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Simple Summary: In computer-assisted diagnostics for pancreatic cancer, attributes featuring irregu-
lar contours and indistinct boundaries on CT images present challenges in acquiring high-quality
annotations. In response to this issue, we have devised an innovative self-supervised learning algo-
rithm, engineered to enhance the differentiation of malignant and benign lesions. This innovation
obviates the necessity for radiologist intervention, thus facilitating the precise classification of pan-
creatic cancer. By employing a pseudo-lesion segmentation self-supervised learning model, which
capitalizes on automatically generated high-quality training data, we have managed to significantly
elevate the performance of both convolutional neural network-based and transformer-based deep
learning models.

Abstract: The aim of this study was to develop a novel deep learning (DL) model without requiring
large-annotated training datasets for detecting pancreatic cancer (PC) using computed tomography
(CT) images. This retrospective diagnostic study was conducted using CT images collected from 2004
and 2019 from 4287 patients diagnosed with PC. We proposed a self-supervised learning algorithm
(pseudo-lesion segmentation (PS)) for PC classification, which was trained with and without PS
and validated on randomly divided training and validation sets. We further performed cross-
racial external validation using open-access CT images from 361 patients. For internal validation,
the accuracy and sensitivity for PC classification were 94.3% (92.8–95.4%) and 92.5% (90.0–94.4%),
and 95.7% (94.5–96.7%) and 99.3 (98.4–99.7%) for the convolutional neural network (CNN) and
transformer-based DL models (both with PS), respectively. Implementing PS on a small-sized training
dataset (randomly sampled 10%) increased accuracy by 20.5% and sensitivity by 37.0%. For external
validation, the accuracy and sensitivity were 82.5% (78.3–86.1%) and 81.7% (77.3–85.4%) and 87.8%
(84.0–90.8%) and 86.5% (82.3–89.8%) for the CNN and transformer-based DL models (both with
PS), respectively. PS self-supervised learning can increase DL-based PC classification performance,
reliability, and robustness of the model for unseen, and even small, datasets. The proposed DL model
is potentially useful for PC diagnosis.
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1. Introduction

Pancreatic cancer (PC) is a highly fatal and malignant disease with a dismal prognosis.
Despite recent advancements in surgical techniques, chemotherapy, and radiation therapy,
the 5-year survival rate remains approximately 11% [1]. Notably, PC has become a common
cause of cancer mortality. High mortality primarily results from advanced-stage cancer
with metastatic disease at diagnosis [2]. The only hope of long-term survival in PC is
if curative resection can be performed. However, PC is asymptomatic until the disease
progresses to an advanced stage and, at diagnosis, only about 20% of cases are eligible for
surgical resection [3–6].

Medical imaging plays several important roles in PC screening and early detection,
preoperative evaluation and staging, differential diagnosis, follow-up, and treatment evalu-
ation. A computed tomography (CT) scan is the most widely used imaging examination
for the detection and staging of pancreatic carcinoma, given that its sensitivity ranges
from 76–96%; notably, the sensitivity for larger tumors is higher than that for smaller
tumors [7–9]. Generally, PC is characterized by abundant fibrous stroma and hypervas-
cularity that account for the poor enhancement of the tumor compared with that of the
surrounding pancreatic parenchyma on CT. These lead to poor diagnostic accuracy and
sensitivity of tumor detection using CT. Moreover, at present, there is no standard imaging
screening procedure, and the accuracy of PC detection and staging critically depends on
the appropriate protocol, post-processing technique, and experience of the radiologist. In
other words, detecting PC using only a CT scan is a very challenging task for radiologists,
especially concerning small tumors in the early stages.

Artificial intelligence, particularly deep learning (DL), has demonstrated great promise
for prognosis prediction in medical image analysis [10–12]. Major DL algorithms, such as
the convolutional neural networks (CNNs) [13] and transformer architecture [14], have
shown an impressive ability to extract complex visual information from medical images.
However, despite the potential of DL, PC diagnosis using DL systems has not yet been
actively investigated. Previous studies have demonstrated that DL could reduce the false
diagnosis of PC on CT images as a second reader [15–19]. To achieve high-quality results
and accurately generalize across multi-centers, CT equipment, and patient ethnicity, a large
number of high-quality annotated training datasets are needed to allow deep networks
to learn proper visual information for accurate classification. However, collecting a large
volume of correctly annotated medical images for DL system development is a complex and
expensive endeavor. Moreover, it is impractical to prepare such a well-curated pancreatic
dataset, given that the accurate and early identification of PC on CT scans is still challenging,
even for radiologists, because of the irregular contours and ill-defined margins of PC [20,21].
Therefore, it is difficult to achieve high prediction accuracy with a small training dataset
for PC classification on CT scans, especially for small-sized tumors.

In this study, we proposed a novel self-supervised learning algorithm (pseudo-lesion
segmentation [PS]) for PC classification using only CT scans. PS was designed to learn
the prior visual representations of pancreatic CT scans in a supervised learning manner
without requiring a radiologist or expert to annotate the ground truth label to achieve
high performance on small training datasets, early stage cancer/small-sized tumors, and
cross-ethnicity tests.

2. Related Work

DL techniques have exhibited promising results in the field of pancreatic cancer diag-
nosis using CT imaging [22–24]. A key contributor to the success of DL is the availability of
extensive training data with manual labels supplied by radiologists. However, the scarcity
of annotated medical images is a concern due to the requisite expertise of radiologists and
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the time-consuming nature of the task. In scenarios involving natural image classification,
a prevalent approach is to leverage pre-existing visual representations learned from Ima-
geNet, a large dataset of natural images used for classification tasks, employing pretrained
weights [11,25]. Nonetheless, the use of ImageNet for learning visual representations in
medical image classification is less than optimal because the visual representation learned
from the natural image domain might not be suitable for the grayscale medical image
domain. This unsuitability arises due to significant differences in feature distribution,
spatial resolution, and output labels between the two domains.

Another notable technique for addressing the lack of labeled data is self-supervised
learning. Self-supervised learning combines supervised and unsupervised learning ap-
proaches to learn semantically useful representations from pretext tasks. These tasks
involve learning from unlabeled data by creating labels from the data for downstream
tasks. Self-supervised learning enables the utilization of unlabeled domain-specific images
by solving pretext tasks such as jigsaw puzzles, colorization tasks, and rotation predic-
tion. This allows for the learning of more relevant feature representations for the image
domain in downstream tasks like classification and segmentation [26–28]. In the field of
medical image analysis, self-supervised learning with contrastive learning methods and
image distortion pretext tasks has been employed to enhance the performance of various
downstream tasks [29]. For example, Li et al. [30] successfully improved the performance
of tumor classification by utilizing the feature representation learned through a pretext task
of brain tumor segmentation. However, it is important to note that when tumors are not
precisely segmented, the accuracy of tumor classification using the learned features is not
guaranteed [30]. Moreover, considering the significant variation in annotation tasks be-
tween raters [31], which can lead to different conclusions regarding medical diagnoses [32],
it becomes challenging to ensure high-quality annotations.

In this study, we created a pseudo-lesion using an undefined atypical shape that
mimicked the shape of a tumor. Because the atypical shape is composed of a random
combination of a plurality of simple shapes, it can be easily generated and a variety of
complex and differing types of lesions, such as actual tumors, can be formed. Previously,
a pseudo-lesion was created in the form of a simple geometric shape, but this simple
shape was very weak in its ability to simulate the complex shape of a real tumor [18].
However, in model observer studies for image quality evaluation, a more realistic tumor
or lesion was synthesized and inserted into the CT image. Such realistic tumor shapes
were created by synthesizing the actual lesion shapes and organ-specific background
textures present in organs such as the breast, liver, or lungs [33,34]. If our proposed self-
supervised algorithm learns feature representation using more realistic tumor shapes,
tumor classification performance may be improved. However, it is expected that the
complex shape of different tumors for each organ or lesion reflecting the noise characteristics
different for each system has poor reproducibility, making it difficult to apply to new organs
or systems that are not well known.

3. Materials and Methods
3.1. Ethics

All procedures were performed in compliance with the relevant laws and institutional
guidelines. The study was approved by the Institutional Review Board of the National
Cancer Center (NCC) (2020-0327). The requirement for written informed consent was
waived owing to the retrospective nature of the study.

3.2. Patient and Data Collection

In this retrospective diagnostic study, we analyzed CT images acquired from the
following datasets: the National Information Society Agency (NIA)-funded Medical Big
Data Construction Project, the Medical Segmentation Decathlon, and the Cancer Imaging
Archive (TCIA). The NIA-funded project included CT images of PC and normal pancreatic
tissues from the NCC and seven general tertiary hospitals in South Korea. PC was defined
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as histologically or cytologically confirmed pancreatic adenocarcinoma. Benign pancreatic
disease included pancreatic cystic lesions and acute or chronic pancreatitis, with a 1-year
follow-up period. Images in which no lesions were observed were selected based on the
radiologist’s report (a negative or unremarkable pancreas) as the normal pancreas set
from participants who underwent a health checkup or treatment for anything other than
pancreatic disease.

In the NIA-funded project, CT images were obtained in the portal venous phase (70 s
after intravenous contrast injection) or pancreatic phase (40 s after contrast injection). In
the labelling of the lesions, blood vessels were excluded as much as possible. In cases
of pancreatitis, the entire lesion, including the peripancreatic infiltration was labelled.
The Medical Segmentation Decathlon and TCIA dataset consists of portal venous phase
CT images with the resolution of 512 × 512 pixels with varying pixel sizes and slice
thickness between 1.5–2.5 mm, acquired on Philips and Siemens MDCT scanners (120 kVp
tube voltage).

A flowchart describing the research process is presented in Figure 1.
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Figure 1. Flowchart of dataset collection for developing the proposed PS self-supervised learning
method. CT image datasets from the NCC, Korea, which were collected from seven general tertiary
hospitals in South Korea, were randomly divided into 3010 patients for the DL model training set and
1277 patients for the internal validation set. For the external validation set, two pancreatic CT image
datasets from the Memorial Sloan Kettering Center, New York, NY, USA, and TCIA were combined
for the DL model’s evaluation. Abbreviations: CT, computed tomography; DL, deep learning; NCC,
National Cancer Center; PS, pseudo-lesion segmentation; TCIA, the Cancer Imaging Archive.

For algorithm development, we used data collected from the NCC for the training set
and validation set and those from the Medical Segmentation Decathlon and TCIA as the
cross-ethnicity external validation set. For the training set and validation set, we utilized
the CT images of 4287 patients that were collected between June 2004 and December 2020.
All CT scans were carefully reviewed by two experienced radiologists with >5 years of
experience in pancreatic imaging. A total of 3010 patients comprised the training set,
and 1277 patients comprised the validation set. The CT images of 361 patients from two
external sources comprised the cross-ethnicity external validation set. Detailed baseline
characteristics are presented in Table S1.

3.3. Development of PS Self-Supervised Learning

The self-supervised learning algorithm is a technique for solving limited annotated
data scenarios in both the natural and medical imaging domains. We developed a novel self-
supervised learning algorithm, PS, to overcome a small-size training dataset problem and
improve DL system performance in early stage PC and cross-ethnicity tests. The proposed
PS was designed to learn prior to the semantic representation (i.e., pancreas-related visual
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representation) from the PC classification data itself via the PS task. Unlike previous
research [30], which learned the prior knowledge from the dataset in which the annotated
lesion regions were defined by radiologists (Figure 2a), our PS learned the representation
from the automatically generated annotation dataset without requiring humans to annotate
using labels (Figure 2b).

Cancers 2023, 15, x FOR PEER REVIEW 5 of 14 
 

 

proposed PS was designed to learn prior to the semantic representation (i.e., pancreas-
related visual representation) from the PC classification data itself via the PS task. Unlike 
previous research [30], which learned the prior knowledge from the dataset in which the 
annotated lesion regions were defined by radiologists (Figure 2a), our PS learned the rep-
resentation from the automatically generated annotation dataset without requiring hu-
mans to annotate using labels (Figure 2b). 

 
Figure 2. Overview of self-supervised learning in this study. (a) Actual lesion segmentation pretext 
task in which the lesion ground truth label is indicated by an experienced radiologist. (b) Proposed 
PS pretext task. (c) Fine-tuning PC classification DL model. Abbreviations: CT, computed tomogra-
phy; DL, deep learning; PC, pancreatic cancer; PS, pseudo-lesion segmentation. 

Notably, the classification accuracy of previous research depends on the correctness of 
the tumor region annotation defined by humans [30]; therefore, it cannot guarantee classifi-
cation performance when the tumor region is not precisely segmented. Moreover, 

Figure 2. Overview of self-supervised learning in this study. (a) Actual lesion segmentation pretext
task in which the lesion ground truth label is indicated by an experienced radiologist. (b) Proposed PS
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DL, deep learning; PC, pancreatic cancer; PS, pseudo-lesion segmentation.
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Notably, the classification accuracy of previous research depends on the correctness
of the tumor region annotation defined by humans [30]; therefore, it cannot guarantee
classification performance when the tumor region is not precisely segmented. Moreover,
considering that annotation tasks are often prone to significant variation between raters [31]
and that the variation results in different conclusions regarding medical diagnosis [32], it is
difficult to secure high-quality annotations. Nonetheless, with an automatically generated
annotated dataset, the correctness of the annotation of our proposed PS can be guaranteed.

The PS consisted of three steps. We first automatically generated an annotation called
pseudo-lesion for prior representation learning via a segmentation task (pretext task) and
inserted it into the pancreatic CT scans. The details of the pseudo-lesion generation and
insertion are described in Methods S1. An example of the pseudo-lesion inserted CT images
is shown in Figure S1. We created a pseudo-lesion using an undefined atypical shape that
mimicked the shape of a tumor. Because the atypical shape is composed of a random
combination of a plurality of simple shapes, it can be easily generated, and complex and
varying types of lesions, such as actual tumors, can be formed. Subsequently, a DL network
was trained to learn the pancreas and tumor-related visual representation by segmenting
the pseudo-lesion regions in the generated dataset. Finally, we fine-tuned the pretrained
DL network for PC classification in a supervised learning manner (Figure 2c).

3.4. Training of DL Models

We incorporated the proposed PS with state-of-the-art DL models, including a CNN-
based model named ShuffleNet V2 [13] and a transformer-based model named Pyramid
Vision Transformer (PVT) [14] for PC classification using CT scans. Note that, as demon-
strated in Table 1, ShuffleNet V2 and PVT showed the best PC classification performance
among the latest CNN-based models and transformer-based models tested, respectively, so
they were selected as the baseline models. All DL models were trained using CT images
collected from 3010 patients and validated on two datasets: an internal validation set
(1277 patients) and an external validation set (361 patients). Moreover, we compared the
performance of the DL model with and without PS to evaluate the performance of the
proposed PS. An implementation detail of the DL models in the experiments is described
in the Supplementary Materials (Methods S2 and Table S2). Furthermore, to explore the
robustness of the self-supervised learning with PS for small datasets, we performed an
experiment involving various training image dataset sizes of 10%, 25%, 50%, 75%, and
100% of the entire training dataset.

Table 1. Performance comparison of the state-of-the-art deep learning models using the internal
validation set.

DL Model Accuracy (95% CI) Sensitivity
(95% CI)

Specificity (95%
CI) Precision (95% CI) F1 Score

CNN-based architecture

ResNet 101 [35] 90.2% (89.9–90.6%) 78.6% (77.6–79.5%) 91.1% (90.7–91.6%) 80.4% (79.5–81.4%) 0.79
ResNeXt-101 [36] 83.5% (83.0–83.9%) 62.7% (61.7–63.7%) 84.9% (84.3–85.4%) 64.3% (63.0–65.5%) 0.62

ResNeSt [37] 84.3% (83.9–84.7%) 63.2% (62.2–64.1%) 84.5% (84.0–85.0%) 67.9% (66.7–69.2%) 0.64
ShuffleNet V2 93.6% (92.1–94.8%) 90.6% (87.9–92.9%) 95.5% (93.8–96.8%) 93.9% (91.5–95.6%) 0.92

Transformer-based architecture

MiT [38] 85.4% (85.0–85.8%) 64.5% (63.5–65.5%) 84.7% (84.2–85.2%) 71.8% (70.5–73.0%) 0.66
PiT [39] 82.8% (82.3–83.2%) 56.3% (55.5–57.2%) 80.2% (79.7–80.7%) 68.8% (67.2–70.4%) 0.56

PVT 90.6% (88.8–92.1%) 97.4% (95.3–98.6%) 87.5% (85.1–89.6%) 78.3% (74.4–81.7%) 0.83

Abbreviations: CI, confidence interval; CNN, convolutional neural network; DL, deep learning; PVT, pyramid
vision transformer; PiT, pooling-based vision transformer; MiT, mix transformer.
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3.5. Statistical Analysis

The predictive labels with reference to the ground truth labels were depicted as
confusion matrices, which were used to calculate the accuracy, sensitivity, specificity,
precision, F1 score, and area under the receiver operating characteristic curve (AUC).
Furthermore, the Clopper–Pearson method was used to calculate the 95% confidence
interval (CI) for accuracy, sensitivity, specificity, and precision. All computations and
statistical analyses were performed using the scikit-learn package, version 0.34, in Python,
version 3.7 (Python Software Foundation). These tasks were carried out in an environment
equipped with an NVIDIA Titan Xp GPU (NVIDIA Corp., Silicon Valley, USA).

4. Results
4.1. Clinicopathological Data

A total of 4287 patients underwent CT imaging between June 2004 and December 2020
in Korea (mean (standard deviation (SD)) age: 58.9 (13.5) years), and CT images from an
external source of 361 patients were utilized in this study. Data from 3010 patients (mean
(SD) age: 58.9 (13.5) years) were labeled by experienced radiologists and used for training
the DL model. The two validation sets encompassed the CT images of 1277 patients (mean
(SD) age: 58.9 (13.4) years) from the NCC and 361 patients from two open-source datasets
from research institutions in the United States (Figure 1), namely the Medical Segmentation
Decathlon dataset from the Memorial Sloan Kettering Cancer Center (281 patients with PC)
(preprint) [40] and the TCIA dataset from the United States National Institutes of Health
Clinical Center (80 patients with normal pancreas) [41].

4.2. PC Classification
4.2.1. State-of-the-Art DL Models for PC Classification

In order to select the state-of-the-art DL model to incorporate with our proposed PS,
we performed an experiment to evaluate the performance of each DL classification model,
including CNN and transformer-based architecture, on the validation set of pancreatic
cancer dataset. Table 1 demonstrates that ShuffleNet V2 and PVT achieved the highest
accuracy for CNN and transformer-based architecture, respectively, with accuracies of
93.6% (92.1–94.8%) and 90.6% (88.8–92.1%).

4.2.2. Impact of the PS on PC Classification on the Internal Validation Dataset

We conducted the experiments to evaluate the performance of the proposed PS
incorporated with CNN-based and transformer-based DL architecture, i.e., ShuffleNet
V2 and PVT, respectively, by comparing DL models with and without PS. As shown in
Table 2, the CNN-based DL model with PS achieved a PC classification accuracy of 94.3%
(95% CI: 92.8–95.4%), which was 0.7% higher than the accuracy of 93.6% (95% CI: 92.1–94.8%)
achieved by the CNN-based model without PS.

Table 2. Performance comparison of the DL models with and without PS self-supervised learning for
the internal validation set.

DL Model Accuracy (95% CI) Sensitivity
(95% CI)

Specificity
(95% CI) Precision (95% CI) F1 Score AUC

CNN-based architecture

ShuffleNet V2 93.6% (92.1–94.8%) 90.6% (87.9–92.9%) 95.5% (93.8–96.8%) 93.9% (91.5–95.6%) 0.92 0.93
ShuffleNet V2 + PS 94.3% (92.8–95.4%) 92.5% (90.0–94.4%) 95.8% (94.2–97.1%) 94.4% (92.2–97.1%) 0.93 0.94

Transformer-based architecture

PVT 90.6% (88.8–92.1%) 97.4% (95.3–98.6%) 87.5% (85.1–89.6%) 78.3% (74.4–81.7%) 0.83 0.88
PVT + PS 95.7% (94.5–96.7%) 99.3% (98.4–99.7%) 90.7% (88.0–92.9%) 93.7% (91.8–95.2%) 0.98 0.95

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; CNN, convo-
lutional neural network; DL, deep learning; PS, pseudo-lesion segmentation; PVT, pyramid vision transformer.
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The CNN-based model with PS demonstrated improved sensitivity, specificity, preci-
sion, F1 score, and AUC compared to the model without PS. Additionally, the transformer-
based model with PS exhibited even greater enhancements in performance, surpassing
the transformer-based model without PS by 5.1% in accuracy, 1.9% in sensitivity, 3.2%
in specificity, 15.4% in precision, 0.15 in F1 score, and 0.07 in AUC. From these results,
implementing the proposed PS can improve all evaluation metrics on both CNN-based
and transformer-based DL models for PC classification. In other words, PS can improve
the prediction reliability of the DL models to be more similar to experienced radiologists
(ground truth). Furthermore, Figure 3 shows representative CT images overlaid with heat
maps produced by the gradient-weight class activation map (Grad-CAM) [42].
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Figure 3. Comparison of representative CT images with heat map overlay for tumor regions and
pancreatic regions of DL models with and without PS. Abbreviations: CT, computed tomography;
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The red and yellow regions on the heat maps represent areas activated by the DL
models and have the greatest predictive significance. The results show that incorporating PS
with the DL models increases the model’s ability to capture the tumor pixel-wise region for
CT images with PC and the pancreatic pixel-wise region for CT images for a normal class.

4.3. External Validation Set Classification

A practical DL model should generalize well to the unseen datasets of different
ethnic groups obtained from different institutions. We explored the robustness of the DL
models to the unseen image source by evaluating the DL models that were trained on the
internal training set and validated on the external validation set. The external validation set
contained CT images from two different sources and different characteristics (i.e., a patient’s
ethnicity) from the internal dataset. The experiment results on the external validation set
are summarized in Table 3. The CNN-based model with PS achieved higher accuracy
(82.5% [95% CI: 78.3–86.1%]), sensitivity (81.7% [95% CI: 77.3–85.4%]), specificity (100.0%
[95% CI: 81.7–100.0%]), precision (100.0% [95% CI: 98.6–100.0%]), F1 score (0.90), and AUC
(0.61), compared to the CNN-based model without PS (80.9% [95% CI: 76.5–84.6%], 80.3%
[95% CI: 75.8–84.1%], 100.0% [95% CI: 74.1–100.0%], 100.0% [95% CI: 98.6–100.0%], 0.89,
and 0.57, respectively). In addition, the transformer-based model with PS increased the
accuracy by 4.7%, sensitivity by 4.2%, specificity by 4.8%, precision by 0.4%, F1 score by
0.03, and AUC by 0.18, with an accuracy of 87.8% (95% CI: 84.0–90.8%), sensitivity of 86.5%
(95% CI: 82.3–89.8%), specificity of 100.0% (95% CI: 90.4–100.0%), F1 score of 0.93, and AUC
of 0.80, from the baseline model without PS. These results implied that PS self-supervised
learning can enhance the robustness of the DL models to unseen datasets.
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Table 3. Performance comparison of the DL models with and without PS self-supervised learning for
external validation set.

DL Model Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI) F1
Score AUC

CNN-based architecture

ShuffleNet V2 80.9% (76.5–84.6%) 80.3% (75.8–84.1%) 100.0% (74.1–100.0%) 100.0% (98.6–100.0%) 0.89 0.57
ShuffleNet V2 + PS 82.5% (78.3–86.1%) 81.7% (77.3–85.4%) 100.0% (81.7–100.0%) 100.0% (98.6–100.0%) 0.90 0.61

Transformer-based architecture

PVT 83.1% (78.9–86.6%) 82.3% (77.9–86.6%) 95.2% (77.3–99.1%) 99.6% (98.0–99.9%) 0.90 0.62
PVT + PS 87.8% (84.0–90.8%) 86.5% (82.3–89.8%) 100.0% (90.4–100.0%) 100.0% (98.6–100.0%) 0.93 0.80

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; CNN, convo-
lutional neural network; DL, deep learning; PS, pseudo-lesion segmentation; PVT, pyramid vision transformer.

4.4. Early Stage PC Detection

Table 4 presents the DL models’ early stage PC detection performance, which is
challenging to visualize in CT images, even for the radiologist, and the accurate diagnosis
of early stage PC can increase the survival rate of the patients.

Table 4. Accuracy of the DL models with and without PS self-supervised learning for early stage PC.

DL Model
Accuracy (95% CI)

Stage T1 Stage T2 All Stages

CNN-based architecture

ShuffleNet 51.3% (44.8–57.8%) 68.4% (65.9–70.8%) 93.6% (92.1–94.8%)
ShuffleNet + PS 54.0% (47.5–60.4%) 76.9% (74.6–79.0%) 94.3% (92.8–95.4%)

Transformer-based architecture

PVT 50.4% (47.0–56.9%) 67.1% (64.6–69.9%) 90.6% (88.8–92.1%)
PVT + PS 55.3% (48.8–61.8%) 75.2% (72.7–77.6%) 95.7% (94.5–96.7%)

Abbreviations: CI, confidence interval; CNN, convolutional neural network; DL, deep learning; PC, pancreatic
cancer; PS, pseudo-lesion segmentation; PVT, pyramid vision transformer.

The CNN-based model with PS outperformed the model without PS with an accuracy
of 54.0% (95% CI: 44.8–57.8%) for PC stage T1 and 76.9% (95% CI: 74.6–79.0%) for PC stage
T2. Furthermore, the transformer-based model with PS achieved an accuracy of 55.3%
(95% CI: 48.8–61.8%) for PC stage T1 and 75.2% (95% CI: 72.7–77.6%) for PC stage T2,
which were higher than those of the model without PS that achieved an accuracy of 50.4%
(95% CI: 47.0–56.9%) for PC stage T1 and 67.1% (95% CI: 64.6–69.9%) for PC stage T2. As
shown in Figure S2, the DL models with PS are more accurately focused on predicting
tumor regions than the models without PS. In other words, the incorporated PS with DL
models can increase the prediction accuracy and ability of the model to focus on the tumor
regions more accurately compared to the model without PS.

4.5. Performance Changes Depending on the Size of the Annotated Dataset

To evaluate the robustness of the self-supervised learning with PS for small datasets,
we randomly sampled 10%, 25%, 50%, and 75% of the entire training dataset and trained
PVT with and without PS using these selected datasets. Figure 4 presents performance
changes depending on the size of the annotated dataset. PS shows a remarkable increase in
the classification performance of the DL model for small datasets (10% and 25% datasets).
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Specifically, by adopting the PS, when the DL model was trained with only 10% of the
dataset, the prediction accuracy and sensitivity improved by 20.5% and 37.0%, respectively.
This suggests that the implementation of PS could help overcome the problem of low DL
model accuracy in situations with limited dataset availability.

5. Discussion

Several challenges in PC diagnosis exist. For instance, most PCs have poorly en-
hanced, ill-defined masses with indistinct borders from the surrounding tissues on CT [20].
Occasionally, there are no apparent lesions, and only pancreatic duct dilatation, distal pan-
creatic atrophy, abnormal pancreatic contour, and ductal interruption can be observed [43].
Therefore, radiologists’ expertise and experience in centers dealing with large numbers
of PC cases affect the accuracy of their interpretations [44]. As such, it is challenging to
accurately segment PC in CT images, making it extremely difficult to build a large amount
of high-quality annotated datasets. This acts as a major barrier to developing a DL-based
model for PC diagnosis.

In this study, we successfully developed a novel self-supervised learning algorithm
(PS), which enhances the PC classification performance of the DL models and generalizes
well on new image sources of different patient ethnicities acquired from multiple centers.
The tumor location predicted by the DL models with our PS algorithm showed better
correspondence with radiologist labeling than the DL models without PS. This supports
the potential usefulness of the DL model with PS, particularly in pre-referral centers or
by less experienced radiologists involved in PC diagnosis. Furthermore, the proposed PS
demonstrated promising classification performance, even with small, annotated training
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datasets. Compared to the performance of DL models alone, the DL models with the
proposed PS trained with 10% of the dataset showed 20.5% and 37.0% enhanced accuracy
and sensitivity, respectively, which means that we are also able to build a successful model
with small datasets with this technique.

In addition, the DL models with PS self-supervised learning demonstrated the feasi-
bility of using the DL models with PS to detect early stage PC by outperforming the DL
models without PS. Generally, patients with an early T1/T2 stage have a poor prognosis
compared to those with a late stage [45]. Therefore, the prompt detection of early stage PC
is imperative for early interventions and improved prognosis. However, tumors <2 cm
are often unremarkable on CT and approximately 40% are undetected at diagnosis [46],
with a reported sensitivity as low as 58–77% [47]. We found that the DL model with the
proposed PS achieved comparable results to that of previously reported interpretations
by experienced radiologists and was superior to other learning models in both T1 and T2
tumors, suggesting that it can reduce overlooked or missed diagnoses of early stage PC,
potentially resulting in improved patient outcomes.

This work demonstrates the improved robustness of DL models for new image sources
of different ethnicities obtained from multi-centers. Compared to the performance of DL
models without PS, the DL models with PS achieved higher performance on external
validation, which is the combination of CT images from two different open-source datasets
from the United States. The lower accuracy and sensitivity of the DL models with PS in
the external validation set compared with the internal validation set may contribute to the
differences in race/ethnicity and diverse scanners and settings. The participants in our
internal dataset were entirely Asian patients, and the external dataset consisted of two
different open-source datasets from the United States. The pancreatic content is one of
the major factors influencing race/ethnicity differences [16,48,49]. Furthermore, diverse
scanners at different institutions may also decrease sensitivity and accuracy. However,
since the pancreatic CT protocol is usually recommended for diagnosing pancreatic disease,
this difference between centers could be minimized. Rather, CT images with multicenter
technical variations from a large number of patients reflect a real clinical practice situation
well, suggesting the potential generalizability of our PS model to real-world clinical practice.
Additionally, the external performance showed only a modest decrease compared with
previous DL algorithms, despite ethnic and technological differences [50].

Our study has some limitations. First, without further cancer prediction results from
the variable experience levels of radiologists, the model’s ability to reduce the number of
overlooked lesions could not be substantiated. Second, the training dataset was collected
from seven general tertiary hospitals in only one country (Republic of Korea); thus, there
was little ethnic variation. Therefore, the proposed DL method that was tested on the exter-
nal validation set, acquired from a different distribution in terms of the instrument setting
and patient characteristics, such as age and ethnicity, could not achieve as high accuracy as
when testing with an internal validation set. Thus, to increase the practical feasibility of the
proposed method, we plan to develop a method that increases the robustness of the model
for testing with an external dataset.

6. Conclusions

In conclusion, we developed a DL-based automatic classification algorithm that in-
creases the performance of state-of-the-art DL algorithms and outperforms other DL
algorithms in multiclass, binary, and early stage cancer classifications. Moreover, we
demonstrated that our proposed method could potentially increase the robustness of the
model when trained with a small dataset. Furthermore, the proposed PS self-supervised
learning enhances the ability of the model to classify PC from outside image sources or
different scanners.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15133392/s1, Method S1: Current solutions in limited
annotated data scenarios (including self-supervised learning); Method S2: Pretext task training
dataset generation; Method S3: Deep learning model implementation/training/validation; Table S1:
Demographic and clinical characteristics; Table S2: The network configuration for the DL model;
Figure S1: Example of the segmentation pretext task input images (pancreatic cancer computed
tomography [CT] scans); Figure S2: Comparison of representative computed tomography images
with heat map overlay for tumor regions and pancreatic regions of deep learning models with and
without pseudo-lesion segmentation of early stage pancreatic cancer. Reference [51] is found in
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