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Abstract

Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-

wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European 

and East Asian ancestry, identifying 205 independent risk associations, of which 50 were 

unreported. We performed integrative genomic, transcriptomic and methylomic analyses across 

large bowel mucosa and other tissues. Transcriptome- and methylome-wide association studies 

revealed an additional 53 risk associations. We identified 155 high confidence effector genes 

functionally linked to CRC risk, many of which had no previously established role in CRC. These 

have multiple different functions, and specifically indicate that variation in normal colorectal 

homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions 

determines CRC risk. Cross-tissue analyses indicated that over a third of effector genes most likely 
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act outside the colonic mucosa. Our findings provide insights into colorectal oncogenesis, and 

highlight potential targets across tissues for new CRC treatment and chemoprevention strategies.

Editor summary:

A multi-ancestry genome-wide association study meta-analysis, combined with transcriptome- and 

methylome-wide association analyses identify risk loci associated with colorectal cancer. Credible 

effector genes and their target tissues are also highlighted, showing that over a third probably act 

outside the colonic mucosa.

INTRODUCTION

Colorectal cancer (CRC), which affects approximately 1.9 million people worldwide 

annually1, has a strong heritable basis2. Our understanding of CRC genetics has been 

informed by genome-wide association studies (GWAS), which have so far identified 

150 statistically independent risk variants3,4. To provide a comprehensive description of 

CRC genetics, we brought together the great majority of GWAS performed to date. 

We complemented GWAS with transcriptome- and methylome-wide association analyses 

(TWAS and MWAS; Fig. 1). Through integration of these data, we investigated the genes 

and mechanisms underlying established and novel CRC risk loci. We identified credible 

effector genes and the tissues in which they act, informing our understanding of colorectal 

tumorigenesis.

RESULTS

Genetic architecture of colorectal cancer

We performed a meta-analysis of CRC GWAS data sets, comprising 100,204 CRC cases 

and 154,587 controls (73% European and 27% East Asian ancestry) (Supplementary Tables 

1 & 2). We identified 205 associations, including 37 single-nucleotide polymorphisms 

(SNPs) at novel loci (sentinel risk SNPs > 1 megabase (Mb) from another significant 

SNP), 13 independent novel risk SNPs in conditional analysis (Table 1), and 155 previously 

reported SNPs or proxies Table 1, Supplementary Tables 3–4, Supplementary figures 1 & 

2). There was limited heterogeneity ascribable to population effects (Supplementary Table 2, 

Supplementary figure 3), although four risk variants (rs12078075, rs57939401, rs151127921 

and rs5751474) were monomorphic in East Asian participants (Table 1).

Using linkage-disequilibrium (LD) score regression (LD hub), we estimated the heritability 

of CRC attributable to all common genetic variants to be similar in Europeans (h2 0.11, s.d. 

0.008) and East Asians (h2 0.09, s.d. 0.006), which translates to 73% of familial CRC risk. 

Restricting estimates to the 205 GWAS-significant SNPs explained 19.7% of this familial 

risk. We evaluated the performance of a polygenic risk score (PRS) based on these SNPs 

in two cohorts independent of the GWAS discovery samples7,8. For Europeans and East 

Asians, individuals in the top PRS decile exhibited odds ratios of 2.22 (95%CI: 1.92–2.57; 

P = 1.80 × 10−26) and 1.96 (95%CI: 1.64–2.34; P = 8.9 × 10−14) compared to the remaining 

individuals. Corresponding areas under the receiver operating characteristic curve (AUC) 

were 0.62 (95%CI: 0.60–0.63) and 0.60 (95%CI: 0.59–0.62).
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Discovery of risk loci by TWAS and MWAS

TWAS was performed by implementing the PredictDB pipeline using mRNA expression 

data from 1,107 colorectal mucosa samples as reference (709 in house, 368 GTEx 

transverse colon) 9,10. In addition to associations identified by GWAS or those previously 

reported by TWAS (PYGL and TRIM4 11,12), we identified 15 novel associations at 

Bonferroni-corrected significance (PBonferroni, Table 2, Supplementary Tables 5 & 6, 

Supplementary figure 4). We extended the main TWAS to a transcript isoform-wide 

association study (TIsWAS), both to ascertain whether specific transcripts could account for 

TWAS associations and to identify previously unreported risk associations (Supplementary 

Tables 7 & 8). For a third of TWAS genes, a significant association with CRC risk was 

found for a single mRNA isoform (Supplementary Table 7). The TIsWAS also identified 

eight loci associated with CRC risk (Table 3). To improve power for discovery, and because 

some CRC risk SNPs may not exert their effects in colorectal mucosa, we also conducted a 

cross-tissue TWAS using our in-house RNA sequencing (RNAseq) data and the full GTEx 

and Depression Genes and Networks (DGN) project data (49 tissues)13. We identified a 

further 23 risk associations (Table 4, Supplementary Tables 9–13).

To complement the TWAS, identify further CRC risk loci and gain mechanistic insights, 

we extended the PredictDB pipeline to perform MWAS based on quantitative methylation 

data from histologically normal colorectal mucosa (Supplementary Methods). We found 

significant associations between CRC risk and methylation of individual CpGs at 69 loci 

(Supplementary Tables 14 & 15). This included seven novel independent risk loci (Table 

5). Risk SNPs may influence CRC risk through changes in the CpG methylation status 

of regulatory elements leading to changes in gene expression. We therefore explored 

the relationship between gene expression, CpG methylation and CRC risk in colorectal 

mucosa for 6,722 genes with both TWAS and MWAS predictions. There was a strong 

tendency for genes to be represented in both TWAS and MWAS (P < 10−7, Fisher’s exact 

test). Subsequently, we conditioned TWAS associations on the top MWAS-significant CpG 

within 1Mb, finding that 67/91 (75%) genes did not retain a significant TWAS association 

(PBonferroni > 5.50 × 10−4; Supplementary Table 16). Our data are consistent with a 

model in which many CRC risk SNPs act through changes in DNA methylation, although 

formal causality analysis could not be performed to exclude reverse causation or possible 

confounders.

Effector genes and biological pathways of CRC oncogenesis

A major, largely unfulfilled aim of cancer GWAS is to identify genes and 

functional mechanisms that may ultimately be clinically useful targets, for example in 

chemoprevention. The large GWAS and TWAS datasets in this study address this aim by 

enabling a detailed functional analysis of the molecular mechanisms contributing to CRC 

risk. Since TWAS approaches do not identify causal genes directly, we used our data to 

compile a set of 155 credible effector genes from the independent associations identified 

through GWAS, TWAS, TIsWAS and MWAS (details in Supplementary Table 17 and 

Supplementary Methods).
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We identified molecular pathways enriched in effector genes using Enrichr (https://

maayanlab.cloud/Enrichr/) (Supplementary Table 18). This analysis was complemented 

with DEPICT based on the GWAS SNPs (https://data.broadinstitute.org/mpg/depict/) 

(Supplementary Table 19). CRC effectors were principally enriched in genes regulating 

TGF-β/BMP, Wnt WNT and Hippo pathways. A number of the credible effector genes that 

map to these pathways have no established role in CRC, including the intestinal stem cell 

regulator ZNRF314, the TGF repressor LEMD315, and the EMT regulator RREB116.

To complement the pathway analysis, we performed gene-level functional annotation based 

on the principal cellular function of each effector gene as reported in the literature (Figure 

2, Supplementary Table 20). Thirty-six genes (mostly Wnt and BMP family members) were 

annotated to colorectal homeostasis (i.e. cellular stemness/differentiation). Intriguingly, 16 

genes (including ARHGEF19, ARHGEF4, GNA12, RHOG, TAGLN, TSPAN8, STARD13 
and LLGL1) were linked to cell migration through RhoA/ROCK signaling. We found 

eight genes (SPSB1, PIK3C2B, DUSP1, LRIG1, GAB1, RREB1, MAPKAPK5-AS1 and 

PDGFB) to act within the Ras/Raf growth factor signaling pathway. In addition to 

the previously reported association at FUT2, the novel fucosyltransferase effector genes 

FUT3 and FUT6 supported a relationship between the gut microbiome and CRC risk17. 

Inflammation is important in CRC18, and the TWAS association at the FADS gene cluster 

and PTGES3, specifically highlighted the role of prostaglandin metabolism in CRC risk. 

Finally, our data also indicated several effector genes with roles in ion transport and 

cytoskeletal components (Fig. 2, Supplementary Table 20).

Although our pathway analysis and functional annotation indicated that the colorectum 

was the likely target tissue of many effector genes (Supplementary Tables 19 & 20), some 

genes were associated with principal roles in other tissue types, for example neuronal 

cells (LINGO4, TULP1 and CNIH2) and leukocytes (TOX, TOX4 and MAF, plus many 

candidate genes within the MHC region) (Supplementary Table 20). We therefore performed 

a systematic analysis of effector gene tissue specificity, based on the premise that TWAS 

associations tend to be present in tissues in which a gene functionally affects CRC risk. 

Cross-tissue analysis showed that all but one effector gene exhibited a TWAS association 

(FDRTWAS < 0.05) in at least one tissue and 52 (34%) genes showed an association 

in multiple tissues (Supplementary figure 5). For 26 (17%) genes, associations were 

confined to the colorectal mucosa (PTWAS Bonferroni-significant in mucosa, PTWAS > FDR 

elsewhere). In contrast, 67 genes (43%) showed no evidence of a TWAS association in 

colorectal mucosa (FDRTWAS > 0.05). Notably, 12 (8%) gene associations were present only 

in immune cells (Supplementary figure 5, Supplementary Table 11) and four (3%) were 

restricted to mesenchymal cells (Supplementary figure 5, Supplementary Table 12).

Linking colorectal cancer risk to other traits

To gain insight into the role of potentially modifiable risk factors in CRC genetics, 

we performed cross-trait LD score regression analyses19 using publicly available GWAS 

summary statistics for 171 phenotypes. Twelve genetic correlations remained significant 

(two-sided Z-test, Bonferroni-corrected P < 2.93 × 10−4). Notably, positive associations with 

CRC risk (Supplementary Table 21) included insulin resistance (raised fasting insulin and 
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glucose), smoking, and obesity (body mass index - BMI, waist-to-hip ratio - WHR, waist 

circumference), traits that have previously been reported in observational epidemiological 

studies to be associated with CRC risk3,20,21. These associations not only highlight shared 

biology, but also suggest that public health interventions to reduce cardiometabolic disease 

will additionally lower CRC burden.

DISCUSSION

We report a comprehensive genetic analysis of CRC risk in the general population. To 

identify the most credible effector genes for each risk variant, we performed detailed 

annotation using tissue-specific gene expression and other relevant data types. Our study 

is twice as large as previous CRC GWAS, and also includes participants of both European 

and East Asian ancestries, demonstrating that most loci are shared across these ancestral 

groups. This increased power for GWAS, coupled with complementary analyses, including 

TWAS and MWAS, identified 103 previously unreported risk associations and identified 155 

effector genes. These data substantially expand our existing knowledge regarding the impact 

of common genetic variation on the heritable risk of CRC.

The availability of large, multi-omic data sets has allowed us to assign the most likely 

target/effector genes of GWAS and TWAS associations (Fig. 3), and confidence in these 

assignments will increase as additional functional data are reported in the literature. It is 

clear that pathways (e.g., Wnt, BMP, Hippo) involved in normal intestinal homeostasis 

play important roles in CRC risk, suggesting that modulation of normal mucosal dynamics 

has the potential to prevent colorectal neoplasia. The gut flora is intimately involved 

in normal bowel homeostasis, and effector genes are likely to be involved in microbial 

interactions. By contrast, Ras pathway activity is thought to be more important during 

repair or tumorigenesis, and the Ras effector genes we have found may act after tumor 

initiation. Our finding of multiple risk genes involved in cell adhesion and migration 

naturally suggests roles in malignant progression, although effects earlier in tumorigenesis 

also remain plausible. Similarly, immune pathway effector genes could, in principle, have 

their effects on normal cell function or at any stage of tumorigenesis, from mediating 

day-to-day microbial interactions to killing of cells in early neoplastic transformation or 

established tumors.

Cross-tissue analyses indicated that the colorectal mucosa was the most likely site of action 

of many effector genes, but some genes are more likely to act in different tissue types. For 

example, it is highly likely that genes such as HIVEP1, LIF, SH2B3, TOX and TOX4 (and 

probably genes in the MHC region) influence the development of CRC through immune cell 

variation, and that EDNRB influences risk through effects on blood vessels. An unexpected 

finding was that several credible effector genes have primary roles in neurogenesis, raising 

the intriguing possibility that the enteric nervous system is involved in CRC risk.

While germline genetics has guided the development of drugs to prevent cardiovascular 

disease (e.g. statins and PCSK9 inhibitors), such a paradigm has yet to be realized for 

cancer. Since almost all CRCs develop from colonic polyps, and up to 40% of the screened 

population will be diagnosed with one or more polyps, CRC is particularly well-suited 
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to evaluate novel chemopreventive agents. Our findings highlight candidate targets for 

chemoprevention, such as gut microbiota, prostaglandin metabolism, and signaling through 

the Wnt, BMP and Hippo pathways. Specific potential targets in the near term include 

CDK6, which is targeted by drugs in clinical use for cancer therapy, such as palbociclib 

and ribociclib. Similarly, Wnt pathway activity can be targeted indirectly using porcupine 

inhibitors (e.g. LGK974, ETC159, CGX-1321 and RXC004) that prevent Wnt ligand 

palmitoylation22, although future approaches may more specifically target effector genes 

such as WNT4 and ZNRF3. Hence, adapted forms of these drugs or modified dosing 

regimens could be repurposed for chemoprevention, possibly initially for high-risk groups, 

such as those with in the top PRS percentiles or Lynch Syndrome cases. Based on our data, 

we speculate that in the longer term, targeted approaches based on demethylation of specific 

CpG sites from MWAS could be effective means of prevention with minimal toxicity.

The identification of additional risk associations has the potential to provide further 

biological insights into CRC. However, cohort numbers required in European and East Asian 

populations to identify additional risk SNPs through GWAS are likely to be prohibitive. 

Indeed, to identify SNPs explaining 80% of the heritable risk of CRC risk loci, thus 

providing comprehensive biological insights, will require sample sizes in excess of 500,000 

cases and at least that number of controls (Supplementary figure 6). This is far higher 

than a previous estimate23, which was based on a small subset of the GWAS included 

herein. Extending GWAS to African and other populations may detect further risk SNPs, 

including population specific ones. Complementary approaches such as TWAS and MWAS 

are demonstrably useful for the discovery of further risk loci, especially if, and when, 

reference data sets from multiple populations are made available.

Overall, our findings demonstrate the power of multi-omics to provide new insights into 

the biological basis of CRC, including both the identification of candidate effector genes 

and support for previously unsuspected functional mechanisms. Importantly, several of 

the genes and pathways we have identified are potential targets for CRC treatment or 

chemoprevention.

Methods

The research presented in this study complies with all relevant ethical regulations, and 

has been approved by the South Central Ethics Committee (UK) (reference number 17/SC/

0079).

Data availability

Summary level data for the full set of Asian and European GWAS are 

available through GWAS catalog (accession number GCST90129505). For individual-

level data, CCFR, CORECT, CORSA_2 and GECCO are deposited in dbGaP 

(phs001415.v1.p1, phs001315.v1.p1, phs001078.v1.p1, phs001903.v1.p1, phs001856.v1.p1 

and phs001045.v1.p1). NSCCG and COIN are available in the European Genome-phenome 

Archive under accession numbers EGAS00001005412 (NSCCG), EGAS00001005421 

(COIN). UK Biobank data are available through http://www.ukbiobank.ac.uk/ and Finnish 

data through THL Biobank. Access to individual-level data for the remaining studies is 
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controlled through oversight committees. CCFR 1 and CCFR 2 data can be requested 

by submitting an application for collaboration to the CCFR (forms, instructions and 

contact information can be located at (www.coloncfr/collaboration.org). Applications for 

individual level data from the QUASAR2 and SCOT clinical trials will be assessed by 

the Translational Research Steering Committees that oversee those studies. Individual 

level data from the CORGI (UK1) study will be made available subject to standard 

institutional agreements. Application forms for these three studies, and for Scotland Phase 

1, Scotland Phase 2, SOCCS, DACHS4 and Croatia, will be provided by emailing a 

request to access.crc.gwas.data@outlook.com. For access to CORSA_1, please contact 

gecco@fredhutch.org. For Generation Scotland (GS) access is through the GS Access 

Committee (GSAC) (access@generationscotland.org). Applications for The Lothian Birth 

Cohort data should be made through https://www.ed.ac.uk/lothian-birth-cohorts/data-access-

collaboration. For details of the application process for Aichi1, Aichi2, BBJ, Guanzhou1, 

HCES, HCES2, Korea and Shanghai cohorts, please go to https://swhs-smhs.app.vumc.org/ 

or contact Dr. Zheng at wei.zheng@vanderbilt.edu.

CRC-relevant epigenome data were obtained from the NCBI Gene Expression Omnibus 

(GEO) database under accession number GSE77737 and GSE36401.

Genetically predicted models of gene expression and methylation have been deposited in the 

Zenodo repository (https://zenodo.org/deposit/6472285).

Code availability

All bioinformatics and statistical analysis tools used in this study are open source, details 

of which are available in the Methods section and in the Reporting Summary. No custom 

code was used to process or analyse data. Details on URLs used can be found in the 

Supplementary Note.

Statistics and reproducibility

No statistical method was used to predetermine sample size. The experiments were not 

randomized. Data exclusion from each analysis is explained below in the corresponding 

sections. Informed consent was obtained for all participants in the study. A description of the 

different datasets and cohorts used is included in the Supplementary Note.

Criteria for declaring new CRC risk associations—Multi-omic studies present 

inherent difficulties for deciding on what constitutes a novel GWAS, TWAS or MWAS 

association. To declare statistically significant associations, for GWAS we have used the 

established threshold of P = 5 × 10−8. We applied this to both loci >1Mbp from a previously 

known SNP and analyses conditioned on the most significant SNP within 1Mb region. 

For TWAS or MWAS we also followed convention and used a Bonferroni correction P = 

0.05/N, where N is the number of gene models successfully derived from the reference 

tissue. Furthermore, for TIsWAS and cross-tissue TWAS, we used Bonferroni-corrected 

P-value thresholds for significance in each of the reference tissue data sets separately, owing 

to the overlap in between tissue groups and the fact that many eQTLs are present across 

tissues. A further common practice, is that a new association should be located >1Mb 
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from another association (from this study or previously reported), whether a genome-wide 

significant GWAS SNP, a TWAS gene or an MWAS CpG. However, use of the 1Mb distance 

convention introduces a further problem in that, whilst the location of a GWAS SNP and 

MWAS CpG can be defined precisely, the location of a gene cannot. We therefore defined 

a gene’s boundaries by the canonical transcript and novel associations must lie 1Mb from 

both those boundaries. Since TWAS and MWAS associations can affect multiple nearby 

genes or CpGs (e.g. owing to co-regulation or LD between eQTLs or mQTLs), we have 

conservatively assigned each TWAS and MWAS association to a single locus (defined as a 

group of genes or CpGs that are significantly associated with CRC risk and lie < 1Mb apart). 

Locus boundaries must be > 1Mb from another association to be declared an independent 

risk association.

We have also performed conditional analyses across GWAS, TWAS and MWAS. This 

is standard practice in GWAS (see below) 24, whereby nearby SNPs with no or limited 

correlation can be independently associated with CRC risk. Conditioning TWAS, TIsWAS 

and MWAS on GWAS using sMIST also allowed us to identify risk associations that 

were independent of the GWAS associations within 1Mb, based on a Pconditional that (i) 

remained Bonferroni-significant at the unconditional analysis threshold, and (ii) was within 

one order of magnitude as Punconditional. A much larger number of TWAS and MWAS 

associations fulfilled only criterion (i) after conditioning on a GWAS association within 1Mb 

(Supplementary Table 6, 8 and 15). Whilst we could not exclude the possibility that some 

of these associations resulted from additional SNPs independent of a nearby GWAS SNP for 

example, we conservatively did not declare these as novel risk associations.

GWAS data analysis

Meta-analysis:  Within each of the 31 analytical units, we conducted logistic regression 

under a log-additive model to examine the association between allelic dosage for each 

genetic variant and the risk of CRC, adjusted for unit-specific covariates. Meta-analysis 

under a fixed-effects inverse-variance weighted model was performed using META v1.725. 

Variants in the meta-analysis only included those with an imputation quality score (info/R2) 

> 0.4, MAF > 0.005, and seen in at least 15 analytical units. The I2 statistic was calculated 

to quantify between study heterogeneity and variants with I2 > 65% were excluded. A 

total of 8,782,440 variants were taken forward in the meta-analysis. Meta-analysis of risk 

estimates was conducted under an inverse variance weighted, fixed-effects model3. None of 

the analytical units showed strong evidence of genomic inflation (λ ranged from 0.95 to 

1.28), and the λ value for the meta-analysis was 1.30 (λ1000 = 1.01) Supplementary figure 

3). To account for any -ancestral differences between analytical units, we implemented MR-

MEGA v0.1.526, including 10 principal components (PCs) in the analysis. To measure the 

probability of associations being false positives, the Bayesian False-Discovery Probability 

(BFDP)3 was calculated based on a plausible odds ratio (OR) of 1.2 (based on the 95th 

percentile of the meta-analysis OR values) and a prior probability of association of 10−5.

Definition of known and novel GWAS SNP risk associations:  We identified all 

previously reported CRC associations at P < 5 × 10−8 by referencing the NHGRI-EBI 

Catalog of human GWAS and by searching PubMed (performed June 2021)3. Additional 
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articles were ascertained through references cited in primary publications (Supplementary 

Table 4). Where multiple studies reported associations in the same region (r2 > 0.1 and 

within 500kb-1Mb of the index SNP), we considered all variants with genome-wide 

significant associations. Given the improved power and coverage of our study over previous 

works, we identified the most strongly associated variant at each known signal and 

used lead variants for further analyses, rather than the previously reported index variants 

(Supplementary Table 3). A genome-wide significant risk variant was considered novel if 

>1Mb from a known risk variant.

GWAS conditional analysis:  To identify independent association signals at the discovered 

CRC risk associations, we performed conditional analyses using GCTA-COJO24 on the 

meta-analysis summary statistics. Analyses were performed separately for European and 

East Asian ancestry populations, to account for LD structure differences. The conditioned 

data were meta-analyzed together as described above, and associations with Pconditional < 

5 × 10−8 were considered novel secondary associations. As reference for LD estimation, 

we made use of genotyping data from 6,684 unrelated samples of East Asian ancestry, and 

4,284 samples from combined UK10K and European samples in 1000 Genomes.

Heritability analysis—We used the LDSC regression package with default parameters as 

implemented in LD Hub27 to estimate the SNP heritability from the GWAS meta-analysis 

summary statistics data3. SNPs were filtered to HapMap3 SNPS with 1000 Genomes EUR 

MAF above 5%. SNPs with imputation info score < 0.9, MAF < 0.01 and within the 

major histocompatibility complex (MHC) region (i.e. SNPs between 26Mb and 34Mb 

on chromosome six were excluded. Precalculated LD scores files computed using 1000 

Genome European data were used.

The contribution of risk SNPs to the familial risk of CRC was calculated as ∑k
logλk
logλ0

, where 

λ0 is the familial risk to first-degree relatives of CRC cases, assumed to be 2.228, and λk is 

the familial relative risk associated with SNP k, calculated as λk = pkrk
2 + qk

pkrk + qk
2 , where pk is the 

risk allele frequency for SNP k, qk = 1−pk, and rk is the estimated per-allele OR from the 

meta-analysis3,29.

Pleiotropy analysis—We explored cross-trait pleiotropic effects using the LDSC 

regression package with default parameters30 as implemented in LD Hub. The summary 

statistics for 252 phenotypes were extracted from LD Hub. For comparability of results 

across the traits we limited our analysis to the CRC GWAS of European ancestry. After 

excluding GWAS performed on non-European cohorts, traits where the LD Hub output came 

with the following warning messages: “Caution: using this data may yield results outside 

bounds due to relative low Z score of the SNP heritability of the trait” and “Caution: using 

this data may yield less robust results due to minor departure of the LD structure”, as well 

as highly correlated traits, 171 phenotypes were included in the analysis. The departure of 

the LD structure means departure from the assumption of equal LD structure between two 

datasets, e.g due to differences in population structure between the study populations. SNPs 

from the MHC (chr6 26M~34M) region were removed for all traits prior to analysis.
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Sample size prediction—To estimate the sample size required to detect a given 

proportion of the GWAS heritability, we made use of GENESIS software (GENetic Effect-

Size distribution Inference from Summary-level data)31, which implements a likelihood-

based approach to model the effect-size distribution in conjunction with LD information, 

using the three-component model (mixture of two normal distributions). The percentage of 

GWAS heritability explained for a projected sample size was based on power calculations 

for the discovery of genome-wide significant SNPs3. The genetic variance explained was 

calculated as the proportion of total GWAS heritability explained by SNPs reaching genome-

wide significance at a given sample size.

TWAS analysis—Gene expression models for the six in-house expression datasets were 

generated using the PredictDB v7 pipeline for a total of 1,077 participants9,10. Elastic 

net model building with 10-fold cross-validation was performed independently for each 

dataset. The elastic net models for GTEx v8 Colon Transverse were obtained from the 

PredictDB data repository (http://predictdb.org/) and had been generated using the same 

pipeline. Models were computed using HapMap2 SNPs ±1Mb from each gene, together 

with covariate factors estimated using PEER32, clinical covariates when appropriate (age, 

sex and, where appropriate, case-control status, type of polyp and anatomic location in the 

colorectum), and three PCs from the individual dataset’s SNP genotype data. Transcriptome-

wide association tests were then performed for each dataset with the S-PrediXcan 

feature using summary statistics from the GWAS meta-analysis. We used individual level 

GWAS data from GECCO (n=8,725) to derive the LD reference covariance matrix. S-

MultiXcan analysis was then undertaken across datasets. Significant associations were 

declared using Bonferroni correction (0.05/number of gene models from S-MultiXcan). 

As recommended33, an additional filter of a TWAS association statistic, PS-PrediXcan ≤ 

10−4, in at least one individual reference data set was implemented to minimize potential 

errors due to LD mismatches. Genes localizing to the HLA/MHC region (chr6:28,477,797–

33,448,354bp) were excluded.

Transcript-based TWAS analyses (TIsWAS) were likewise performed by using transcript-

level data from the SOCCS, BarcUVa-Seq and GTEx Colon Transverse datasets.

Additional TWAS analyses were similarly performed using the non-colonic mucosa tissue 

data available from GTEx. These correspond to S-PrediXCan elastic net models from 48 

additional GTEx tissues with eQTL data and the DGN whole blood cohort. Five tissue 

groupings were tested: “Sigmoid colon”, corresponding to muscle and other sub-epithelial 

tissues; “Immune”, comprising DGN + GTEx Cells_EBV-transformed_lymphocytes 

+ GTEx Whole_Blood + GTEx_Spleen (n=1,966 samples); “Mesenchymal”, 

comprising GTEx Adipose_Subcutaneous + GTEx Adipose_Visceral_Omentum + GTEx 

Cells_Cultured_fibroblasts (n=1,533 samples); “Gastrointestinal”, comprising six in-house 

datasets + GTEx Pancreas + GTEx Liver + GTEx Stomach + GTEx Terminal_Ileum 

+ GTEx Oesophageal_Mucosa + GTEx Colon_Transverse; n=2,615 samples); and “All”, 

comprising the six in-house datasets + all 49 GTEx tissues + DGN (n=16,832 samples).

The predictive performance of the models for TWAS and TisWAS across the datasets was 

similar. For the TWAS models the number of genes successfully predicted with R2 > 0.01 

Fernandez-Rozadilla et al. Page 10

Nat Genet. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://predictdb.org/


(equivalent of R>0.1) varied between 3308 for the BarcUVa data set and 5092 for SOCCS 

rectum, while GTEx Colon Transverse models were available for 6295 genes. The mean 

CV-based prediction R2 for all genes varied between 0.09 (25–75th percentile 0.04–0.12) 

for BarcUVa to 0.19 for INTERMPHEN (0.07–0.24), compared with 0.12 (0.04–0.16) 

for GTEx Colon Transverse model. The numbers were slightly higher when comparing 

the overlapping 736 genes only. The in-house TisWAS models were constructed for a 

lesser number of transcripts (n=4632 for BarcUVa dataset and n=11262 for SOCCS rectum 

dataset) compared to GTEx Colon Transverse (n=15500), owing to greater read depth and 

larger sample size for GTEx. The mean R2 for all genes varied from 0.07 (0.03–0.09) for 

BarcUVa to 0.16 for SOCCS colon (0.07–0.21). GTEx Colon Transverse had mean R2 0.10 

(0.03–0.12).

MWAS analysis—Methylation beta values were calculated based on the manufacturer’s 

standard, ranging from 0 to 1. Quality control and data normalization were performed 

in R using the ChAMP software pipeline for the EPIC and 450K arrays34. Briefly, we 

filtered out failed probes with detection P > 0.02 in >5% of samples, probes with <3 

reads in >5% of samples per probe and all non-CpG probes. Samples with failed probes 

>0.1 were also excluded from downstream analyses. We discarded all probes with SNPs 

within 10bp of the interrogated CpG (from 1,000 Genomes Project, CEU population)35, and 

probes that ambiguously mapped to multiple locations in the human genome with up to 

two mismatches33. We only considered probes mapping to autosomes and those overlapping 

between the EPIC and the 450K arrays. Normalization was achieved using the Beta MIxture 

Quantile (BMIQ) method. Per probe methylation models were created using the PredictDB 

pipeline on the normalized methylation matrix and the genotypes as per TWAS eQTL 

analysis. To optimize power, we restricted our analysis to 263,341–238,443 (for the 450K 

array) and 377,678 (for the EPIC array) probes annotated to Islands, Shores and Shelves, 

and discarded “Open Sea” regions. Further analysis was performed as per the TWAS. CpGs 

were annotated to a known GWAS signal if within 1Mb of a genome-wide significant 

GWAS risk SNP and otherwise considered novel. For the MWAS models the number of 

CpG probes successfully predicted with R2 > 0.01 (equivalent of R>0.1) varied from 24325 

for INTERMPHEN rectum to 30385 for COLONOMICS. The mean CV-based prediction R2 

for all genes varied from 0.14 (25th-7th percentile 0.07–0.16) for INTERMPHEN proximal 

dataset to 0.19 for SOCCS (0.07–0.25).

Conditional analysis using sMiST for TWAS and MWAS findings—S-MultiXcan 

is a powerful method for assessing predicted gene expression across multiple tissues and 

samples, but cannot readily undertake conditional analysis to determine independence of 

a TWAS or MWAS association from other GWAS, TWAS or MWAS associations. We 

therefore used the summary statistics-based Mixed effects Score Test (sMiST)36 method to 

perform conditional analysis of TWAS, TIsWAS and MWAS data adjusting for GWAS risk 

SNPs. sMiST can assess the total effect, including both predicted molecular features (gene 

expression or methylation) and the residual direct effects of SNPs that are not explained 

by predicted molecular features, on CRC risk. To be consistent with S-MultiXcan, we only 

assessed the association of predicted molecular features. We first confirmed that there was 

a strong correlation between the sMiST and S-MultiXcan results, with minimal discordance 
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(Supplementary figure 4). In view of this, we used sMiST to perform conditional TWAS 

and MWAS analysis for each of the significantly associated genes or CpGs respectively, 

conditioning on the lead GWAS-significant SNP (if present) within 1Mb (Supplementary 

Tables 6, 8 & 15). We also conditioned TWAS on TWAS, TIsWAS on TIsWAS and 

MWAS on MWAS. We also conducted TWAS conditioned on MWAS analyses for the 

genes for which both significant genetically predicted expression and methylation models 

were produced by the PredictDB pipeline. Where multiple CpGs were annotated to the 

same gene, we selected the association with the lowest MWAS P-value. We determined the 

number of genes associated (at Bonferroni-corrected P = 0.05/6,722 = 7.44 × 10−6) with 

CRC risk in both TWAS and MWAS (n=43), TWAS-only (n=54), MWAS-only (n=91) or 

neither (n=6,534).”

Effector gene identification—To identify the most credible target or “effector” genes at 

each CRC risk locus, a pragmatic approach was utilized. After excluding the MHC region, 

pseudogenes and transcripts of uncertain significance (generally RPNNNN or ACNNN), the 

following hierarchical inclusion criteria were used.

For significant (Bonferroni-corrected PTWAS < 0.05) TWAS genes at a locus, the gene most 

strongly associated with CRC risk in any tissue, as long as its PTWAS was at least an order of 

magnitude lower than any other gene at the locus. (N=112)

For loci included under (1), additional genes that remained significant (FDR < 0.05) in 

conditional TWAS-TWAS analysis including the lead gene. (N=9)

At GWAS loci not included under (1), the most significant (FDR < 0.05) TWAS gene, as 

long as its PTWAS was at least an order of magnitude lower than any other gene at the locus. 

(N=17)

TIsWAS analysis consistent with the approach used for TWAS as described in (1–3) above. 

(N=16)

Genes harboring missense or truncating variants in LD (r2 > 0.9) with sentinel GWAS SNPs. 

(N=1)

A set of 155 genes was identified, which corresponds to about two thirds of the CRC risk 

loci from GWAS, TWAS and MWAS (Supplementary Table 17).

The area under the receiver operating characteristics curve (AUC)—We 

calculated the confounder adjusted AUC of PRS in discriminating individuals with and 

without CRC by using the propensity score weighting to account for potentially different 

distribution of confounders between cases and controls37. We adjusted for age, sex, and four 

PCs as confounders. We obtained the 95% confidence intervals (CI) by bootstrapping and 

a total of 500 bootstrap samples were generated. We calculated adjusted AUCs using the R 

package ROCt.
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Figure 1. Summary of the study data and analytical design, and the number of previously 
unreported CRC risk loci discovered.
The figure illustrates the information for the different analyses used: GWAS (green), TWAS 

(blue), MWAS (yellow) used to identify additional risk loci. These are later used to select 

credible effector genes annotated to functions and tissues.
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Figure 2. Effector genes for CRC risk and the cellular processes in which they act.
Pie chart describing the proportion and list of effector genes allocated to each process.
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Figure 3. Representation of effector genes and their putative actions in the colorectum.
Diagram representing the processes that the combined GWAS, TWAS and MWAS analyses 

have unveiled as relevant to CRC risk. Exemplar effector genes from cellular processes and 

pathways (in capitals) are chosen to depict each category.
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