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Abstract

Class imbalance is a major problem in classification, wherein the decision boundary is easily

biased toward the majority class. A data-level solution (resampling) is one possible solution

to this problem. However, several studies have shown that resampling methods can deterio-

rate the classification performance. This is because of the overgeneralization problem,

which occurs when samples produced by the oversampling technique that should be repre-

sented in the minority class domain are introduced into the majority-class domain. This

study shows that the overgeneralization problem is aggravated in complex data settings and

introduces two alternate approaches to mitigate it. The first approach involves incorporating

a filtering method into oversampling. The second approach is to apply undersampling. The

main objective of this study is to provide guidance on selecting optimal resampling methods

in imbalanced and complex datasets to improve classification performance. Simulation stud-

ies and real data analyses were performed to compare the resampling results in various

scenarios with different complexities, imbalances, and sample sizes. In the case of noncom-

plex datasets, undersampling was found to be optimal. However, in the case of complex

datasets, applying a filtering method to delete misallocated examples was optimal. In con-

clusion, this study can aid researchers in selecting the optimal method for resampling com-

plex datasets.

1. Introduction

The class imbalance problem is defined as the classification of datasets with unequal class dis-

tributions [1]. Class imbalance problems occur frequently in many real-world tasks, such as

fraud detection, spam detection, and cancer prediction. In these operations, non-events occur

often, resulting in "not spam," "not cancer," or "not fraud" results. Conversely, fraud, spam,

and cancer occur rarely. Even if these events happen less frequently, their importance is not

diminished. Minority classes are generally more interesting in terms of their learning tasks.

Therefore, it is important to classify these infrequently occurring events properly.

However, imbalanced datasets create challenges in several machine learning tasks. This is

because most machine learning algorithms assume a roughly balanced class distribution [2].

In case of class imbalance, the decision boundary is easily biased toward the majority class.

Therefore, classification performance degrades when the imbalance ratio between the majority
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and minority classes is large. Several methods have been proposed to address this issue. The

solutions can be divided into two groups: data-level and algorithm-level [3]. The data-level

solutions, also known as resampling methods, change the balance between classes by modify-

ing the data distribution [4–6]. In contrast, algorithm-level solutions impose a bias on the

minority class by changing the search technique of the algorithm [7–9].

The greatest advantage of resampling methods is that they are more versatile. A dataset

needs to be preprocessed only once for using it with different classifiers; hence, the computa-

tion to prepare the data is required only once. Therefore, resampling methods can be used in

conjunction with various classification algorithms. Because of this advantage, numerous

researchers have focused on resampling, which has resulted in the development of various

resampling methods.

Resampling methods can be classified as either undersampling or oversampling. Under-

sampling deletes instances from the majority classes to maintain a balance between classes

[10]. This technique provides a compact and balanced training set that reduces the learning

cost. However, some important information may be lost [11]. It also increases the variance of

the classifier. However, oversampling balances the number of samples between classes by add-

ing instance copies to the minority class or by generating synthetic data [12]. The most widely

used oversampling method is the synthetic minority oversampling technique (SMOTE) [4]. It

creates new artificial data representing minority classes in its own manner.

However, the problem with SMOTE is that even if it achieves a better distribution between

classes, it can yield worse results owing to the overgeneralization problem. In the overgenerali-

zation problem, samples produced through oversampling techniques, which should be

included in the minority class domain, are introduced into the majority-class domain. This

overgeneralization problem can be aggravated in complex data settings. Applying oversam-

pling under complex data settings can result in the creation of unnecessary minority class sam-

ples that do not simplify the learning of the minority class. It can also make the boundaries

between classes unclear, rendering the classifier unusable. Therefore, data complexity is a

major issue that causes overgeneralization. This study aims to address the problem of overgen-

eralization in complex data settings.

To mitigate the problem of overgeneralization in complex datasets, several studies have

incorporated filters in oversampling methods. SMOTE is often used in conjunction with

undersampling methods to remove samples considered detrimental to classification. The two

most well-known methods are SMOTE-TomekLinks (TL) and SMOTE-edited nearest neigh-

bor (ENN) [13,14]. Some filters, such as fuzzy rough set theory-based and ensemble-based

noise filters, have been incorporated to enhance SMOTE [15–17]. Additionally, applying

undersampling in certain cases can be a better solution in complex data settings. According to

the work done by Park and Jung, undersampling methods perform better than other resam-

pling methods despite the loss of information caused by undersampling [18]. Noisy or border-

line samples can be filtered out from existing datasets.

The main purpose of this study was to suggest optimal resampling methods for handling

imbalances in complex datasets. For this purpose, we investigated the relationships between

data complexity and various resampling methods. To achieve this, six oversampling, ten

undersampling, and ten filtering methods were applied to various simulated and real data,

considering sample size range, imbalance ratio, and data complexity.

The remainder of this paper is organized as follows. In Section 2, various resampling meth-

ods are introduced. In Section 3, the application of resampling methods to the aforementioned

simulated and real-life datasets are described, and the obtained results are analyzed. Thereaf-

ter, optimal resampling methods according to dataset complexity are suggested in Section 4.

Finally, the paper is concluded in Section 5.
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2. Methods

In this section, all resampling methods used in this study are explained. First, the most widely

used classic oversampling and undersampling methods are introduced. Thereafter, a recently

proposed filtering-based oversampling method is introduced as one of the methods to solve

the overgeneralization problem. The resampling methods are listed in Table 1.

2.1 Oversampling methods

Oversampling balances the number of samples between classes by adding an instance copy of

an underrepresented class or by generating artificial data. We introduce three oversampling

methods in addition to the three modified versions.

Random oversampling is the naive strategy for generating new examples. It randomly sam-

ples currently available samples with replacements. Therefore, the numbers of samples in the

majority and minority classes become balanced, and the majority class does not take over

another class during training. However, repeated sampling can result in overfitting.

SMOTE is a popular method for oversampling a minority class. First, it randomly selects a

minority class instance as the basis for generating new synthetic data. Thereafter, the closest

neighbors of the same class are selected. Finally, random interpolation is performed between

the two data points to obtain a new minority class instance [4]. SMOTE is illustrated in Fig 1.

ADASYN automatically determines the number of samples to be oversampled for each

minority class by considering the dataset distribution [19]. A sample that needs to be over-

sampled is determined based on the learning difficulty. The learning difficulty can be quanti-

fied through the ratio of values belonging to the majority class to the KNN of values belonging

to the minority class.

The oversampling methods introduced blindly generate the minority class sample without

considering the majority class. This is particularly problematic for highly complex datasets and

several methods have been developed to address this problem.

Borderline SMOTE determines the best candidates for oversampling in the entire dataset

prior to oversampling [20]. This algorithm oversamples the samples that are close to the deci-

sion boundary, which is based on the premise that samples that are far from the boundary may

contribute little to classification success.

Table 1. Resampling methods.

Oversampling Undersampling Filtering

Random Oversampling Random Undersampling SMOTE-TL

SMOTE Near-miss SMOTE-ENN

ADASYN Tomek Link DSRBF

Borderline SMOTE CNN TRIM-SMOTE

SVM SMOTE ENN SMOTE-RSB*
K-means SMOTE RENN NRSBoundary-SMOTE

All KNN NEATER

OSS SMOTE-IPF

NCR SMOTE-FRST-2T

IHT NRAS

Adaptive synthetic (ADASYN), support vector machine (SVM), condensed nearest neighbors (CNN), repeated ENN (RENN), k-nearest neighbors (KNN), one-sided

selection (OSS), neighborhood cleaning rule (NCR), instance hardness threshold (IHT), dynamic SMOTE radial basis function (DSRBF), neighboring rough set

boundary (NRSBoundary), filtering of oversampled data using noncooperative game theory (NEATER), and iterative-partitioning filter (IPF), noise reduction a priori

synthetic (NRAS).

https://doi.org/10.1371/journal.pone.0288540.t001
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SVM SMOTE and k-means SMOTE are variants of borderline SMOTE. SVM SMOTE uses

SVM algorithms to detect the decision boundaries [21]. K-means SMOTE employs k-means

clustering before applying SMOTE [22]. It groups samples together and creates new samples

based on the clustering results.

2.2 Undersampling methods

Oversampling can result in overgeneralization. To address this problem, researchers have sug-

gested applying undersampling methods instead. Undersampling is an efficient technique that

does not add new data and reduces the risk of creating false decision boundaries generated by

artificial samples.

There are two types of undersampling. The controlled undersampling technique allows a

user-specified undersampling strategy to determine the number of samples to be sampled.

However, the cleaning undersampling technique does not allow for this. Two controlled

undersampling methods and eight cleaning undersampling methods are introduced in this

section.

Random undersampling involves randomly selecting a sample from the majority class, with

or without replacement. This is the simplest strategy for an imbalanced classification problem,

Fig 1. Visual representation of SMOTE. xi: Randomly selected minority class sample; xzi: Instance close to xi; xnew:

New artificial example generated by interpolation between two instances.

https://doi.org/10.1371/journal.pone.0288540.g001
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similar to random oversampling. However, if the imbalance is severe, information loss may

occur. Therefore, the performance may vary based on the degree of imbalance.

Unlike random undersampling, near-miss adds some heuristic rules. There are three ver-

sions of the near-miss algorithm. NearMiss-1 selects the majority-class sample with the small-

est mean distance from the minority class to the nearest N sample. NearMiss-2 selects the

majority-class sample with the smallest average distance from the minority class to the furthest

N sample. NearMiss-3 is a two-stage algorithm that combines NearMiss-1 and NearMiss-2

[23]. This study used NearMiss-3 owing to its robustness to noise.

The methods described thus far allow users to set the number of samples to be under-

sampled. However, the following eight cleaning undersampling techniques do not allow for

this. Therefore, after resampling, the number of minority- and majority-class samples can be

different.

The TL method performs undersampling by detecting TLs in the majority-class samples

and removing them. TL is illustrated in Fig 2. For example, let d(.) be the distance between the

two samples. If x and y belong to different classes and there is no sample z that satisfies the

conditions d(x,y) < d(x,z) or d(x,y) < d(y,z), then the x, y pair is a TL [24]. Values classified as

TLs are considered noise or borderline samples.

Fig 2. Illustration of TL.

https://doi.org/10.1371/journal.pone.0288540.g002
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Using the 1-nearest neighbor rule, CNN iteratively determines whether the sample should

be removed [25]. The aim of CNN is to find the smallest subset representing the majority class.

However, CNN is known to be noise-sensitive.

ENN edits the dataset by removing samples that do not match their neighbors [26]. This

algorithm is an extension of CNN and uses 3-nearest neighbors instead of one. RENN added

few new rules to the original ENN [27]. It extends the ENN by repeating the algorithm multi-

ple times. ALL KNN extends RENN by increasing the number of nearest neighbors at each

iteration. OSS extends ENN by applying TLs and the 1-nearest neighbor rule to remove noisy

samples [28]. NCR extends ENN by focusing on cleaning the dataset rather than condensing it

[29]. If a value is classified as a majority class using 3-nearest neighbors, it is deleted. However,

if the value is classified as a minority class, the majority-class samples in the 3-nearest neigh-

bors are deleted.

IHT uses a trained classifier algorithm to remove samples with low predictive probabilities

[30]. Unlike other distance-based classification methods, this algorithm applies a predictive

probability based on the classification model.

2.3 Filtering methods

Another proposed solution to deal with the overgeneralization problem is adding filters to the

oversampling methods. The overgeneralization problem can be resolved by cleaning the space

resulting from oversampling. In this section, 10 filtering methods are introduced.

SMOTE-TL and SMOTE-ENN are the most typical filtering methods. The introduction of

these methods were motivated by SMOTE’s well-known drawback of generating noisy exam-

ples. Each method adds TLs or ENNs after applying SMOTE to obtain a cleaner space [13,14].

DSRBF incorporates SMOTE with a memetic algorithm that optimizes radial basis function

neural networks (RBFNNs), a clustering process, and a local search procedure [31].

TRIM-SMOTE uses TRIM as a preprocessing method [32]. It recursively splits an entire

dataset into smaller clusters and searches for a precise minority region. The minority region

obtained by TRIM is then used to generate new synthetic data.

SMOTE-RSB* introduced a new resampling method for highly imbalanced datasets [15].

After generating new synthetic examples using SMOTE, a selection method based on rough

set theory is used to improve the quality. This process involves removing the generated exam-

ples that are not associated with the lower approximation of the minority class.

NRSBoundary-SMOTE is an extension of SMOTE-RSB* [33]. It divides the dataset into

three groups. Of these three groups, it only oversamples the minority class samples in the

boundary region, which indicates class overlapping.

NEATER does not consider the generated artificial data as minority class samples [34].

Rather, it keeps the generated samples unlabeled and determines the most likely class using a

noncooperative game strategy. All generated artificial data that do not belong to the minority

class are removed.

SMOTE-IPF removes noisy examples using an iterative ensemble-based noise filter [16]. A

sample is removed if it is misclassified by more than half of the classifier.

SMOTE-FRST-2T employs the fuzzy rough set theory to remove data that do not belong to

the majority-class region [17]. It then uses a double threshold to eliminate the original majority

class and synthetic samples.

NARS improves the prediction of underrepresented samples containing noise by removing

outliers [35]. It uses Bayes’ theorem to calculate the probability of a group membership. This

includes minority class samples that do not appear as noise.
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3. Evaluation of resampling methods on simulated data

3.1 Simulation framework

The generation method used was inspired by the work of Japkowicz and Stephen, who

designed a similar framework to test the effect of resampling in complex settings [36]. How-

ever, their work only performed five generations for each simulated domain; therefore, their

results cannot be considered reliable. Moreover, the performance metrics used by them had

single threshold values, which may vary based on the selected threshold. Therefore, this study

aimed to obtain more precise results by using better performance metrics. The simulated data

for this study were generated as follows.

Six independent variables were selected, which comprised three continuous and three cate-

gorical variables, and a correlation of 0.3 was established between the them as follows:

X1

X2

X3

~x4

~x5

~x6
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6
6
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6
6
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6
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4
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7
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B
B
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B
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C
C
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C
C
C
C
C
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;where r ¼ 0:3 ð1Þ

X4 ¼
0 if ~x4 < F� 1ð0:3Þ

1 o:w
ð2Þ

(

X5 ¼
0 if ~x5 < F� 1ð0:2Þ

1 o:w
ð3Þ

(

X6 ¼
0 if ~x6 < F� 1ð0:15Þ

1 o:w
ð4Þ

(

Thereafter, the sigmoid function was applied to the generated data to make 0< η> 1:

Z ¼ 1=1
þexpð� 1∗ð1:1X1 þ 0:9X2 þ 0:7X3 þ X4 þ X5 � X6 þ �ÞÞ� � N 0; 1ð Þ ð5Þ

To control the complexity, imbalance, and sample size in binary problems, the backbone mod-

els illustrated in Figs 3–5 were applied to η. Three different levels of complexity were used,

where level c corresponds to a backbone model composed of 2c regular intervals. For example,

the domain generated at c = 1 divides η by 0.5. Furthermore, when c = 2, η is divided into four

intervals.

Finally, Eqs (6) and (7) were used to control the sample size and imbalance ratio. For three

levels of sample size, imbalance ratio, and complexity (c = 1,2; s = 1,3,5; i = 1,3,5), the sample

size of each interval is:

sample size of minority class interval ¼
5000

32

� �

∗2s

� �

=2c ð6Þ

sample size of majority class interval ¼
5000

32

� �
∗2s� �

=2c

32=2i ð7Þ
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By controlling the complexity (small, medium, or extreme), imbalance (i = 1, 3, 5), and size

(s = 1, 3, 5), 27 domains were generated. Each domain was generated 50 times; the simulation

settings are presented in Table 2.

3.2 Other setup details

As most resampling methods showed similar performances when they were applied to various

classification algorithms, this study only used the decision tree (DT) classifier as the classifica-

tion method for the simulations. The test sets were created independently based on the com-

plexity and imbalance ratio of each domain, and the size of the testing sets was set to 5000. The

parameters for the DT classifier were selected through 3-fold cross validation.

The area under the precision-recall curve (AUPRC) was used for evaluation. In prior

research, the selection of a suitable performance evaluation method has often been

Fig 3. Backbone model under low complexity (c = 1). MIN: Minority class; MAJ: Majority class.

https://doi.org/10.1371/journal.pone.0288540.g003

Fig 5. Backbone model under extreme complexity (c =2, but classes are spaced apart).

https://doi.org/10.1371/journal.pone.0288540.g005

Fig 4. Backbone model under medium complexity (c = 2).

https://doi.org/10.1371/journal.pone.0288540.g004

Table 2. Simulation settings.

c s i N N+ IR

1, 2 1 1 166 156 15.6

3 195 156 4

3 1 664 625 16

3 681 625 4

5 1 2656 2500 16

3 3125 2500 4

N: Number of samples; d: Number of variables; N+: Number of majority samples; IR: Imbalance ratio.

https://doi.org/10.1371/journal.pone.0288540.t002
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underestimated. However, selecting inappropriate metrics can result in misleading results

because the metrics can vary based on the threshold selected [37]. Thus, using threshold-free

metrics, such as area under the receiver operating characteristics (AUROC) or AUPRC, can be

an effective approach.

In AUROC, false- and true-positive rates are used for the x and y-axis, respectively. How-

ever, using AUROC can present an overly optimistic view of the classification performance if

there is a large class imbalance [38]. Therefore, in unbalanced settings, using AUPRC helps in

avoiding misinterpretation. In AUPRC, recall (sensitivity) and precision are used for the x and

y-axis, respectively. It can reveal differences that are not visible in the ROC. The differences

between the ROC curve of AUROC and PR curve of AUPRC are shown in Fig 6.

4. Results

The simulation results are shown in Figs 7–9. To illustrate the simulation results, the AUPRC

value of each simulation data point was ranked from 1–26. The performance was then

expressed by the difference in the ranking before and after resampling. Zero indicates an equal

ranking before and after resampling, whereas positive/negative values indicate increase/

decrease in ranking after resampling. Each bar in the graph represents the average difference

in the ranking for the 50 simulation data.

Each graph in Figs 7–9 has different data complexity and size. Furthermore, in each graph,

the x-axis represents each resampling method described in this study, and the y-axis represents

the mean difference in the performance metrics. Colors indicate imbalance; light gray bars

indicate lower imbalance than the dark ones. The star markers at the top of bars indicate sig-

nificant performance gains based on paired t-tests.

It can be observed from Figs 7–9 that oversampling methods obtained lower ranks in all

cases, regardless of the data complexity and imbalance. The performance was expected to

decrease via oversampling as complexity increased owing to overgeneralization. However, the

simulation results show that these problems occur even when the data are relatively less com-

plex. Therefore, we concluded that creating artificial data to balance classes does not

Fig 6. Differences between ROC and PR curves.

https://doi.org/10.1371/journal.pone.0288540.g006
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significantly increase performance under all complexities. However, compared with other

resampling methods, oversampling showed more robust results without rapid rank changes,

even under extreme complexity.

Fig 7. Differences in AUPRC ranks under low complexity. The star markers at the top of bars indicate significant performance gains.

https://doi.org/10.1371/journal.pone.0288540.g007

Fig 8. Differences in AUPRC ranks under medium complexity. The star markers at the top of bars indicate significant performance gains.

https://doi.org/10.1371/journal.pone.0288540.g008
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When data complexity was low or medium, undersampling methods obtained the highest

ranks in most cases, and in the case of extreme data complexity, filtering methods obtained the

highest ranks. Thus, it can be inferred that in the case of extreme data complexity, information

loss because of undersampling has a considerable effect.

Furthermore, the undersampling results showed differences in ranks based on imbalance

ratio. In cases of severe imbalance, the rankings were lower than those in less severe cases. This

was because more majority-class samples were available for removal under sever imbalance.

However, from the graphs (3), (6), and (9) shown in Figs 7–9, it can be observed that large

sample sizes resulted in lower differences in ranking owing to the imbalance.

5. Evaluation of resampling methods on real data

In this section, the performances of six oversampling, ten undersampling, and ten filtering

methods using four classification algorithms are compared. In this process, "complexity met-

rics" were used to represent the data characteristics. Through these metrics, the characteristics

of resampling methods according to various data complexities were determined, and the opti-

mal combination of classifiers and resampling methods was determined.

5.1 Data description

For the experiment, 109 labeled datasets were collected from the University of California

Irvine (UCI) machine learning repository [39]. Most of them were based on multiclass datasets

that were reorganized into binary problems by selecting some classes to compose the minority

class and considering all other classes as the majority class. Some datasets were artificially gen-

erated, and most of them comprised real-life problems. The characteristics of the datasets are

provided in Supporting Information (S1 Table).

Fig 9. Difference in AUPRC ranks under extreme complexity. The star markers at the top of bars indicate significant performance gains.

https://doi.org/10.1371/journal.pone.0288540.g009
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Before applying the resampling methods, some feature encoding steps were performed to

make the datasets applicable to the resampling methods and classification algorithms. Categor-

ical values that contained less than five categories were one-hot encoded. For the others, the

original values were retained to maintain a lower number of variables.

5.2 Complexity measures

The R package extended complexity library (ECoL) provides measures to characterize the

complexity of classification problems based on overlapping features, neighborhood, and class

imbalance.

Measuring complexity based on feature overlapping characterizes how informative the

available features are for separating the classes. If there was one highly discriminative feature,

the problem could be considered simpler than those with no such feature. The neighborhood-

based complexity analyzes the neighborhoods of the data points and attempts to capture class

overlap and the decision boundary shape. The complexity measure, based on imbalance, cap-

tures the differences in the number of samples per class in the dataset. We used three complex-

ity measures, described in Table 3. Each measure ranges from 0 to 1, with higher values

indicating higher complexity.

5.3 Other setup details

The classification methods used in this study to find the best combination of classifiers and

resampling methods were DT, KNN, linear SVM, random forest (RF), and neural network.

The training and test sets were divided into a 7:3 ratio, and the optimal parameters for each

classification algorithm were set using 3-fold cross validation. For the evaluation, the AUROC

was used in the same way as in the simulation study.

5.4 Mean differences in performances after resampling

We calculated the AUPRC values before and after resampling for each dataset and then

obtained the difference. For instance, the AUPRC value for the decision tree classifier was

0.309 for the original yeast3 dataset, whereas it was 0.027 after random undersampling. Thus,

the AUPRC difference for the yeast3 dataset was -0.282. The mean differences between the

original AUPRC values and those obtained after resampling for 109 datasets are shown in Figs

10–12. To determine the differences according to data complexity, each dataset was divided

into three intervals using complexity measures: F3, N2, and C2. The more complex the dataset,

the darker the color of the bar. A positive value indicates performance improvement, whereas

a negative value indicates performance decrement.

Different methods were used to measure the complexity of the data; however, the data

showed similar results. First, when oversampling methods were applied, there was little to no

increase in AUPRC values for almost all complexities. This was consistent with the results of

the simulation study.

Table 3. Summary of complexity measures.

Metric Description

Overlapping F3 Maximum individual feature efficiency.

The ratio between the number of samples that are not in the overlapping region of two

classes and the total number of samples.

Neighborhood N2 Ratio of intra/extra class nearest neighbor distance.

Computes the ratio of two sums: intra- and inter-class.

Imbalance C2 Index computed for measuring class balance.

https://doi.org/10.1371/journal.pone.0288540.t003
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Fig 10. Mean differences in AUPRC values using F3. The more complex the dataset, the darker the color of the bar.

https://doi.org/10.1371/journal.pone.0288540.g010

Fig 12. Mean differences in AUPRC values using C2. The more complex the dataset, the darker the color of the bar.

https://doi.org/10.1371/journal.pone.0288540.g012

Fig 11. Mean differences in AUPRC values using N2. The more complex the dataset, the darker the color of the bar.

https://doi.org/10.1371/journal.pone.0288540.g011
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In the undersampling results, when the complexity was low, most AUPRC values increased

significantly. However, as complexity increased, the effect of undersampling became insignifi-

cant. Therefore, we concluded that information loss through undersampling was small for

simple datasets. In such datasets, performance can be improved only by matching the balance

of the two classes.

Conversely, the filtering method exhibits a different pattern. When the dataset was rela-

tively simple, the mean increase in AUPRC values was similar to or less than that during

undersampling. However, unlike undersampling, the filtering methods showed stable results,

even for extremely complex datasets.

5.5 Results of the top 10 resampling and classifier combinations

In this section, the top 10 best-performing combinations obtained by applying all resampling

methods and classifiers to the given data are discussed to determine the optimal combination

for imbalanced and complex datasets. For example, in the yeast3 dataset, the best performing

model was a combination of decision tree classifier and NEATER, which achieved an AUPRC

of 0.721. The second and third ranked models were a combination of IPF+RF and a combina-

tion of CNN+RF, respectively, with AUPRCs of 0.701 and 0.696. To compare the results, the

real data were divided into "complex" and "noncomplex" cases.

In this process, complexity measures were used to find complex and noncomplex cases

among the given datasets. First, C2 was used to find the imbalanced data to which resampling

should be applied. This study specified imbalanced data among all datasets as those that

obtained C2 values in the top 25% or higher. Next, F3 and N2, which were well distributed

among all complexity measures, were used to classify the complex and noncomplex cases.

Data that obtained values in the top 25% were defined as complex cases, whereas those that

obtained values in the bottom 25% were defined as noncomplex cases. In Fig 13, the parts col-

ored in light gray indicate imbalanced and noncomplex areas, and those colored in dark gray

indicate imbalanced and complex areas.

Tables 4 and 5 present the top 10 combinations of resampling methods and classifiers that

obtained the highest average rankings based on AUPRC values. Table 4 lists the F3-based

results for the noncomplex and complex cases. Table 5 lists the C2-based results for the non-

complex and complex cases.

First, all classifiers that obtained high rankings were tree-based algorithms, such as RF and

DT. Thus, it can be inferred that tree-based algorithms are effective for imbalanced datasets.

Fig 13. Complex and noncomplex areas in real datasets.

https://doi.org/10.1371/journal.pone.0288540.g013
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Regarding resampling methods, filtering methods obtained the top rankings, regardless of the

dataset complexity. The combinations of RF+SMOTE-IPF and RF+NRSBoundary ranked the

highest in all cases.

In complex cases, undersampling methods obtained relatively lower ranks, whereas filtering

methods obtained higher ranks. This result was consistent with that of the simulation study. In

Table 4, there is no undersampling method in the top 10 combinations, and in Table 5, there is

one undersampling method that ranks ninth. Among the filtering methods, SMOTE-TL was

suitable when F3 was high and SMOTE-PSO was suitable when N2 was high.

The ranks of undersampling methods were relatively high for noncomplex cases compared

to complex cases. When N2 was low, the combinations of ALL KNN with RF and DT ranked

high. However, even when the complexities were low, the filtering methods ranked high. Spe-

cifically, RF+SMOTE-FRST-2T and RF+DSRBF obtained high average ranks for noncomplex

cases.

From these tables, we can observe that it is unusual for oversampling methods to rank high

in both complex and noncomplex cases. However, oversampling methods with different

Table 4. Top 10 combinations for complex and noncomplex datasets obtained using F3.

Complex Noncomplex

Resampling Classifier Average

Rank

Resampling Classifier Average Rank

1 SMOTE-PSO DT 35.92 SMOTE-IPF RF 33.63

2 SMOTE DT 38.08 SMOTE-FRST-2T RF 34.90

3 NRAS DT 39.10 NRSBoundary RF 36.13

4 SMOTE-TL RF 39.12 DSRBF RF 40.04

5 SMOTE-IPF RF 39.66 SMOTE-RSB* RF 40.65

6 Random Oversampling DT 40.16 NRAS RF 41.42

7 ADASYN DT 40.36 NCR RF 42.94

8 SMOTE-TL DT 40.52 SMOTE-PSO RF 43.19

9 AMSCO DT 42.44 SMOTE RF 43.63

10 NRSBoundary RF 42.56 Borderline SMOTE RF 43.96

Light gray: Undersampling; dark gray: Oversampling; non-colored: Filtering. Of the 140 combinations, only the top 10 combinations are listed.

https://doi.org/10.1371/journal.pone.0288540.t004

Table 5. Top 10 combinations for complex and noncomplex datasets obtained using N2.

Complex Noncomplex

Resampling Classifier Average

Rank

Resampling Classifier Average Rank

1 SMOTE-TL RF 35.00 SMOTE-IPF RF 30.13

2 SMOTE-IPF RF 36.43 NRSBoundary RF 35.69

3 SMOTE-RSB* RF 37.00 DSRBF RF 36.56

4 DSRBF RF 38.64 ALL KNN RF 39.83

5 SMOTE-FRST 2T RF 41.00 SMOTE-FRST 2T RF 40.33

6 NRSBoundary RF 43.59 SMOTE-TL RF 41.85

7 SMOTE-PSO DT 45.16 SMOTE RF 42.92

8 SMOTE-PSO RF 46.84 SVM SMOTE RF 43.13

9 NCR RF 46.91 none RF 43.94

10 SMOTE DT 46.93 ALL KNN DT 44.21

Light gray: Undersampling; Dark gray: Oversampling; non-colored: Filtering; none: No resampling. Of the 140 combinations, only the top 10 combinations are listed.

https://doi.org/10.1371/journal.pone.0288540.t005
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features were selected based on their complexity. In the case of complex datasets, algorithms

that do not control the region to be oversampled ranked high, whereas in the case of noncom-

plex datasets, those that control the region ranked high.

6. Discussion

The objective of this study was to provide an optimal resampling method for complex datasets.

In several studies, oversampling methods have resulted in poor classification for imbalanced

datasets. This study suggested two alternative approaches for overcoming this problem for

complex datasets.

Through various simulation scenarios, we observed that applying oversampling methods

resulted in poor overall performance. Therefore, we suggest that an undersampling or filtering

method should be applied instead. In the case of noncomplex datasets, undersampling was found

to be optimal. However, performance varied according to the degree of imbalance. In the case of

complex datasets, applying a filtering method to delete misallocated examples was optimal.

Based on real data analysis, the best combinations of classifiers and resampling methods for

each data characteristic were provided. Overall, the combination of RF and filtering methods

obtained the best performance. SMOTE-IPF+RF and NRSBoundary+RF combinations

obtained high rankings for all four cases. For complex and imbalanced datasets, in addition to

the aforementioned filtering methods, SMOTE-TL and SMOTE-PSO obtained high rankings

when they were combined with tree-based classifiers. For noncomplex and imbalanced data-

sets, the combination of ALL KNN, an undersampling technique, and a tree-based classifier

obtained high performance.

Research on resampling methods has opened new opportunities to improve the classifica-

tion performance for imbalanced datasets. Many researchers have contributed to the develop-

ment of resampling methods owing to their convenience and versatile features. However, the

empirical behavior of resampling methods is highly dependent on the characteristics of the

observed data. We believe that this study can contribute to the improvement of classification

performance for imbalanced and complex datasets and further the development of resampling

methods.
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