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Abstract

Background Early detection and management of sarcopenia is of clinical importance. We aimed to develop a chest X-
ray-based deep learning model to predict presence of sarcopenia.
Methods Data of participants who visited osteoporosis clinic at Severance Hospital, Seoul, South Korea, between
January 2020 and June 2021 were used as derivation cohort as split to train, validation and test set (65:15:20). A
community-based older adults cohort (KURE) was used as external test set. Sarcopenia was defined based on Asian
Working Group 2019 guideline. A deep learning model was trained to predict appendicular lean mass (ALM),
handgrip strength (HGS) and chair rise test performance from chest X-ray images; then the machine learning model
(SARC-CXR score) was built using the age, sex, body mass index and chest X-ray predicted muscle parameters along
with estimation uncertainty values.
Results Mean age of the derivation cohort (n = 926; women n = 700, 76%; sarcopenia n = 141, 15%) and the exter-
nal test (n = 149; women n = 95, 64%; sarcopenia n = 18, 12%) cohort was 61.4 and 71.6 years, respectively. In the
internal test set (a hold-out set, n = 189, from the derivation cohort) and the external test set (n = 149), the concor-
dance correlation coefficient for ALM prediction was 0.80 and 0.76, with an average difference of 0.18 ± 2.71 and
0.21 ± 2.28, respectively. Gradient-weight class activation mapping for deep neural network models to predict ALM
and HGS commonly showed highly weight pixel values at bilateral lung fields and part of the cardiac contour.
SARC-CXR score showed good discriminatory performance for sarcopenia in both internal test set [area under the
receiver-operating characteristics curve (AUROC) 0.813, area under the precision-recall curve (AUPRC) 0.380, sensitiv-
ity 0.844, specificity 0.739, F1-score 0.540] and external test set (AUROC 0.780, AUPRC 0.440, sensitivity 0.611, spec-
ificity 0.855, F1-score 0.458). Among SARC-CXR model features, predicted low ALM from chest X-ray was the most im-
portant predictor of sarcopenia based on SHapley Additive exPlanations values. Higher estimation uncertainty of HGS
contributed to elevate the predicted risk of sarcopenia. In internal test set, SARC-CXR score showed better discrimina-
tory performance than SARC-F score (AUROC 0.813 vs. 0.691, P = 0.029).
Conclusions Chest X-ray-based deep leaning model improved detection of sarcopenia, which merits further
investigation.
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Introduction

Sarcopenia is a progressive, generalized skeletal muscle disor-
der that is characterized by decreased muscle function and
mass. The prevalence of sarcopenia varies from 10% to 40%
depending on the operational definitions in community-
dwelling older adults.1 Individuals with sarcopenia are associ-
ated with twofold elevated pooled risk of mortality according
to a meta-analysis using 57 studies with 42 108 participants,
independent of population and sarcopenia definitions.2 Sar-
copenia also predisposes individuals to elevated risk of falls,
osteoporosis, fractures and disability.3–5 Given the substantial
burden of sarcopenia, current clinical practice guidelines em-
phasize the importance of the case-finding steps, including
the SARC-F questionnaire to detect individuals at high risk
of sarcopenia.6,7 However, sarcopenia often remains
underdetected in routine clinical practice, which suggests
the need for an effective and pragmatic opportunistic screen-
ing strategy to improve sarcopenia detection.

Chest radiography is one of the most frequently and widely
used diagnostic imaging modalities that accounts for about
one-quarter of the annual total number of diagnostic imaging
procedures in developed countries.8 Recent progress in deep
neural network algorithms has enabled the quantification of
clinically useful latent features from chest radiographs, with
promising results in computer-aided diagnosis of lung dis-
ease, mortality prediction and opportunistic screening of
metabolic diseases such as osteoporosis.9–11 Nonetheless,
limited explainability and robustness of these artificial intelli-
gence approaches has challenged active applications.

In this study, we aimed to develop an explainable artificial
intelligence model, called SARC-CXR (chest X-ray), using chest
radiographs and basic clinical parameters to predict sarcope-

nia, and to validate the model using the community-based
prospective cohort.

Methods

Study subjects

Derivation set (hospital-based osteoporosis clinic cohort)
The patients who visited the osteoporosis clinic at Severance
Hospital, Seoul, South Korea, between January 2020 to June
2021 were screened (Figure 1). A total of 1076 patients
underwent chest X-ray scans within 3 months from the visit
date to the osteoporosis clinic for various reasons including
routine health examinations, evaluation for related symp-
toms or follow-up for underlying cardiopulmonary diseases.
After excluding individuals with age under 40 (n = 58) or
those who did not undergo any muscle function measure-
ments (n = 92), 926 patients remained in the derivation co-
hort. To build train, validation and internal test set, we ap-
plied commonly recommended 80:20 (20 for test set) split
ratio.12 Within the remaining 80% dataset, we applied same
ratio to split train and validation set, which yielded 65% train
set and 15% validation set. The presence of osteoporosis,
previous fractures, hypertension and diabetes was defined
as the presence of related diagnosis codes and medication
prescriptions in the electronic health records for each disease
in the derivation set. The SARC-F questionnaire score was col-
lected for all subjects in the derivation cohort.13

This study was approved by the Institutional Review Board
of Severance Hospital (IRB No. 4-2021-1466).

Figure 1 Study flow.
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External test set (community-based prospective cohort)
To test the model performance in an external setting, we
used a subset of a prospective community-based cohort
dataset. Briefly, the Korean Urban Rural Elderly (KURE) cohort
was built to investigate newly emerging risk factors in
community-dwelling Korean older adults, mainly related to
cardiovascular and musculoskeletal disorders.14,15 Baseline
recruitment for the cohort was performed between 2012
and 2015 (n = 3517), and all examinations for this cohort
were performed at Severance Hospital with individual writ-
ten permission (IRB No. 4-2012-0172). Among them, chest
X-ray images are available for 298 patients within 3 months
from cohort entry (n = 298; Figure 1). After excluding indi-
viduals without complete ALM data and muscle function as-
sessment at the cohort entry, data of 149 individuals were
analysed as the final external test set. The presence of oste-
oporosis, previous fractures, hypertension and diabetes was
defined as any history of physician-made diagnosis of each
disease with current medication use obtained from an
interviewer-assisted questionnaire according to the cohort
assessment protocol.

Sarcopenia assessment

The presence of sarcopenia was defined according to the
2019 AWGS consensus update.7 ALM was estimated using

multi-frequency BIA (InBody 720, Biospace Co., Ltd., Seoul,
Korea), measuring the impedance with frequencies of 1, 5,
50, 250 and 500 kHz and 1 MHz at five locations—the right
arm, left arm, trunk, right leg and left leg—in both the deriva-
tion set and external test set.14 As muscle function assess-
ments, HGS (testing twice for both hands using a handheld
dynamometer and then selecting the highest force value in
kilograms) and chair rise test (CRT) performance (measuring
time to perform five repetitions) were measured using the
same digital equipment (Leonardo Mechanography Ground
Reaction Force Platform; Leonardo software version 4.4,
Novotec Medical GmbH, Pforzheim, Germany) in both
cohorts.15 Sarcopenia was defined as the presence of both
low muscle function [low HGS (men, below 28 kg; women,
below 18 kg) or low CRT performance (12 s or longer)] and
low muscle mass (low ALM index, under 7.0 kg/m2 in men
and under 5.7 kg/m2 in women).

Model architecture

To develop a deep learning-based model using chest radio-
graphs to predict sarcopenia, we used a two-step approach
(Figure 2). In step 1, the deep neural network algorithm
was trained to develop models to predict ALM, HGS and
CRT performance. To quantify predictive uncertainty as well
as values related with sarcopenia, we employed deep en-

Figure 2 Architecture of the sarcopenia prediction model using chest X-ray images with clinical variables.
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sembles. Unlike typical machine learning models, which
output a single prediction value, deep ensembles yield
two values, corresponding to predicted values (μ) and var-
iance or estimates for predictive uncertainty (σ).16 Three
deep ensembles were developed to predict ALM, HGS and
CRT performance and quantify the degrees of uncertainty.
In step 2, machine learning models to predict the presence
of sarcopenia were developed using the predicted muscle
parameters and estimates for uncertainty derived from
step 1 along with basic clinical variables including age,
sex and BMI.

Step 1: Deep neural network to predict muscle parameters
from chest radiograph
For each patient’s raw Digital Imaging and Communications
in Medicine (DICOM) image, pixel values were extracted
using the PYDICOM library in Python. Images were resized
to 224 × 224; then, the contrast-limited adaptive histogram
equalization library was applied to increase the contrast of
the original image with histogram equalization. A VGG16
model pre-trained in ImageNet was used as the main
algorithm.17 Feature maps were flattened using global
average pooling and dense layers. Data augmentation was
performed on the training set using random shift, rotation,
horizontal flip, zoom, brightness and random multiplication
five times. For the final training, we ran the step 1 model
for 100 epochs with early stopping (stop training when
a monitored metric has stopped improving to avoid
overfitting; patience = 15), batch size 32 (total number of
training examples present in a single batch) and cosine an-
nealing learning rate (set learning rate of each parameter
group using a cosine annealing schedule to improve model
performance). The Adam optimizer (a stochastic gradient de-
scent method that is based on adaptive estimation of
first-order and second-order moments) was used to mini-
mize the Gaussian loss function (negative log-likelihood loss
following Gaussian distributions).16 A deep ensemble model
approach from a previous study was implemented to mea-
sure the degree of uncertainty of predicted values (σ).16 A
higher σ value indicates higher uncertainty of the predicted
value, whereas a lower σ value indicates that the model is
more confident regarding the predicted results. Model per-
formance was assessed using R2 values. A GRAD-CAM (gradi-
ent-weighted class activation mapping) heat map (a localized
map highlighting the important regions in the image for
predicting the outcome to enhance model interpretability)
was used to visualize which parts of the chest radiograph
are most important for the prediction of muscle
parameters.18

Step 2: Machine learning model to predict sarcopenia from
muscle parameters
In step 2, to determine an optimal sarcopenia prediction
model by aggregating predicted ALM, HGS and CRT perfor-

mance values from the chest radiograph along with basic clin-
ical features [age, sex, body mass index (BMI)], prediction
models were developed using various machine learning algo-
rithms, including random forest, regularized logistic regres-
sion, extreme gradient boosting, extra tree classifier and light
gradient boosting machine (Figure 2). The estimated uncer-
tainty (σ) for each muscle parameter prediction in the deep
learning models was also used in the models. Among the five
different algorithms trained and fine-tuned with the three-
fold five-repeat cross-validation in the training set, the
best-performing model, random forest, was selected accord-
ing to model performance metrics (mainly AUROC and F1
score) in the internal test set (a hold-out set of the derivation
cohort). Model calibration was performed using sigmoid
methods.

Statistical analysis

Data were presented as mean ± standard deviation, median
(interquartile range) or number (%) as appropriate. Categori-
cal variables were compared using the independent
two-sample t-test, Wilcoxon rank-sum test or chi-square test
between groups with or without sarcopenia. The concor-
dance correlation coefficient (Lin’s concordance coefficient)
and Bland–Altman plot were used to assess the agreement
between predicted muscle parameters from step 1 and refer-
ence values.19,20 To derive the 95% confidence interval of the
step 2 model performance metrics in the internal and exter-
nal test sets, the bootstrap method with 2000 repetitions
was used. A calibration plot was created using the
PMCALPLOT command of STATA software version 16.1
(StataCorp, College Station, TX, USA). In the internal test
set, the AUROC of the chest radiograph-based machine learn-
ing model score and SARC-F were compared using the
DeLong method.21 Statistical significance was set at
two-sided P < 0.05. The reporting of this study adheres to
the transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) reporting
guideline.22

Results

Clinical characteristics

The mean age of the derivation cohort (n = 926, women
76%) and the external test cohort (n = 149, women 64%)
was 61.4 and 71.6 years, respectively (Table 1). The preva-
lence of sarcopenia was 15% in the derivation set and
12% in the external test set. In both cohorts, individuals
with sarcopenia were older and had lower BMI, handgrip
strength (HGS), CRT performance and appendicular lean
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mass (ALM) index and higher prevalence of osteoporosis
(P < 0.05 for all).

Chest radiograph-based prediction of muscle
parameters

In the internal test set (a hold-out set, n = 189, from the der-
ivation cohort) and the external test set (n = 149), the concor-
dance correlation coefficient (rho) for ALM prediction was
0.80 and 0.76, with an average difference of 0.18 ± 2.71
and 0.21 ± 2.28, respectively, in the Bland–Altman plot
(Figure 3; Figure S1). Compared with ALM, the predicted
HGS and CRT performance values showed weak to modest
concordance correlation with observed values in the internal
test set (0.70 for HGS, 0.31 for CRT) and external test set
(0.50 for HGS, 0.11 for CRT). For the ALM, HGS and CRT pa-
rameters, most observation values (ground truth) were
within the estimation uncertainty boundaries for given pre-
dicted values (Figure 3).

Class activation map for deep neural network
models

The gradient-weight class activation mapping (GRAD-CAM)
for deep neural network models to predict muscle parame-
ters (ALM, HGS and CRT performance) is shown in Figure 4.
In both men and women with or without sarcopenia, predic-
tion models for ALM and HGS had highly weighted pixel
values at bilateral lung lesions and part of the cardiac contour
in common. However, GRAD-CAM for the CRT performance
prediction model showed a distinctive pattern where pixel

values at upper abdomen lesions contributed most to the
prediction of CRT performance.

Performance of sarcopenia prediction models

On the basis of muscle parameters derived from deep neural
network models using chest radiographs, machine learning
models to predict the presence of sarcopenia were devel-
oped and tested. Among all trained machine learning models
(Table S1), the random forest model [area under the
receiver-operating characteristics curve (AUROC) 0.813 in
the internal test set] was chosen as the best representative
model owing to its highest F1 score (0.540) for the internal
test set (Table 2; sensitivity 0.844, specificity 0.739). Similar
model performance was observed in the external test set
(AUROC 0.780, F1 score 0.458, sensitivity 0.611, specificity
0.855). When the model was re-trained using individuals with
age older than 60 according to AWGS 2019 age threshold in
train set, performance of retrained model was similar to the
original model in internal test set (AUROC 0.777 vs. 0.813,
P = 0.137) or inferior (AUROC 0.708 vs. 0.780, P = 0.018) in
external set (Figure S2). The score derived from the represen-
tative model (SARC-CXR score) showed good calibration
in both the internal and external test sets (Figure S3; Brier
score 0.124 and 0.098, respectively). The SHapley Additive
exPlanations (SHAP) summary plot for the sarcopenia
prediction model revealed that lower predicted ALM values
based on chest X-ray scans were associated with higher risk
of sarcopenia with the highest feature importance, followed
by BMI, lower predicted HGS and lower predicted CRT perfor-
mance (longer time to complete the test; Figure 5).
Higher estimation uncertainty (estimation uncertainty/

Table 1 Clinical characteristics of study subjects

Derivation set External test set

Sarcopenia
(n = 141, 15%)

No sarcopenia
(n = 785, 85%) P value

Sarcopenia
(n = 18, 12%)

No sarcopenia
(n = 131, 88%) P value

Age, year 65.6 ± 11.5 60.7 ± 10.2 <0.001 74.7 ± 6.2 71.2 ± 4.0 0.001
Women, n (%) 116 (82) 584 (74) 0.045 15 (83) 80 (61) 0.065
BMI, kg/m2 20.8 ± 2.9 23.2 ± 3.6 <0.001 16.6 ± 1.5 19.3 ± 2.6 <0.001
HGS, kg 17.7 ± 4.4 25.1 ± 7.3 <0.001 21.5 ± 4.5 27.1 ± 6.7 <0.001
Low HGS, n (%) 110 (78) 123 (16) <0.001 7 (39) 11 (8) <0.002
CRT, sec 12.7 [10.3–14.9] 9.1 [7.4–11.1] <0.001 13.0 [12.1–14.8] 9.3 [7.8–12.1] <0.001
Low CRT, n (%) 83 (59) 140 (18) <0.001 15 (83) 34 (26) <0.001
Low muscle function, n (%) 141 (100) 214 (27) <0.001 18 (100) 40 (31) <0.001
ALMi, kg/m2 5.4 ± 0.6 6.6 ± 1.2 <0.001 5.5 ± 0.6 6.8 ± 0.8 <0.001
Low ALMi, n (%) 141 (100) 145 (9) <0.001 18 (100) 20 (15) <0.001
Osteoporosis, n (%)a 109 (77) 467 (59) <0.001 10 (55) 39 (30) 0.029
Previous fracture, n (%) 16 (11) 42 (5) 0.007 6 (33) 23 (18) 0.113
Hypertensiona, n (%) 76 (54) 398 (51) 0.484 5 (28) 36 (27) 0.979
Diabetesa, n (%) 38 (27) 192 (24) 0.532 2 (11) 24 (18) 0.450

ALMi, appendicular lean mass index; BMI, body mass index; CRT, chair rise test; HGS, handgrip strength.
aDiagnosis of osteoporosis, hypertension and diabetes mellitus was defined as presence of diagnosis codes and corresponding medication
use for each disease in derivation set.
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predicted value, %) for HGS based on chest X-ray scans was
associated with higher risk of sarcopenia in the prediction
model, with relatively lower feature importance than predic-
tion values.

The SARC-F score was available for the internal test
set. When the SARC-CXR score performance was compared
with that of the SARC-F questionnaire, the SARC-CXR score
showed better discriminatory performance compared with
SARC-F (AUROC 0.813 vs. 0.691, P = 0.029; Figure 6).

Discussion

For sarcopenia prediction, we developed the SARC-CXR
ensemble machine learning model equipped with
uncertainty-aware deep learning for predicting muscle mass
and function from chest radiographs. The model’s perfor-
mance was externally validated in a community-based pro-
spective cohort, for which the AUROC and F1 score were
0.773 and 0.444, respectively. The SHAP value revealed that

Figure 3 Prediction of appendicular lean mass and muscle function measurements based on chest X-ray scans using deep learning algorithm.
Upper panel: Concordance correlation plot between ground truth and predicted values for appendicular lean mass (ALM), handgrip strength
(HGS) and chair rise test (CRT). Lower panel: For ALM, HGS and CRT performance, data were plotted after standardization using mean and stan-
dard deviation values from the training set in the derivation cohort. Red dots indicate predicted values. Green dots indicate observed truth values
corresponding to predicted values. The grey spike plot indicates the estimation uncertainty for a given predicted value.
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the BMI value and deep learning-predicted muscle mass and
function were the important predictors. To our knowledge,
this is the first research attempt to screen for sarcopenia on
the basis of conventional chest radiographs with patients’
baseline demographics. The results demonstrated the poten-
tial for opportunistic screening of sarcopenia in broader pa-
tient groups.

Clinical artificial intelligence without explainability may
predict outcomes depending on confounding variables. Previ-
ously, Agniel et al. showed that the presence of a laboratory
test order or timing had a much stronger association with sur-
vival than laboratory test results did in the electronic health-
care record data.23 Hence, it would be essential to analyse
the predictors in clinical artificial intelligence to avoid devel-
oping artificial intelligence depending on confounding vari-
ables. In this study, explainability was assessed vigorously.

Figure 4 Gradient-weight class activation mapping for deep neural network models to predict components of sarcopenia including appendicular lean
mass, handgrip strength and chair rise test performance. Red regions indicate regions with high importance pixel values for the classification of sar-
copenia in the deep neural network model. F, woman; M, man.

Table 2 Discriminatory performance of sarcopenia prediction model
using chest X-ray predicted skeletal muscle parameters and clinical
variables

Performance
metrics

Internal
test set 95% CIa

External
test set 95% CIa

AUROC 0.813 0.746–0.878 0.780 0.679–0.873
AUPRC 0.380 0.263–0.566 0.440 0.245–0.628
F1 score 0.540 0.422–0.646 0.458 0.301–0.600
MCC 0.455 0.335–0.573 0.379 0.207–0.533
Sensitivity 0.844 0.719–0.963 0.611 0.412–0.808
Specificity 0.739 0.671–0.805 0.855 0.804–0.906
PPV 0.397 0.288–0.514 0.367 0.222–0.517
NPV 0.959 0.921–0.986 0.941 0.903–0.975
Brier score 0.124 0.093–0.157 0.098 0.077–0.121

AUROC, area under the receiver-operating characteristics curve;
AURPC, area under the precision-recall curve; MCC, Matthews cor-
relation coefficient; NPV, negative predictive value; PPV, positive
predictive value.
a95% CI was calculated using bootstrapping method.

424 J. Ryu et al.

Journal of Cachexia, Sarcopenia and Muscle 2023; 14: 418–428
DOI: 10.1002/jcsm.13144



We found that the predicted ALM, HGS and CRT performance
derived from chest radiographs using the deep neural net-
work model, along with estimation uncertainties for each
predicted value, served as strong predictors in the final
model, SARC-CXR.

Until now, the quantification and communication of uncer-
tainty in medical machine learning have been relatively
neglected. Kompa et al. argued that medical machine learn-
ing should be geared with the ability to say ‘I don’t know’
on the basis of predictive uncertainty estimates to flag physi-
cians for a second opinion.24 In this study, deep ensembles
were leveraged to estimate the uncertainty of predicted sur-
rogate markers of sarcopenia. Interestingly, the performance

of deep learning models in predicting ALM was good,
whereas the predictive performance for muscle function, par-
ticularly for the CRT performance, was not competent. These
findings suggest that chest X-ray scans provide relevant infor-
mation for skeletal muscle quantity, but the inference for
muscle function based on chest X-ray images may require fur-
ther input from other features to enhance the prediction ac-
curacy. Given the possibility of predictive uncertainty as out-
come predictors, we utilized estimation uncertainty values
for muscle parameters obtained from the chest X-ray-based
deep learning model along with predicted values. Notably,
the relatively higher degree of estimation uncertainty, partic-
ularly for muscle function parameters, substantially contrib-

Figure 5 SHapley Additive exPlanations (SHAP) summary plot to visualize the relative additive contribution of each feature for the prediction of sar-
copenia in the final machine learning model (SARC-CXR). ALM, appendicular lean mass; BMI, body mass index; CRT, chair rise test; CXR, chest X-ray;
HGS, handgrip strength.

Figure 6 Comparison of discriminatory performance for sarcopenia between chest x-ray based machine learning prediction score (SARC-CXR) and
SARC-F in internal test set (AUROC 0.813 vs. 0.691, P = 0.029). AUROC, area under the receiver-operating characteristics curve; CXR, chest X-ray;
ML, machine learning.
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uted to elevating the predicted risk of sarcopenia in the
SARC-CXR model.

A systematic review of prediction models for the diagnosis
and prognosis of coronavirus disease 2019 (COVID-19) found
that all 232 reviewed models had high or unclear risk of bias,
mainly because of non-representative selection of control
patients.25 We validated the SARC-CXR model externally
using a community-based prospective registry with the as-
sessment for calibration. We believe that the robust perfor-
mance of the SARC-CXR model in the external
community-based cohort set observed in this study can pro-
vide a proof of concept to design further prospective studies
for testing the feasibility of sarcopenia screening based on
chest radiographs. The sample size of external test subset
from KURE cohort was relatively small limited to the subsam-
ples with available chest X-ray scans. To overcome this limita-
tion, we applied bootstrapping method to address potential
uncertainty from the relatively small sample size as possible
by calculating 95% confidence interval of model performance
metrics. Findings from this study need to be validated in fur-
ther prospective studies with larger sample size.

Sarcopenia is associated with higher risk of falls, fractures,
loss of independence and mortality.6,7 To diagnose sarcope-
nia, current clinical guidelines endorse a stepwise approach
that begins with case finding based on a simple questionnaire
such as SARC-F, followed by measurement of muscle function
and mass as subsequent steps.6,7 Therefore, case finding for
sarcopenia is the gate-keeping step to diagnose sarcopenia.
Although the SARC-F questionnaire, a five-item self-report
questionnaire, is a simple, inexpensive and widely accepted
method to identify cases of sarcopenia with high specificity,
its low-to-moderate sensitivity to detect sarcopenia remains
a challenge. Given the significant improvement of discrimina-
tory ability by applying the SARC-CXR score compared with
the SARC-F as observed in this study, and the wide availability
of chest X-ray scans in various clinical settings, it is conceiv-
able that chest X-ray-scan-based opportunistic screening
may improve sarcopenia detection. Variation of SARC-F with
simple measurement such as calf circumference (SARC-CalF)
was proposed to have improved discriminatory ability com-
pared to SARC-F. In the study by Bahat et al., performance
of SARC-CalF (SARC-F + calf circumference with 33 cm thresh-
old) ranged from 0.68 to 0.83 for AUROC, 0.15 to 0.50 for
sensitivity and 0.90 to 0.98 for specificity depending on the
definitions of sarcopenia.26 Although we were not able to di-
rectly compare the performance of SARC-CXR and SARC-CalF
due to lack of calf circumference data, we observed similar
AUROC of SARC-CXR (0.78–0.81) compared with that of
SARC-CalF reported in prior literature, with numerically
higher sensitivity ranging from 0.61 to 0.84 by SARC-CXR
compared with SARC-CalF. Considering that the purpose of
the models is to screen individuals at the risk of sarcopenia,
better sensitivity (recall) of SARC-CXR model might have ad-
vantage for screening sarcopenia; this needs to be tested fur-

ther using direct comparison of AUPRC or F1-score between
SARC-F, SARC-CalF and SARC-CXR scores.

In this study, GRAD-CAM revealed characteristic patterns
of regional feature importance for ALM, HGS and CRT. For
the prediction of ALM and HGS, the model focused on the bi-
lateral lung lesion and cardiac contour. Prior studies showed
that cardiopulmonary function is positively associated with
fat-free mass and HGS in individuals without apparent lung
disease.27–29 Muscle wasting was known also an independent
predictor of survival in patients with heart failure.30 These
findings and GRAD-CAM results suggest that model might at
least partly reflect the association between cardiopulmonary
function and muscle mass and HGS, which was indirectly cap-
tured by lung size and cardiac contour. Meanwhile, the model
mainly utilized pixel values around upper abdomen to esti-
mate CRT performance. Sit-to-stand motion in CRT requires
not only lower extremity power but also the balance and co-
ordination of whole body that largely depends on core mus-
cles and hip flexors such as psoas muscle.31 It is conceivable
that silhouette of core muscles visualized at upper abdomen
area was utilized to predict CRT performance, although this
hypothesis needs to be further tested.

This study has several limitations. Although bioimpedance
analysis (BIA) is a widely used method to measure ALM, inac-
curacy of BIA-estimated ALM values in patients with dehydra-
tion or morbid obesity was reported compared with other
clinically available measurements such as dual-energy X-ray
absorptiometry testing. In this study, we used the definition
of sarcopenia from the Asian Working Group for Sarcopenia
(AWGS) 2019 guideline. Although the harmonization of defi-
nitions for sarcopenia has not yet reached a consensus, we
believe that the two-step approach used in our study (predic-
tion of muscle mass and function parameters as continuous
values from chest radiographs using deep neural network re-
gression as step 1, followed by the construction of a machine
learning model to classify sarcopenia using the predicted
muscle parameters along with basic clinical parameters as
step 2) would provide room for improvement to develop bet-
ter prediction models that fit various definitions of sarcope-
nia. The SARC-CXR model has not been validated for patients
other than those of Korean ethnicity. Applicability of
SARC-CXR model can be limited in low-resource setting with
barriers to access imaging modalities, although accessibility
to plain X-ray is relatively better than other modalities such
as computed tomography or magnetic resonance.32 As ob-
served in high-priority diseases such as tuberculosis, technical
solutions such as promotion for free access to artificial intel-
ligence software along with regulatory support have poten-
tial to facilitate the utilization of artificial intelligence system
in low-resource setting.32 As we investigated data of appar-
ently healthy, ambulatory individuals in both derivation and
external test sets, chest X-ray scans from individuals with
acute medical conditions such as pneumonia and pleural or
pericardial effusion were not included in this study. Applica-
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bility of current model to inpatient setting needs to be vali-
dated further.

In conclusion, the chest X-ray-based sarcopenia prediction
score, SARC-CXR, improved the detection of sarcopenia,
which merits further validation.
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