temperature
changes during the breathing cycle [43], [44], [45], [46] at
nostril holes. In addition, breathing airflow is greatest at the
nostril holes, but there are other regions around the nostril
holes that are also affected by airflow.

Fig. 1 shows the relationship between breathing and ther-
mal changes over time. The yellow line represents one ther-
mal image profile on the horizontal axis in the nose regions,
and the black line represents the time axis (4 s). During
inspiration, the temperature decreases as cold outside air
is inhaled, and the temperature recovers during expiration.
The red box shows the temperature changes over time in
the nostril holes. The nostril hole is the passageway through
which air is moved by breathing and is where the temperature
changes with breathing are most dominant. The blue box
shows the temperature changes over time the around the
nostril holes. The region of the blue box is indirectly affected
by the air being moved by breathing. The blue region shows
relatively less change in temperature than the nostril hole, but
it can be used as information to extract the breathing signals
when the nostril hole is not well visible. The temperature
changes caused by breathing around the nostril are difficult to
define because the structure features change greatly depend-
ing on the individual size, location and measurement angle.
Therefore, physiological features associated with breathing
should be used to define the BAFRs.

B. BREATHING-ASSOCIATED PROBABILITY MAP (BAP)
The proposed algorithm used the time-varying change in
temperature from breathing to estimate the association with
breathing as a probability. The general breathing features can
be represented as periodic signals with peaks and valleys
due to temperature changes from breathing in thermal cam-
era. In contrast, if the region is unassociated with breathing
including apnea, the peak and valley characteristics decrease
or disappear. In other words, the more the region is unasso-
ciated with breathing, the stronger the breathing-associated
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features. Amplitude differences cause variance differences,
which can be used to distinguish the differences in the
influence of pixels associated with breathing. The proposed
algorithm defines these features as Breathing-Associated
Features (BAF). Since BAF does not reflect structural fea-
tures, physiological features associated with breathing can
be used to define regions. The non-structural features of the
BAF make algorithm possible to define regions of periodic
temperature change associated with breathing at multiple
angles and unregistered views. In particular, since the pro-
posed algorithm extracts periodic features of breathing using
BAF, it can extract regions that are highly associated with
breathing even when the nostril hole is not visible. Each point
can be expressed as a variance, the strength of which is used
to create a breathing-associated probability map. Fig. 2 shows
the BAF, breathing-associated probabilitymap and segmenta-
tion mask obtained using MRFs. The BAF is calculated with
the following equation (1):

BAF (x, y, t) =

√
1

Nt − 1

∑Nt−1

k=0
(BS [k] − µBS )2 (1)

where x and y denote the coordinates of the ROI and t denotes
the specific time on the time axis. Nt is the frame number
corresponding to the observation time. In this study, the Nt
corresponding to 4 s was used. The 4 s parameter is the
average time for normal breathing. For fast breathing, the
proposed algorithm can reflect the effect of breathing because
there is a breathing signal within 4 s. For slow breathing, the
algorithm includes a portion of the breathing signals, making
it robust to a wide range of breathing rates. Increasing the
Nt calculates the impact of breathing over a longer period.
In addition, k is a natural number between 0 and Nt . Since
the breathing signal shows time-related temperature changes
caused by breathing, this signal can be calculated by cumu-
latively summing the change at each k = 0 frame point.
µBS is the mean value of the BS. The breathing-associated
probability (BAP) is calculated by dividing the calculated
BAF by the maximum BAF value at the corresponding t. The
BAP is calculated with Equation 2 as follows:

BAP (x, y, t) =
1

argmax(BAF(t))
BAF (x, y, t) (2)

C. EXPERIMENTAL SETTINGS
Thermal camera data and the reference signal were used
to verify the breathing signals obtained by the proposed
segmentation algorithm. The aspect of the BAFR projection
varies depending on the angle at which the thermal cam-
era data were acquired. Regions are directly or indirectly
affected by temperature through the movement of breathing
air during breathing, and depending on these properties, the
temperature changes associated with breathing differ for each
area. Generally, as the nostril area has a great influence on
airflow during breathing, the temperature changes are the
largest in this region, which is shown as a structural feature
in the thermal face image. Experiments were conducted under

FIGURE 2. Concept of breathing-associated feature extraction and
segmentation.

FIGURE 3. Experimental settings.

various conditions to verify whether the proposed algorithm
could extract physiological pixels.

Fig. 3 shows the experimental settings. First, the best
visible aspect of the nostril was determined at an angle of
30 degrees from the front (Case A). As the temperature
change is largest in the nostril region, the structural features
are clear in this area; thus, this view is typically used for
breathing monitoring. Second, the invisible aspect of the
nostril was determined at an angle of 90 degrees from the
front (Case B). The thermal faces obtained at these angles do
not contain stable nostrils. Third, the aspect was determined at
an angle of 45 angles, not the front view (Case C). Finally, the
aspect was determined at an angle of 90 angles, not the front
view (Case D). The thermal faces acquired under the Case C
and Case D conditions can include various BAFRs depend-
ing on the individual, which makes it difficult to define the
region using structural information. 15 subjects participated
in this study. The subjects consisted of healthy volunteers.
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FIGURE 4. Processing flow chart.

The subjects participated in the experiment after hearing suf-
ficient explanations in the laboratory and providing consent.
In addition, an anesthesiologist conducted an experiment to
prevent problems caused by abnormal breathing. The present
study was performed at Severance Hospital from July 2021 to
August 2021. This study was conducted in accordance with
the principles of Good Clinical Practice and was approved by
the Institutional Research Board of Severance Hospital (Ref-
erence No. 4-2020-1320); all patients gave written informed
consent. The study was registered at ClinicalTrails.Gov with
the number NCT04964245. The distance between the subject
and the thermal camera was 50 cm, and normal breathing was
performed in a stable state. Five 1-minutemeasurements were
taken for each subject. The thermal camera was the A655sc
model (FLIR systems), and the camera data were acquired at
640 × 480 spatial resolution, 0.03 Kelvin temperature reso-
lution, and 25 Hz. The breathing signal obtained by the chest
belt sensor was used as a reference signal. A Biopac (MP150,
Biopac Systems Inc) was used for reference measurements,
and the chest belt sensor signal was measured at 1000 Hz.

D. PROCESSING
Through Kanade-Lucas-Tomasi (KLT) tracking, various
ROIs in the nose were sorted in frame order [47]. In the
first (Case A) and second (Case B) experiments, the ROIs
were extracted simultaneously after rotation to determine the
semantic segmentation properties of the proposed algorithm.
Based on the obtained ROI, a BAP map was constructed by
obtaining the BAF value in each pixel using a 4 s moving
window. Figs. 4 show the processing flow charts.

The mask was extracted by applying MRF segmentation
with the extracted BAP map. The class parameter of MRF
was set to 2 to classify BAFR and non-BAFR. In addition,
pixel clustering was performed by converging sufficiently
through 30 iterations of each frame. All breathing signals
were obtained by integrating the frame difference obtained
from the differential temperature. To verify whether the pro-
posed algorithm could extract the BAFR well, the breathing
signals obtained with and without the application of the seg-
mentation mask were compared.

III. RESULTS
Themasks obtained in each experiment and the breathing sig-
nals obtained by applying the segmentation mask are shown
in the figures below. The segmentation masks extracted by
the proposed algorithm under various conditions were used
to define the BAFR. Then, the breathing signals extracted by
applying the defined segmentation mask and those extracted

FIGURE 5. Representative results of the segmentation mask (Case A).
(a) Example 1 of Case A. (b) Example 2 of Case A.

without the mask were compared. Among the two graphs
for each sample, the upper and lower graphs represent the
breathing signals obtained without and with segmentation
mask application. In each graph, the blue signal represents
the correct reference breathing signal obtained by the chest
belt sensor, and the orange signal represents the noncon-
tact breathing signal obtained by the thermal camera. The
black region represents the thermal signal average trend.
The overall results, the breathing signals obtained with the
segmentation mask were extracted by removing unneces-
sary noise, which improved the breathing signal and allowed
breathing to be recognized.

A. SEGMENTATION MASKS AND BREATHING SIGNALS OF
CASE A
Fig. 5 shows the general segmentation masks for Case A.
Fig. 5 (a) displays example 1 of Case A, and (b) displays
example 2 of Case A. Each example includes an unregistered
rotation situation. The ROI is expressed in grayscale, and the
green color represents BAFR pixels. In the locations where
the nostril is well observed (CASE A), the proposed segmen-
tation algorithm extracted the BAFRwell. Since the proposed
algorithm performs pixel clustering based on the region with
high breathing-associated probability within the ROI, the
algorithm mainly extracted BAFRs in the nostril region. The
proposed algorithm could extract the BAFR well even when
the images were rotated. These results indicate that the pro-
posed algorithm extracts semantic BAF well, which means
that no additional image registration is required to estimate
the breathing signals.

Fig. 6 shows a comparison between the breathing sig-
nals extracted by applying the segmentation mask and those
obtained without applying the segmentation mask of Case
A. Fig. 6 (a) shows example 1 of Case A, and (b) shows
example 2 of Case A. In Case A, most of the breathing
cycles were extracted to the extent that we could recognize
breathing even when the mask was not applied. This result
is due to the inclusion of the nostril holes, which changes
temperature dominantly with breathing. However, there are
cases in which the stability of the breathing signal is low
even in the nostril holes. In these cases, noise is generated,
and the breathing cycle is not recognized. Comparing the
top orange signal(without the proposed algorithm) and the
bottom orange signal(with the proposed algorithm) in Fig. 6
(a) and (b), The results show improved breathing signals.
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FIGURE 6. Representative results of the comparison between the
breathing signals extracted with and without the application of a mask.
(Case A). (a) Example 1 of Case A. (b) Example 2 of Case A.

FIGURE 7. Representative results of the segmentation mask (Case B).
(a) Example 1 of Case B. (b) Example 2 of Case B.

The breathing signals extracted by applying the proposed
algorithm was stably improved.

B. SEGMENTATION MASKS AND BREATHING SIGNALS OF
CASE B
Fig. 7 shows the segmentation masks for Case B. Fig. 7 (a)
presents example 1 of Case B, and (b) presents example 2 of
Case B. Each example includes an unregistered rotation situa-
tion too. Even in regions where nostril holes are not observed,
the proposed algorithm extracted the BAFR well. Since the
nostril was not included, the region around the nostril was
defined as a BAFR by the proposed algorithm. The extracted
regions were regions where air movement occurred due to
periodic breathing and temperature changes. The extracted
regions were defined around the nostril edge, which is the
most affected part when airflow due to breathing occurs in
the nostril direction. The proposed algorithm could extract
BAFR even when the images were rotated too.

Fig. 8 shows a comparison between the breathing sig-
nals extracted by applying the segmentation mask and those
obtained without applying the segmentation mask of Case
B. Fig. 8 (a) shows example 1 of Case B, and (b) shows
example 2 of Case B. When the nostril area was not visible,
the breathing signal was unstable, which makes it difficult
to analyze the breathing patterns. In a view that does not
include nostril holes, the most dominant region of the temper-
ature changes due to breathing is lost. Additionally, previous
methods can not define BAFR using a nostril hole as a struc-
tural feature with dominant temperature variations. However,
when the semantic segmentation mask was extracted with the
proposed algorithm using physiological BAF, the breathing
signals were improved, and the breathing cycle was recog-

FIGURE 8. Representative results of the comparison between the
breathing signals extracted with and without mask application. (Case B).
(a) Example 1 of Case B. (b) Example 2 of Case B.

FIGURE 9. Representative results of the segmentation mask (Case C).
(a) Examples 1 and 2 of Case C. (b) Examples 3 and 4 of Case C.

nized. Comparing the top orange signal (without the proposed
algorithm) and the bottom orange signal(with the proposed
algorithm) in Fig. 8 (a) and (b), The results show the restored
breathing signals.

C. SEGMENTATION MASKS AND BREATHING SIGNALS OF
CASE C
Fig. 9 shows the segmentation masks for Case C. Fig. 9 (a)
illustrates examples 1 and 2 of Case C, and (b) illustrates
examples 3 and 4 of Case C. In the location with a 45-
degree angle, as opposed to the front view, the proposed
segmentation algorithm extracted the BAFR well. Thermal
facial data taken at 45 degrees include nostril holes in some
samples and not in others. This is individual characteristic
that varies depending on the position of the nostril holes, the
shape of the nose, etc. Also, As the angle changes from the
front view,more regions that are not associatedwith breathing
are included in the thermal projection. Similar to Case B,
in view where the nostril hole is not represented, it is difficult
to apply previous algorithms that utilize the nostril hole as a
structural feature to extract BAFR. Despite these conditions,
the proposed algorithm robustly extracted BAFR. In subjects
with visible nostril holes, BAFR was extracted around the
nostril holes. And in subjects without visible nostril holes,
BAFR was extracted in the high associated breathing region
of the acquired frame. These results show that the proposed
algorithm can be helpful for the robust and stable extraction
of breathing signals in various clinical environments. Thus,
the proposed algorithm is important for practical breathing
monitoring.

Fig. 10 shows a comparison between the breathing sig-
nals extracted by applying the segmentation mask and those
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FIGURE 10. Representative results of the comparison between the
breathing signals extracted with and without mask application. (Case C).
(a) Example 1 of Case C. (b) Example 2 of Case C.

FIGURE 11. Representative results of the segmentation mask (Case D).
(a) Examples 1 and 2 of Case D. (b) Examples 3 and 4 of Case D.

obtained without applying the segmentation mask. Fig. 10 (a)
shows example 1 of Case C, and (b) shows example 2 of
Case C. At an angle other than the front view, it is difficult
to extract a breathing signal without defining a BAFR. It is
difficult to extract breathing signals from non-frontal views.
Because the previous algorithm using structured features is
difficult to apply. As the view changes, the information in
regions associated with breathing is lost and regions not
associated with breathing are increased. When the proposed
algorithm is applied, stable breathing signals can be extracted,
thereby allowing breathing monitoring, even at 45 degrees.
The proposed algorithm uses physiological BAF to extract the
regions associated with breathing at a given frame, making it
view-independent. Comparing the top orange signal(without
the proposed algorithm) and the bottom orange signal(with
the proposed algorithm) in Fig. 10 (a) and (b), The results
show the restored breathing signals.

D. SEGMENTATION MASKS AND BREATHING SIGNALS OF
CASE D
Fig. 11 shows the segmentation masks for Case D. Fig. 11 (a)
displays examples 1 and 2 of Case D, and (b) displays exam-
ples 3 and 4 of Case D. In the location at a 90-degree angle,
as opposed to the front view, the proposed segmentation
algorithm extracts the BAFR well too.

Fig. 12 shows a comparison between the breathing sig-
nals extracted by applying the segmentation mask and those
obtained without applying the segmentation mask. Fig. 12 (a)
presents example 1 of Case D, and (b) presents example
2 of Case D. When the breathing signals are extracted at
various angles, more regions that are not associated with
breathing are included than when the signals are extracted

FIGURE 12. Representative results of the comparison between the
breathing signals extracted with and without mask application. (Case D).
(a) Example 1 of Case D. (b) Example 2 of Case D.

from the front view. The regions associated with breathing
and the nostril are obscured and observed asymmetrically
depending on the angle. Generally, when breathing signals are
extracted at various angles and views, the breathing cycle can-
not be recognized. In Case D, the region typically associated
with breathing is low. Breathing signals were not extracted
unless the BAFR is extracted. However, an improved breath-
ing signal was extracted when the proposed algorithm was
applied. Comparing the top orange signal(without the pro-
posed algorithm) and the bottom orange signal(with the
proposed algorithm) in Fig. 12 (a) and (b), The results show
the restored breathing signals.

E. STATISTICAL RESULTS OF THE PROPOSED ALGORITHM
The statistical results of the proposed algorithm are pre-
sented as follows. We compared the number of breaths in
the non-contact breathing signal obtained from the thermal
camera with the reference obtained from the chest belt sen-
sors. When the proposed algorithm was not used, the average
accuracy was 65.6%; however, when the proposed algorithm
was applied, the accuracy was improved to 90.9%. In addi-
tion, the average correlation value increased from 0.587 to
0.885. In Cases C and D, the accuracy and correlation were
significantly improved. The accuracy of Case C increased by
31.5%, from 56.9% to 88.4%, and the accuracy of Case D
increased by 35.9% from 49.8% to 85.7%. The correlation
of Case C increased by 0.205, from 0.689 to 0.894, and
the correlation of Case D increased by 0.258, from 0.589 to
0.847. The reason is that Cases C and D have more regions
that are not associated with breathing than Cases A and B,
so the proposed algorithm effectively removes noise. Table 1
shows the number of breathing cycles and accuracy for each
case.

The comparison with previous methods, measured in a sta-
ble environment with visible nostrils using a thermal imaging
camera, is shown in Table 2. In this study, the comparable
environment to the existing method is Case A. The proposed
algorithm achieved 99.0% accuracy in Case A, where the
nostril is well visible, outperforming, or equal to other meth-
ods. The proposed algorithm is not only able to extract stable
breathing signals in the nostril visible (Case A), but also
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TABLE 1. The number of breathing cycles and statistical results.

TABLE 2. comparison accuracy of previous methods.

in the invisible aspect of the nostril was determined at an
angle of 90 degrees from the front (Case B), the aspect was
determined at an angle of 45 angles, not the front view (Case
C), and the aspect was determined at an angle of 90 angles,
not the front view (Case D). By extracting physiological
breathing-associated features from thermal cameras, the pro-
posed algorithm was able to extract stable breathing signals
from various angles that the previousmethods face challenges
while maintaining the advantages of the previous methods.

IV. DISCUSSION
Measuring noncontact breathing signals is important for
monitoring clinical conditions. Breathing is a critical part
of life and should be monitored continuously and reliably
in various clinical environments. Contact methods are lim-
ited by infection risks and inconvenience. To offset the
disadvantage of contact methods, non-contact methods of
measuring breathing have been developed, including RGB,
Depth, Rader, and Thermal camera methods. In particular,
it has been shown that thermal cameras can be used in the
absence of light and can be used to measure the volume of
breathing [42]. However, Thermal cameras cannot directly
measure structural information, and there is a relative loss
of structural information when using an RGB depth camera.
Thus, due to the characteristics of thermal cameras, BAFR
segmentation using structural methods has limited meaning
and performance. Moreover, the previous method using the
structural features is difficult to apply at various views, and
the performance is highly variable depending on the inclusion
of the nostril holes.

In this study, we propose a semantic segmentation method
that reflects temperature changes due to actual breathing. The
proposed algorithm uses physiological BAF to extract the

BAFR at various angles and views. Each pixel is labeled as
a BAFR or non-BAFR using MRF. The proposed segmen-
tation algorithm can identify stable and reliable breathing
signals. The results show that the breathing signals can be
extracted at various angles and views. Even if the thermal
camera is operated under various conditions, the breathing
characteristics are reflected as 2D projections. The algorithm
extracts breathing characteristics according to the projected
temperature and defines regions associated with breathing.
As the proposed algorithm labels each pixel and uses BAF,
even if the angle of the thermal projection changes, the
algorithm can extract the adaptive BAFR. These properties
can be helpful when breathing should be measured efficiently
in various clinical environments. Figs. 5, 7, 9, and 11 show
the BAFRs obtained using the proposed algorithm at various
aspects and views. Since the region projected by the thermal
camera differs, the 2D regions of the extracted BAFR vary.
However, when the results are comprehensively judged in
three dimensions, the extracted BAFRs show structurally
similar regions. Based on the extracted BAFRs, we can
identify the structural regions that are most associated with
breathing. In terms of statistics, the average accuracy was
65.6% without the algorithm, but it increased to 90.9% when
the algorithm was applied. The average correlation value
also rose from 0.587 to 0.885. Notably, Cases C and D saw
significant enhancements in both accuracy and correlation
due to having more non-breathing associated regions, which
the algorithm effectively filtered out. Case C’s accuracy
increased from 57.1% to 88.7% and correlation from 0.689 to
0.894. Case D’s accuracy rose from 49.6% to 85.9%, with the
correlation moving from 0.589 to 0.847. In previous works,
breathing was simply measured by estimating regions that
were likely to be associated with breathing. However, the
proposed algorithm can visualize regions associated with
breathing based on the periodicity of breathing. The proposed
algorithm consistently captures breathing signals not only
from a frontal, visible nostril perspective (Case A) but also
from less accessible views: at a 90-degree angle from the front
with an obscured nostril (Case B), at a non-frontal 45-degree
angle (Case C), and at a non-frontal 90-degree angle (CaseD).
By utilizing thermal cameras to extract physiological features
associated with breathing, the algorithm successfully derives
stable breathing signals from angles traditionally challeng-
ing for existing methodologies, all the while retaining their
beneficial aspects. In other words, the proposed algorithm
provides a method to observe the shape of the region asso-
ciated with breathing. Furthermore, it is significant that the
proposed algorithm provides a basic approach for observing
changes in the BAFR depending on the type of breathing,
which can be applied to investigate clinical diseases with
nasal obstruction.

In this study, Experiments were conducted to verify
the feasibility of the proposed algorithm in a stable state.
To use the algorithm in practical settings, experiments
should be conducted at more specified subjects’ cases,
diverse angles, and in various environments. Additionally, the
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real-time application is difficult because computing resources
are greatly consumed using ICM. However, the proposed
algorithm is a potential method for extracting physiological
features that overcome the limitations of existing structural
feature methods.

Measuring breathing with thermal cameras can overcome
the drawbacks of existing contact methods. However, due
to the nature of noncontact methods, noncontact methods
require more stable environments than contact methods.
These unstable characteristics lead to difficulties in the prac-
tical use of noncontact methods using thermal cameras. In a
realistic clinical environment, the patient and the thermal
camera are not looking perfectly straight ahead, and the shape
and position of the nostril are not measured under optimal
circumstances. The proposed algorithm can be utilized as a
method to extract robust breathing signals in various practice
environments for reliable breathing monitoring while main-
taining the advantages of previous methods. The proposed
algorithm could extract breathing signals not only from the
front view of the face but also from various aspects and
angles, thereby improving the feasibility of breathing mon-
itoring with thermal cameras in clinical environments such
as an isolated ward, operation rooms, and ICUs where infec-
tion risks are high. Overall, the use of thermal cameras for
non-contact breathing monitoring using proposed algorithm
has the potential to improve clinical practice and patient out-
comes. The proposed algorithm can help transform breathing
monitoring technology using thermal cameras into innovative
and functional products.

V. CONCLUSION
In this study, we propose a semantic segmentation method
that takes into account temperature changes in breathing.
The proposed algorithm utilizes physiological BAF to extract
BAFR from various angles and views. When the proposed
algorithm was not used, the average accuracy was 65.6%;
however, when the proposed algorithm was applied, the
accuracy was improved to 90.7%. The average correlation
value also increases from 0.587 to 0.885. The results showed
that when the proposed algorithm was applied, the accuracy
of segmentation was significantly improved, especially in
45-degree and 90-degree views. The algorithm was also able
to accurately extract BAFR from the nose region, regard-
less of the angle, and segment more precise regions at the
pixel level in the thermal camera. The proposed segmentation
algorithm can extract stable breathing signals and accurately
identify breathing cycles.
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