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Summary
Background Early diagnosis and appropriate treatment are essential in meningitis and encephalitis management. We
aimed to implement and verify an artificial intelligence (AI) model for early aetiological determination of patients
with encephalitis and meningitis, and identify important variables in the classification process.

Methods In this retrospective observational study, patients older than 18 years old with meningitis or encephalitis at
two centres in South Korea were enrolled for development (n = 283) and external validation (n = 220) of AI models,
respectively. Their clinical variables within 24 h after admission were used for the multi-classification of four
aetiologies including autoimmunity, bacteria, virus, and tuberculosis. The aetiology was determined based on the
laboratory test results of cerebrospinal fluid conducted during hospitalization. Model performance was assessed
using classification metrics, including the area under the receiver operating characteristic curve (AUROC), recall,
precision, accuracy, and F1 score. Comparisons were performed between the AI model and three clinicians with
varying neurology experience. Several techniques (eg, Shapley values, F score, permutation feature importance,
and local interpretable model-agnostic explanations weights) were used for the explainability of the AI model.

Findings Between January 1, 2006, and June 30, 2021, 283 patients were enrolled in the training/test dataset. An
ensemble model with extreme gradient boosting and TabNet showed the best performance among the eight AI
models with various settings in the external validation dataset (n = 220); accuracy, 0.8909; precision, 0.8987; recall,
0.8909; F1 score, 0.8948; AUROC, 0.9163. The AI model outperformed all clinicians who achieved a maximum F1
score of 0.7582, by demonstrating a performance of F1 score greater than 0.9264.

Interpretation This is the first multiclass classification study for the early determination of the aetiology of meningitis
and encephalitis based on the initial 24-h data using an AI model, which showed high performance metrics. Future
studies can improve upon this model by securing and inputting time-series variables and setting various features
about patients, and including a survival analysis for prognosis prediction.
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Introduction
Meningitis and encephalitis are inflammatory condi-
tions involving the membranes and parenchyma of
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the central nervous system (CNS) and are associated
with high fatality rates and lifelong disability, thus
demanding improved diagnosis and treatment.1 The
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Research in context

Evidence before this study
We searched PubMed and Web of Science with the terms
“((meningitis) OR (encephalitis) OR (meningoencephalitis))
AND ((machine learning) OR (deep learning))” for papers
published between database inception and March 31, 2023,
with no language restrictions. We found that there were
several previous papers in which performed binary
classification with artificial intelligence (AI) model had been
performed, but only one paper proposed a multi-classification
model. This multi-classification model has a key limitation,
mentioned in the paper, that it cannot discriminate
completely between all the aetiologies. Other related studies
aimed to classify only two types of aetiology. The highest
performing model showed an AUC of 0.95 and was able to
distinguish between aseptic meningitis and bacterial
meningitis only. We aimed to advance upon these previous
models with our multi-classification model.

Added value of this study
To the best of our knowledge, to date, there has been no
study that simultaneously distinguishes various aetiologies of

encephalitis and meningitis. Our multi-classification AI model
can predict the aetiology with initial 24 h hospitalisation data.
We tested it in internal test set and external validation set
and compared it with clinicians including three clinicians,
including two neurologists with varying experience.

Implications of all the available evidence
Our research shows that our multi-classification AI model has
excellent ability to predict the aetiology of encephalitis and
meningitis in various evaluation metrics, and its diagnostic
performance was equivalent to, or better than, that of a
senior neurologist in our comparison. The results suggest that
the application of AI could help to determine the aetiology of
meningitis and encephalitis, thereby potentially enabling early
treatment selection. In future studies, it is expected that a
better prediction model can be created by securing and
inputting time-series variables and setting various features for
patients.
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development of antibiotics, antiviral agents, anti-
fungal agents, and vaccines has improved the mor-
tality rates in cases of infectious aetiology, and the
elucidation of mechanisms of autoimmune encepha-
litis has enabled the treatment of encephalitis of un-
known origin.2 Nevertheless, the aetiology of
meningitis and encephalitis varies from infectious
agents, including viruses, bacteria, mycobacteria,
fungi, and parasites, to the autoimmune process,
rendering early aetiologic diagnosis and rapid treat-
ment a challenge, ultimately leading to a poor
prognosis.2,3

Aetiologic classification is confirmed based on cul-
ture and antibody test results and requires time and
specific instrumentation and facilities. Thus, re-
searchers attempted classification by studying the dif-
ferences in the initial clinical presentation, brain
imaging features, electroencephalography (EEG), and
cerebrospinal fluid (CSF) findings among cases with
different aetiologies.4–7 However, early treatment is often
empirical, based on the clinician’s experience, which
may lead to side effects such as acute kidney injury and
liver damage.8 Several studies using artificial intelli-
gence (AI) have been conducted for the aetiologic
diagnosis of meningitis; however, there are limitations,
such as low performance9 or performing only binary
classification.7,10–13

In this study, we aimed to develop an AI classifica-
tion model for early detection based on the initial 24-h
data of patients with encephalitis and meningitis,
verify it with an external dataset, compare the perfor-
mance of the model with clinicians’ judgment, and
identify the important variables in the classification
process.
Methods
Ethics
This study was approved by the Yonsei University
Health System, Institutional Review Board (Y-2021-
0960). Due to the retrospective nature and use of de-
identified data, this study was approved with waiver of
the requirement to obtain informed consent by the
Yonsei University Health System, Institutional Review
Board (Y-2021-0960). The study was performed in
accordance with approved guidelines and regulations for
medical research expressed in the Declaration of
Helsinki.

Study design
We performed a retrospective observational study at
Severance Hospital in Seoul, South Korea. Patients were
selected from the Severance Clinical Research Analysis
Portal, which offered anonymised patient data from
Severance Hospital to researchers for privacy preserva-
tion. Patients admitted to Sinchon Severance Hospital
between January 2006 and June 2021 were included in
this study for the train and test dataset. Patients who
met the following inclusion criteria were enrolled: (1)
clinically diagnosed with meningitis or encephalitis, (2)
older than 18 years, and (3) CSF samples obtained
through a lumbar puncture. Patients clinically diag-
nosed with meningitis or encephalitis were extracted
based on International Classification of Diseases (ICD)-
www.thelancet.com Vol 61 July, 2023
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10 codes listed in Appendix 1 of Supplementary mate-
rials, and the patient selection flow chart can be found in
Fig. 1. We developed AI models that predicted aetiology
(autoimmunity, bacteria, tuberculosis, and virus) based
on the variables available during the first 24 h of hos-
pitalisation from patients with confirmed cause. The
aetiology was determined based on the laboratory test
results of cerebrospinal fluid conducted during hospi-
talization. To verify the generalisability of AI model, we
applied the model trained on patients with a clear aeti-
ology to patients whose pathogen was not clearly iden-
tified through laboratory tests to predict their suspected
cause. Their suspected cause was determined by the
consensus of three neurologists based on the electronic
medical records including suspected diagnosis and
treatment information documented by the attending
physician at the time of hospitalisation, as well as
various examination results. Patients from Gangnam
Severance Hospital between January 2008 and June
2022 were enrolled using the same eligibility criteria for
the external validation dataset.

The performance of the AI model was compared
with the clinical judgment of clinicians. We selected
three doctors from those working at Severance Hospital
who had diverse levels of neurological experience and
were capable of inferring causes based on patient data
including one doctor who had not been trained in
neurology and two neurologists (one with 5 years and
the other with 15 years of clinical experience). The test
set was constructed with a sample size of 100, consisting
of 56 patients from the internal dataset (Sinchon
Severance Hospital) and 44 from the external dataset
(Gangnam Severance Hospital). Three doctors were
requested to predict four aetiologies based on clinical
and laboratory data collected retrospectively within 24 h
of admission and to check all the variables that served as
evidence for their prediction for each patient. These data
were presented in the form of a tabular record.

Data pre-processing and feature selection
We collected data regarding baseline characteristics at
admission, including age, sex, height, weight, and
mental status. Additionally, medical history including
seizures, tuberculosis, and the Charlson comorbidity
index based on ICD-10 codes were collected.14 Data
regarding vital signs such as blood pressure, heart rate,
respiratory rate, and body temperature within 24 h and
results of diagnostic modalities such as brain computed
tomography (CT), chest X-ray (CXR), and EEG were also
collected. Laboratory findings of CSF, blood, and urine
samples were also included in the study (Table 1). The
initial value was selected when there were several
identical test results within the initial 24 h. All numer-
ical variables were normalised by min–max scaling and
used in the process. During the process of collecting
vital signs and calculating the average and maximum
values over 24 h, medically impossible values were
www.thelancet.com Vol 61 July, 2023
excluded based on the clinician’s judgment, as they were
likely due to typographical errors. Missing values of
categorical variables were replaced with −1 and those of
numerical features were replaced with various imputa-
tion techniques in the AI process (Supplementary
Table S1). The percentage of missing values for each
variable can be found in Supplementary Tables S2 and
S3.

In the feature selection process, variables with a
missing value percentage of more than 50% were
excluded. To ensure inter-variable independence, vari-
ables were integrated into one if their Pearson correla-
tion coefficients were higher than 0.8. Additionally,
variables with a variance inflation factor >10 were
eliminated to solve the problem of multicollinearity
(Supplementary Table S4).15 Finally, 82 of the initial 110
variables were selected.

Classification models
We compared the performance of various classification
models by utilising functions provided by the PyCaret
library in Python (Supplementary Table S5). Based on
the results, we adopted Extreme Gradient Boosting
(XGBoost), Random Forest, and Light Gradient Boosting
Machine models, which showed higher performance.
We also applied the Category Boosting model with a
similar structure. K-Nearest Neighbour and Gaussian
Naive Bayes model were also applied because of their
high interpretability.16 Additionally, we applied the Tab-
Net for deep learning and an ensemble model with
machine learning for performance improvement. When
applying TabNet, we duplicated the original data 20
times and proceeded with the learning because training
did not occur due to the small sample size. We checked
the performance by varying the ensemble model
composition ratio differently, and found that the best
performance was achieved by the model composed of
80% XGBoost and 20% TabNet (Supplementary Fig. S1).

We evaluated all models with stratified K-fold cross
validation (K = 2,4,5,10) and found that as the value of K
increased, the training size increased, and overall per-
formance tended to improve (Supplementary Table S6).
Therefore, the final performance comparison of the
models was conducted through 10-fold cross validation
(Supplementary Fig. S2). Regularisation was adapted
(L2 for XGBoost classification), and the model parame-
ters were chosen to reduce model complexity with
Bayesian optimisation. The optimised parameters for
each model are presented in Appendix 2. We used class
weights in all models to handle class imbalance and four
under-sampling techniques including random sam-
pling, Tomek links, condensed nearest neighbour, and
one-sided selection; two over-sampling techniques
including synthetic minority over-sampling technique
(SMOTE) and adaptive synthetic sampling (ADASYN);
and a combination technique called SMOTE-Tomek
links (Supplementary Table S1).17 We stopped the
3
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Fig. 1: Study design and workflow of patient selection. Abbreviation: ICU, Intensive care unit; CSF, Cerebrospinal fluid; EMR, Electronic
medical record; CNS, Central nervous system; PCR, Polymerase chain reaction; XGBoost, Extreme gradient boosting.
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Aetiologies Autoimmune (N = 25) Bacterial (N = 39) Tuberculosis (N = 32) Viral (N = 187) p-valuea

Age 43.9 ± 20.7 56.7 ± 19.0 49.3 ± 18.2 44.5 ± 18.5 0.002

Female sex 14 (56.0%) 14 (35.9%) 16 (50.0%) 89 (47.6%) 0.410

Body mass index 21.8 ± 2.8 22.8 ± 2.6 21.9 ± 2.2 23.2 ± 2.4 0.004

Comorbidities

Charlson comorbidity index 0.6 ± 1.2 1.1 ± 1.5 1.3 ± 1.9 0.6 ± 1.3 0.017

Tuberculosis history 0 (0.0%) 1 (2.6%) 29 (90.6%) 2 (1.1%) <0.001

Seizure 13 (52.0%) 7 (17.9%) 5 (15.6%) 10 (5.3%) <0.001

Abnormal Brain CT 1 (7.7%) 5 (16.1%) 2 (7.1%) 8 (5.4%) 0.229

Abnormal Chest X-ray 3 (12.5%) 8 (20.5%) 7 (21.9%) 16 (9.2%) 0.088

EEG

Abnormal 22 (95.7%) 11 (100.0%) 13 (92.9%) 30 (90.9%) 0.714

Unreactivity 0 (0.0%) 3 (27.3%) 0 (0.0%) 6 (18.2%) 0.027

Slowing 19 (82.6%) 11 (100.0%) 13 (92.9%) 30 (90.9%) 0.423

Epileptiform discharges 5 (21.7%) 2 (18.2%) 0 (0.0%) 5 (15.2%) 0.333

Abnormal mentality 14 (56.0%) 22 (56.4%) 15 (46.9%) 25 (13.4%) <0.001

Vital signs

Mean systolic blood pressure (mmHg) 120.6 ± 15.9 131.8 ± 19.1 132.6 ± 17.6 128.4 ± 15.0 0.022

Mean diastolic blood pressure (mmHg) 71.8 ± 9.4 75.2 ± 9.3 80.1 ± 10.6 76.6 ± 9.1 0.009

Mean heart rate (rate/min) 82.2 ± 13.4 93.2 ± 20.0 83.3 ± 15.6 77.2 ± 12.3 <0.001

Mean respiratory rate (rate/min) 18.8 ± 1.0 19.2 ± 2.7 19.0 ± 2.3 18.5 ± 1.4 0.060

Maximum body temperature (◦C) 37.6 ± 0.5 38.4 ± 0.8 38.0 ± 0.6 37.9 ± 0.6 <0.001

Mean body temperature (◦C) 37.1 ± 0.4 37.4 ± 0.6 37.2 ± 0.6 37.4 ± 0.5 0.031

CSF

WBC count (/μL) 54.0 ± 108.4 1956.8 ± 2962.5 188.9 ± 149.3 254.8 ± 267.7 <0.001

Mononuclear leukocyte ratio 35.3 ± 44.2 20.5 ± 23.3 66.5 ± 36.8 81.3 ± 26.7 <0.001

Polymorphonuclear leukocyte ratio 7.2 ± 19.3 66.7 ± 33.3 17.5 ± 23.9 6.6 ± 17.6 <0.001

Basophil ratio 0.0 ± 0.2 0.1 ± 0.2 0.0 ± 0.2 0.5 ± 1.0 <0.001

Eosinophil ratio 0.2 ± 0.5 0.2 ± 0.7 0.0 ± 0.0 0.3 ± 1.2 0.478

Protein (mg/dL) 53.5 ± 31.1 462.3 ± 397.5 575.1 ± 1302.8 126.7 ± 203.7 <0.001

Glucose (mg/dL) 67.2 ± 20.1 34.5 ± 44.2 38.1 ± 20.1 60.5 ± 16.8 <0.001

CSF/serum glucose ratio 0.6 ± 0.1 0.2 ± 0.2 0.3 ± 0.2 0.5 ± 0.1 <0.001

RBC count >100/μL 1 (4.0%) 15 (38.5%) 3 (9.4%) 17 (9.1%) <0.001

Specific gravity 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 <0.001

Turbidity 0 (0.0%) 27 (69.2%) 8 (25.0%) 31 (16.6%) <0.001

Adenosine deaminase (IU/L) 3.4 ± 3.5 14.0 ± 24.9 21.6 ± 37.0 4.7 ± 4.1 <0.001

Abnormal colour 0 (0.0%) 24 (61.5%) 13 (40.6%) 12 (6.4%) <0.001

High pH 14 (56.0%) 15 (38.5%) 16 (50.0%) 144 (77.0%) <0.001

Cryptococcal antigen 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.6%) 0.926

HSV antibody IgM 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.6%) 0.928

VZV antibody IgM 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.6%) 0.928

Blood

WBC count (109/L) 9.7 ± 4.1 12.5 ± 7.5 8.7 ± 4.5 7.8 ± 3.1 <0.001

Neutrophil ratio 75.1 ± 11.9 85.5 ± 9.9 78.6 ± 11.2 70.7 ± 12.0 <0.001

Monocyte ratio 4.7 ± 2.0 3.4 ± 2.3 5.7 ± 2.5 5.5 ± 2.1 <0.001

Basophil ratio 0.4 ± 0.5 0.2 ± 0.2 0.3 ± 0.2 0.5 ± 0.3 <0.001

Eosinophil ratio 1.5 ± 1.2 0.9 ± 0.9 0.9 ± 1.3 1.6 ± 2.0 0.057

Large unstained cells ratio 1.3 ± 0.7 1.1 ± 0.7 1.4 ± 0.7 2.1 ± 1.2 <0.001

Haemoglobin (g/dL) 13.1 ± 2.1 12.5 ± 2.1 12.7 ± 2.1 14.0 ± 1.4 <0.001

Platelet count (109/L) 247.1 ± 66.0 181.6 ± 96.9 277.5 ± 99.0 234.1 ± 71.1 <0.001

Mean platelet volume (fL) 7.7 ± 0.7 8.5 ± 1.0 7.5 ± 0.6 8.0 ± 0.9 <0.001

Red cell distribution width (%) 13.2 ± 0.9 14.0 ± 2.1 14.4 ± 1.6 12.9 ± 1.2 <0.001

Delta neutrophil index (%) 0.8 ± 1.3 3.4 ± 3.3 1.3 ± 1.3 0.5 ± 0.9 <0.001

Prothrombin time (INR) 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 <0.001

aPTT (sec) 29.1 ± 3.6 29.0 ± 5.0 29.2 ± 3.8 30.6 ± 3.7 0.028

(Table 1 continues on next page)
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Aetiologies Autoimmune (N = 25) Bacterial (N = 39) Tuberculosis (N = 32) Viral (N = 187) p-valuea

(Continued from previous page)

Sodium ion concentration (mmol/L) 137.5 ± 6.1 137.1 ± 5.3 133.1 ± 3.8 137.5 ± 3.8 <0.001

Potassium ion concentration (mmol/L) 4.2 ± 0.5 3.8 ± 0.6 4.0 ± 0.5 4.1 ± 0.4 <0.001

tCO2 (mmol/L) 21.4 ± 3.4 20.7 ± 3.2 23.0 ± 3.8 23.4 ± 2.5 <0.001

Blood urea nitrogen (mg/dL) 16.2 ± 7.3 21.7 ± 14.6 14.8 ± 9.8 15.2 ± 9.9 0.005

Creatinine (mg/dL) 0.8 ± 0.4 1.3 ± 1.6 0.8 ± 0.9 0.8 ± 0.3 0.002

Glucose (mg/dL) 123.8 ± 43.6 157.8 ± 70.5 119.2 ± 29.3 123.3 ± 35.5 <0.001

Albumin (g/dL) 4.1 ± 0.5 3.6 ± 0.7 3.8 ± 0.6 4.3 ± 0.4 <0.001

Aspartate transaminase (IU/L) 23.5 ± 10.9 35.6 ± 24.2 36.2 ± 37.3 25.3 ± 14.9 0.002

Alanine aminotransferase (IU/L) 23.5 ± 18.2 31.9 ± 28.7 20.6 ± 11.9 24.5 ± 23.7 0.192

Total bilirubin (mg/dL) 0.8 ± 0.6 1.1 ± 1.0 0.7 ± 0.7 0.7 ± 0.4 0.025

Alkaline phosphatase (IU/L) 68.1 ± 23.0 83.5 ± 62.1 71.2 ± 37.0 63.1 ± 19.8 0.005

Uric acid (mg/dL) 4.5 ± 1.3 4.5 ± 2.0 3.3 ± 1.8 4.2 ± 1.7 0.029

Inorganic phosphorus (mg/dL) 3.6 ± 0.6 2.8 ± 0.8 3.4 ± 0.6 3.3 ± 0.8 <0.001

Calcium (mg/dL) 9.0 ± 0.6 8.5 ± 0.7 8.7 ± 0.6 9.0 ± 0.5 <0.001

Creatinine Kinase (IU/L) 329.6 ± 355.7 299.8 ± 443.0 228.1 ± 323.6 383.2 ± 630.3 0.775

Ammonia (μg/dL) 49.0 ± 33.0 55.9 ± 27.6 55.7 ± 15.4 47.4 ± 21.3 0.352

Total cholesterol (mg/dL) 166.8 ± 35.5 146.8 ± 64.6 173.8 ± 38.9 171.1 ± 37.8 0.047

C-reactive protein (mg/L) 15.2 ± 43.5 85.5 ± 101.7 21.1 ± 33.9 11.3 ± 25.9 <0.001

Erythrocyte sedimentation rate (mm/hr) 21.5 ± 25.2 50.7 ± 33.5 43.9 ± 31.3 23.0 ± 20.8 <0.001

Procalcitonin (ng/mL) 0.1 ± 0.1 13.4 ± 25.0 0.2 ± 0.1 0.1 ± 0.1 <0.001

Lactate (mmol/L) 2.3 ± 1.6 2.7 ± 1.3 0.9 ± 0.3 1.4 ± 0.8 <0.001

Cryptococcal antigen 0 (0.0%) 1 (2.8%) 0 (0.0%) 2 (1.2%) 0.737

Anti-HIV I/II + antigen 0 (0.0%) 0 (0.0%) 1 (3.8%) 2 (1.2%) 0.522

Urine

Bilirubinuria 0 (0.0%) 3 (8.3%) 4 (13.3%) 12 (7.2%) 0.343

Haematuria 3 (13.6%) 20 (55.6%) 13 (43.3%) 50 (29.9%) 0.003

Glucosuria 1 (4.5%) 16 (44.4%) 6 (20.0%) 20 (12.0%) <0.001

Ketonuria 10 (45.5%) 20 (55.6%) 10 (33.3%) 86 (51.5%) 0.254

High leukocyte esterase 4 (18.2%) 8 (22.2%) 14 (46.7%) 41 (24.6%) 0.052

Albuminuria 6 (27.3%) 21 (58.3%) 15 (50.0%) 58 (34.7%) 0.021

High RBC count 6 (27.3%) 15 (41.7%) 13 (43.3%) 40 (24.0%) 0.048

High WBC count 5 (22.7%) 11 (30.6%) 10 (33.3%) 41 (24.6%) 0.680

Abbreviations: CT, Computed tomography; EEG, Electroencephalography; CSF, Cerebrospinal fluid; WBC, White blood cell; RBC, Red blood cell; HSV, Herpes simplex virus; Ig,
Immunoglobulin; VZV, Varicella zoster virus; aPTT, Activated partial thromboplastin time; HIV, Human immunodeficiency virus. aOne-way analysis of variance (ANOVA) was
used to compare continuous variables and Chi-square test was used to compare categorical variables among the four groups.

Table 1: Feature distribution for each aetiology at sinchon severance hospital.
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training at the epoch where we observed the validation
loss starting to increase while the training loss
continued to decrease via the learning curve plot
(Supplementary Fig. S3).

Model performance was assessed using classification
metrics, including the area under the receiver operating
characteristic curve (AUROC), recall, precision, accu-
racy, and F1 score. The mathematical expressions of
these metrics are given in Appendix 3.

Model-agnostic methods for interpreting AI models
including permutation feature importance (PIMP), local
interpretable model-agnostic explanations (LIME), and
Shapley additive explanations (SHAP) were adopted for
verifying the explainability of AI models.18 F score, a
method for measuring feature importance built into
XGBoost, which is based on the number of times a
variable is used to split the data (weight), the number of
data points separated by that variable (cover), and the
average training loss reduction achieved by using the
feature (gain) was also used for verifying the explain-
ability of model.19

Statistical analysis
We performed sample size estimation for the AI study
with the Nx-subsampling scheme20 and found that each
performance metric converged at around 80–100
training samples fewer than our training sample size
(Supplementary Fig. S4). For the feature selection pro-
cess, the Pearson correlation coefficient and variance
inflation factor were used. One-way analysis of variance
(ANOVA) and the Pearson χ2 test were used to compare
continuous and categorical variables, respectively,
www.thelancet.com Vol 61 July, 2023
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among the groups. After conducting a comparison
among the four aetiologies, post-hoc analysis with
Bonferroni correction was performed to examine dif-
ferences between each pair of groups. We also applied
the AI model to predict the causes of patients whose
aetiology was not clearly identified as a post-hoc
analysis.

All statistical analyses were performed using R
version 4.11, and the machine learning and deep
learning processes were performed using Python
version 3.6.8. A two-sided p-value of <0.05 was generally
considered a minimum level of statistical significance.

Role of the funding source
The funders had no role in study design, data collection,
data analyses, data interpretation, or writing of the
report.

Results
Patients’ characteristics
Between January 1, 2006, and June 30, 2021, patients
with confirmed aetiology (n = 283) were used for AI
model training among patients hospitalised with men-
ingitis and encephalitis from Sinchon Severance Hos-
pital (n = 1836). Viral infection was the most common
cause (n = 187), followed by bacterial (n = 39), tuber-
culous (n = 32), and autoimmune (n = 25) causes. Pa-
tients with fungal (n = 7) or other (n = 6) infections were
excluded because of the small sample sizes. The details
of pathogens related to each aetiology are provided in
Supplementary Tables S7 and S8. The baseline charac-
teristics according to aetiology and differences in clinical
variables between the four groups are presented in
Table 1.

Post-hoc analyses between the two groups were also
performed and are presented in Supplementary
Table S9. Variables that showed significant p
values <0.001 in the four groups generally exhibited a
characteristic separation of one aetiology from the other
groups in the post-hoc analysis. For instance, seizures
were found to occur frequently in patients with auto-
immune aetiologies. Patients with bacterial infections
showed distinct features compared to other groups,
including faster mean heart rate, higher maximum body
temperature, higher white blood cell (WBC) count and
specific gravity, and more frequent turbidity or
abnormal colour in CSF studies. In blood tests, patients
with bacterial infection exhibited lower platelet count
and inorganic phosphorus, higher mean platelet vol-
ume, delta neutrophil index, glucose, C-reactive protein,
and procalcitonin. Patients with bacterial infection had
the most heterogeneous variables compared to other
groups. Patients with tuberculosis infection often had a
history of previous tuberculosis, whereas patients with
viral infection showed different CSF WBC differential
counts and a higher serum large unstained cell ratio
compared to other groups.
www.thelancet.com Vol 61 July, 2023
Model performance
We applied different techniques in each model and
conducted the analysis. The AUROC, recall, precision,
accuracy, and F1 score obtained using different set-
tings are shown in Supplementary Table S1. Patients
were enrolled using the same eligibility criteria used
for the external validation dataset from the Gangnam
Severance Hospital. The baseline characteristics ac-
cording to the validation set aetiology are presented in
Supplementary Table S10. The AUROC, recall, preci-
sion, accuracy, and F1 score of the external validation
set are also shown in Supplementary Table S1. The
DeLong test used to compare the AUROC among the
high-performance models did not show any significant
differences. We placed a high emphasis on the F1
score, given the circumstance that our data had
imbalanced labels when assessing model performance.
When we replaced missing values of continuous vari-
ables with median values and performed oversampling
using ADASYN in the ensemble model, the F1 score
on the external dataset was the highest among all
models. The accuracy, precision, recall, F1 score and an
AUROC of 0.8909, 0.8987, 0.8909, and 0.9222,
respectively, were achieved by the ensemble model
(Fig. 2). Among the conventional machine learning
models, the XGBoost model trained by replacing
missing values with the mean value achieved the
highest F1 score of 0.8839 on the external dataset (Fig.
2). The performances of the best models for each class
are presented in Supplementary Table S11.

We applied the XGBoost model to predict the causes
of patients whose aetiology was not clearly identified
(n = 1197). They consisted of patients suspected of
autoimmune aetiology (n = 72), bacterial (n = 106),
tuberculosis (n = 62), and viral infection (n = 938). The
AUROC, accuracy, precision, recall, and F1 score of
0.8078, 0.7776, 0.7891, 0.7776, and 0.7793 were ach-
ieved (Supplementary Fig. S5).

Comparison between the AI model and clinicians
Test sets incorporating internal and external data sets
were developed to compare our models and clinicians,
and the doctors then predicted the aetiology based on
the tabular data. The results of the comparisons be-
tween the AI model and clinicians are shown in
Table 2. The clinician without training in neurology
showed the lowest performance, whereas the perfor-
mance improved with experience of the neurologists.
The XGBoost model, which showed the best perfor-
mance among the conventional machine learning
models, and the ensemble model were used for com-
parison, and the performance of both AI models
exceeded that of clinicians in all metrics. The AI
model’s predictions and those of each clinician for
aetiology, as well as the true label, are presented in the
form of a confusion matrix in Supplementary Fig. S6.
The variables used by the clinicians to classify patients
7
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Fig. 2: The area under the receiver operating characteristic curve (AUROC) for the models developed in the study. XGBoost (extreme
gradient boosting) model (A) internal dataset (B) external validation dataset and the ensemble model composed of 80% XGBoost and 20%
TabNet (C) internal dataset (D) external validation dataset.
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and whether they helped to correctly predict the aeti-
ology are demonstrated in Supplementary Table S12.
Overall, it can be seen that the variables including
WBC, protein, differential cell count ratio, adenosine
deaminase (ADA), and glucose level in the CSF, were
used in this order by doctors when classifying the
aetiology.
Precision Recall F1 score Accuracy

XGBoost model 0.9269 0.9300 0.9264 0.9300

Ensemble modela 0.9291 0.9300 0.9269 0.9300

Doctor without training 0.7562 0.3400 0.3651 0.3400

Junior neurologist 0.7528 0.6600 0.6893 0.6600

Senior neurologist 0.7689 0.7500 0.7582 0.7500

Abbreviations: XGBoost, extreme gradient boosting. aEnsemble model is
composed of 80% of XGBoost and 20% of TabNet.

Table 2: The performance metrics of comparing between AI model vs
clinicians.
Explainability of the AI model
The F score of the XGBoost model was calculated based
on the ‘weight’, which reflects the number of times the
variable was used to split the data and is represented in
Fig. 3A. Variables with high F scores were considered to
play a more important role in classifying the aetiologies
in this model. Box plots with statistical significance were
presented in Fig. 3B–E to visualise whether the actual
values of the variables with high F scores differed by
aetiology and whether they were helpful in differenti-
ating aetiology. CSF ADA, the feature with the highest F
score, showed a significant difference with a p-value
<0.001 in ANOVA. Post-hoc analysis showed that it had
significantly higher values in patients with tuberculosis
compared to those with autoimmune aetiologies
(p < 0.01) and those with viral infections (p < 0.001), and
in patients with bacterial infections compared to those
with viral infections (p < 0.05). CSF protein, CSF
glucose, and maximum body temperature also showed
significant differences between the groups.
www.thelancet.com Vol 61 July, 2023
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Fig. 3: (A) Top 30 important features with F score from XGBoost classifier in internal dataset and (B–E) box plots displaying the
distribution of variables for each aetiology. The diamond symbol represents the mean value and the horizontal line inside the box represents
the median value. Bonferroni post-hoc analyses were done for comparing each two aetiologies. Abbreviation: CSF, Cerebrospinal fluid; aPTT,
Activated partial thromboplastin time; LUC, Large unstained cells; EEG, Electroencephalography; ANOVA, Analysis of variance; ns, statistically no
significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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PIMP is a method for determining feature impor-
tance by randomly shuffling a particular feature to
create noise and calculating how much performance
loss occurs when that feature is not used. We observed
that the variables with the highest PIMP score were the
previous history of tuberculosis, CSF cell differential
ratio, and CSF glucose levels in this given order
(Supplementary Fig. S7A). LIME weights for each aeti-
ology are presented in Supplementary Fig. S7B–E. LIME
computes the model predictions and generates a new
dataset by removing a feature and keeping the rest for
each feature. It estimates feature importance by calcu-
lating the prediction differences between the original
and newly generated datasets. Abnormal findings in
EEG were strongly associated with autoimmune causes
and had a significant positive impact, the same as the
case with seizures. A history of previous tuberculosis
had a significantly positive impact on being classified as
tuberculosis but had a negative impact on other causes.

SHAP is a technique that calculates the contribution
of each feature to the prediction result using the concept
of Shapley values from game theory and the values for
each aetiology are demonstrated in Fig. 4. The estimated
SHAP value for each case is used to illustrate the in-
fluence on the X-axis. If a case’s value is positive, it in-
dicates that the associated attribute has a positive effect
on the case’s classification. Each point on the summary
www.thelancet.com Vol 61 July, 2023
plot is a case, coloured according to the distribution of
the feature’s initial value along a red to blue gradient.
The overall predictive power of each feature can be
visually measured by its horizontal range. CSF protein,
CSF polymorphonuclear cell ratio, previous tuberculosis
history, and CSF mononuclear cell ratio showed the
widest range, indicating they had the most considerable
prediction power and can significantly impact the
model’s output for predicting each cause. We could
observe that a decrease in the CSF protein indicated that
the observed instance had a greater likelihood of being
an autoimmune cause, whereas a case with abnormal
findings in EEG showed the opposite trend (Fig. 4A). An
increased CSF polymorphonuclear cell ratio and WBC
counts, elevated serum ammonia, high WBC counts,
neutrophil ratio and maximum body temperature, and a
decrease in CSF mononuclear cell ratio, serum platelet
counts, large unstained cells (LUC) ratio, and alkaline
phosphatase were associated with a higher likelihood of
bacterial classification (Fig. 4B). In addition to the his-
tory of tuberculosis, an increase in CSF ADA and serum
platelet counts as well as a decrease in serum eosinophil
ratio and uric acid increased the likelihood of being
classified as tuberculosis (Fig. 4C). Lastly, the possibility
of viral infection was increased as the CSF mononuclear
cell ratio and glucose level, serum activated partial
thromboplastin time (aPTT), and total carbon dioxide
9
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Fig. 4: High-ranked Shapley values representing feature importance for each aetiology: (A) autoimmune (B) bacteria (C) tuberculosis and
(D) virus. Abbreviations: CSF, Cerebrospinal fluid; EEG, Electroencephalography; PMN, polymorphonuclear; aPTT, Activated partial thrombo-
plastin time.
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level increased, and the CSF ADA decreased (Fig. 4D).
The SHAP values in the external validation set are
presented in Supplementary Fig. S8. Previous tubercu-
losis history, CSF ADA level, CSF mononuclear leuko-
cyte ratio, and CSF protein level showed the widest
horizontal range for aetiology in the external validation
dataset, similar to that in the internal dataset.
Discussion
The major findings of the present study were as follows:
first, we discovered that a model including the patient’s
initial 24-h clinical data could confirm the aetiology of
meningitis and encephalitis early. Second, the perfor-
mance metrics of the AI model were higher than those
of clinicians. Finally, we identified the variables that
were crucial to our classification model. To the best of
our knowledge, this study described the first multiclass
classification model for confirming the aetiology of
meningitis and encephalitis.

Early diagnosis and treatment are essential for the
management of meningitis and encephalitis; in actual
clinical practice, it is challenging to identify the aeti-
ology using insufficient initial data.1–4 The classification
models for meningitis and encephalitis developed in
the present study could help combine the initial clinical
features and play an auxiliary role in treatment plan-
ning. Previous studies on early diagnosis were limited
to predicting CNS infection itself or classifying patho-
gens into two categories.7,10–13 In contrast to earlier
models, the model presented in this study performed
multiclass classification and outperformed earlier
models in general.9,21 The model with an F1 score over
0.85 performed well in both the internal test and
external validation datasets. The AUROC values of
aetiology classes increased in the following order:
autoimmunity, bacteria, virus, and tuberculosis. In
clinical practice, autoimmune encephalitis is suspected
after infectious causes have been ruled out; however,
its diagnosis is challenging. Therefore, the AUROC of
over 0.85 for autoimmune aetiology has significant
clinical value.3,5,7 In clinical practice, when bacterial
meningitis is suspected, antibiotics are typically used
empirically and continued until negative culture results
have been reported after at least 48 h.1 With the model
we proposed, if the infection is classified as being
caused by other aetiologies, we might be able to make
an early decision to discontinue antibiotics without
waiting for culture results, thereby preventing potential
liver or kidney toxicity caused by antibiotics.8 In addi-
tion, we found that the predictions of the multi-
classification model were relatively consistent with the
estimated diagnoses of neurologists, even in patients
where the cause was not clearly identified. However, it
should be noted that the true label was based on the
estimated causes arrived at by consensus of neurolo-
gists using the patient’s medical records and the test
results, rather than actual tests, and the model only
considered information that could be obtained within
24 h, which may have caused some differences. The
separate dataset for external validation was developed
using patient data from a different institution, and it
performed well despite having somewhat different
cause distributions or feature types. We found that the
model was reproducible and not overfitted. We did not
include the survival analysis-related content in this
paper because we thought that it did not align with our
research goal and the low performance of the model. In
future studies, it is expected that a better prognosis
prediction model can be created by securing and
inputting time-series variables and setting various
prognostic factors for patients.
www.thelancet.com Vol 61 July, 2023
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To mitigate possible biases in research using AI, we
applied the following methods at each stage.17 During
the data collection and preparation stage, we maintained
the quality of the training data by K-fold cross validation,
and during the model development stage, we used de-
biasing techniques such as oversampling to overcome
the class imbalance.18 During the model evaluation, we
also used relatively simple and interpretable K-Nearest
Neighbour and Gaussian Naive Bayes models, and we
also used LIME, SHAP, and other methods to verify
explainability.19

The results of the present study revealed that the
model classified meningitis and encephalitis and
outperformed all clinicians. In particular, the differ-
ence in predicting ability between the model and the
doctor who did not have an experience in neurology
was remarkable. The model could classify the aeti-
ology and recommend appropriate and prompt ther-
apy in the absence of a neurologist in a primary care
setting, such as an emergency room. Furthermore,
the performance of the AI model was even higher
than that of senior neurologists, and not just of junior
neurologists. In actual clinical practice, doctors assess
patients with encephalitis and meningitis through
interviews and physical examinations in addition to
the variables discussed in this paper. Therefore, the
performance of the doctors might have been slightly
worse than that in the actual clinical practice. Despite
this, the high performance of AI-based predictions for
each indicator suggests that AI-supported care in a
clinical environment can assist neurologists in mak-
ing appropriate and prompt decisions regarding
treatment. Specifically, by incorporating patient
characteristics and test results into the model, the AI
model can help with diagnosis and treatment by
considering even the items that are difficult for
humans to keep track of.

We have identified important features that are AI-
driven and clinically validated. For all aetiologies, the
CSF test results, including those for WBC count, pro-
tein level, glucose level, and ADA level, revealed high
PIMP and F scores consistent with previous
research.4,5 These variables were also considered sig-
nificant by the three clinicians who participated in this
study when making causal judgments. Upon exam-
ining the distribution of variable values for each cause,
statistically significant differences were observed in the
relevant variables, which could result in their frequent
use and high importance in the classification models.
The CSF ADA level, which is frequently utilised in
clinical settings to distinguish between infection due to
tuberculosis and other pathogens, showed the highest
feature importance. The presence of ADA is regarded
as a hallmark of cell-mediated immunity and is pri-
marily associated with lymphocyte proliferation and
differentiation, which can result in varying levels
www.thelancet.com Vol 61 July, 2023
within CSF depending on the cause of inflammation.22

Hyperammonaemia has been reported to be associated
with urease-producing pathogens in infectious dis-
eases, although the mechanism is not yet clear. In the
present study, serum ammonia level also emerged as
an important factor in differentiating pathogens,
which could be related to the previously mentioned
mechanism.23 The maximum body temperature at 24 h
was an important feature for each aetiology classifica-
tion. Considering the existing literature on fever pat-
terns differing according to the pathogen, advanced
research on fever patterns will be helpful in differen-
tiation.24 Activation of platelets is a crucial underlying
mechanism of inflammatory diseases. Therefore,
platelet count and mean platelet volume have been
reported to help differentiate meningitis causes, and
they have played a significant role in the classification
in the present study.25 The LUC ratio, which has been
shown to help distinguish between autoimmune and
infectious causes, also showed high importance.26

Furthermore, the serum eosinophil percentage, an
important variable for classification, has not been re-
ported to be directly associated with CNS pathologies
but is presumed to be related as it is known to play a
regulatory role in autoimmune and infectious dis-
eases.27 The delta neutrophil index was found to help
differentiate autoimmune, bacterial, and tuberculosis
cases in the present study. According to previous
studies, the delta neutrophil index can help predict the
diagnosis and prognosis of sepsis and is considered a
biomarker for autoimmune diseases such as system-
atic lupus erythematosus and adult-onset Still’s dis-
ease.28,29 Therefore, it is thought to play a similar role
in the case of CNS inflammatory conditions.

We also utilised SHAP values to explain the AI
model and determine which variables are considered
important in classifying each aetiology. Altered wave
patterns in EEG can assist the treatment decision-
making process in cases of encephalitis, particularly in
the presence of altered consciousness or confusion and
seizure attacks.6 Previous reports indicate that EEG ab-
normalities may present differently depending on the
underlying cause and significantly affect autoimmune
cause discrimination, and abnormal findings in EEG
also showed a high SHAP value in this study.6 Patients
with pleocytosis, neutrophilia, and thrombocytopenia
had an increased likelihood of being classified as bac-
terial infection, consistent with clinical trends.1,4 A pre-
vious history of tuberculosis and the levels of glucose
and ADA in the CSF are known to be important factors
in determining tuberculous meningitis, and the same
results were obtained with the model used in the pre-
sent study.22 In cases of viral infections, a localised
thrombo-inflammatory response or systemic hyperco-
agulability may be present. Also, in the present study,
patients with increased aPTT had a greater propensity to
11
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be classified as having viral infections.30 The model we
suggested showed good explanatory power when
considering the SHAP values for each cause.

The present study has some limitations. First, we
focused on patients with encephalitis and meningitis,
and multi-label diagnosis cases were not included
because of the few numbers of cases. Second, since the
retrospective data were presented in a tabular format,
and variables related to the diagnostic tools (brain CT,
CXR, and EEG) were entered in a tabular format
because the data dimension would be different if the
variables were input as raw data. Third, the training
and external validation data came across a rather long
time; therefore, the reliability of the clinical measures
over a long duration could be questionable. Fourth, a
small sample size of patients with confirmed aetiology
compared to the total number of registered patients
may have led to a sampling bias. Moreover, classifica-
tion of fungal infections could not be performed. Fifth,
there may be differences when applying the results of
this study to patients of other races as most of the
population included in this study are of Asian
ethnicity.

This is the first multiclass classification study for the
early determination of the aetiology of meningitis and
encephalitis based on the initial 24-h data using an AI
model, which showed high performance in various
evaluation metrics. The results suggest that the appli-
cation of AI could help determine the aetiology of
meningitis and encephalitis, thereby potentially
enabling early treatment selection.
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