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INTRODUCTION

Oral squamous cell carcinoma (OSCC) accounts for ~3% of all 
cancer diagnoses, and is one of the most common head-and-
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neck cancer (HNC).1 There has been a lot of progress in OSCC 
treatment protocols including surgery, radiotherapy and che-
motherapy, nevertheless, the long-term survival rate of patients 
with OSCC unchanged over the past decade.1,2 Therefore, many 
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studies have been conducteded for OSCC treatment. In these 
studies, we found that a combination of inter-reliant processes, 
including cell migration, invasion, surface adhesion, and extra-
cellular matrix (ECM) degradation by matrix metalloproteinas-
es (MMPs), resulted in an impact on the invasive and metastat-
ic mechanism by complicated mechanisms.3,4 Tumor metastasis 
is one of major cause of mortality in cancer patients.5 Thus, pre-
venting cancer cell migration and invasion, which induce tu-
mor metastasis, is crucial for cancer treatment.

Non-thermal plasma (NTP) is an ionized gas consisting of 
electrons, ions, neutral atoms, radicals, and UV photons; also 
called the fourth state of matter after solid, liquids and gases.6 
NTP is known as a novel treatment method for various cancers 
including lung cancer, melanoma and colorectal cancer,7-10 and 
we previously reported that NTP induced apoptosis in HNC via 
the ATM/p53 signaling pathway,11 and caused cell death 
through mitochondrial reactive oxygen species by mitogen-acti-
vated protein kinase.12 It has also been reported that NTP sup-
presses the invasion of thyroid papillary cancer cell through cy-
toskeletal modulation.4 In addition, we reported that NTP induced 
delayed tumor invasion and growth arrest in colorectal and thy-
roid cancer cells.4,12 The anti-cancer effect of NTP in these in-
stances was explained mainly by apoptosis due to the increase 
in reactive oxygen species.13

Many studies showed that biological effects of NTP vary by 
their gas types, their combinations, treatment conditions, and 
treated cell types.13-17 Different plasma gas sources were used 
depending on various research groups and indications includ-
ing anti-infection,18,19 wound healing,20 and anticancer treat-
ment.3,12 However, the inhibitory effects of NTP composed of 
different gases on cancer migration and invasion have not been 
directly compared until now. The purpose of this study is to 
compare the emission spectra between N2, He, and Ar, and the 
NTP suppressing effects on cell migration, cell invasion and 
apoptotic cell death in OSCC according to the type of gas. As far 
as we are aware of this is the first study comparing the anti-can-
cer effects on cell migration and invasion according to NTP gas 
type.

MATERIALS AND METHODS

Cell lines and reagents
Two HNC cell lines originating from human oral cancer 
(MSKQLL1,SCC1483) were provided by Prof. Se-Heon Kim 
(Yonsei University, Korea). MSKQLL1 cells were cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEN): Nutrient Mix-
ture F-12 (DMEM/F12; GIBCO, Carlsbad, CA, USA). whereas 
SCC1483 cells were cultured in Minimum Essential Medium 
(MEM; GIBCO, Carlsbad, CA, USA). The cells were grown in 
MEM with 10% fetal bovine serum and 1% penicillin-strepto-
mycin, respectively. The cultured cells were maintained at 37°C 
in a humidified atmosphere with 5% CO2/95% air.

Fig. 1. Optical emission spectrum (OES) of plasma jet according to gases 
(A) OES of NTP induced by N2 gas, (B) He gas, and (C) Ar gas. NTP, non-
thermal plasma.
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Experimental system specifications and NTP 
treatment
We used a micro-nozzle plasma jet system. The microplasma 
jet nozzle is made up of a plasma generation module and its 
cases. The schematic view of its nozzle is shown on Supple-
mentary Fig. 1A (only online). The main components of plasma 
generation module are a Ni-Co alloy electrode, a glass insulator, 
and an electrode ring. The Ni-Co alloy electrode and glass insu-
lator were fabricated simultaneously by micromachining tech-
nology. Supplementary Fig. 1B (only online) shows the fabrica-
tion process of Ni-Co alloy electrode. A Cr/Au film was deposited 
on a glass wafer as a seed layer for electroplating. The 105 holes 
were arrayed along concentric circles on the Ni-Co alloy elec-
trode and glass insulator, and the diameter and the depth of 
holes were 300 μm and 100 μm, respectively. Cells were grown 
up to 90%– confluence and exposed to NTP (He, Ar, and N2) 3 
cm away from the nozzle for 1, 3, and 5 min. The gas flow rate 

was maintained at 8 L/min, and voltages were 15 KV and 20 
kHz, respectively. We developed and produced NTP with a de-
signed dielectric barrier discharge type to generate a homoge-
nous NTP jet for biomedical research applications, as described 
previously.21,22

Annexin V and propidium iodide (PI) analysis 
of apoptosis cells
Quantitative apoptotic cell death by plasma was detected using 
the Annexin V-propidium iodide (PI) apoptosis detection kit I 
according to the manufacturer’s protocol (BD Biosciences, Bed-
ford, MA, USA), as described previously.12 The cells were treat-
ed with various gas device (Ar, N2, and He) NTP for 1, 3, and 5 
min and then incubated further for 24 h. The cells were har-
vested, washed with cold phosphate-buffered saline (PBS), and 
stained with Annexin V-fluorescein isothiocyanate  and PI at 
room temperature for 15 mins in the dark. The early and late 

Fig. 2. Cell death after 1, 3, and 5 min NTP treatment according to gases (N2, He, or Ar). (A) Annexin V-PI assay and quantification of SCC1483. Bar graph: 
mean±SD of 3 independent experiments. *p<0.05, ***p<0.001. NTP, non-thermal plasma; PI, propidium iodide.
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apoptosis were quantified according to the manufacturer’s in-
structions. Apoptosis was detected using a FACS Aria system 
(BD Biosciences), with the excitation and emission settings of 
488 and 530 nm, respectively.

Scratch wound healing assay
For wound healing assasy, inducible MSKQLL1 and SCC1483 
cells were plated on 12-well plates and grown to confluency 
(>90%), followed by serum starvation for 24 h. Wounds were 
generated by using a sterile 200-mL pipette tip and washing 
with PBS. The cells were then exposed to various gases (N2, Ar, 
and He) of NTP for 3 min. Each experiment was performed in 
triplicate. The wound on the captured image was automatically 
recognized and measured by Metamorph® NX image software 
(Molecular Devices, Sunnyvale, CA, USA) and eluate of crystal 
violet staining was measured under a light microscopy.

Transwell invasion assay
The invasion ability of each cancer cell line was evaluated using 
Transwell (24-well) chambers (pore size 8 μm, Costar, Cam-
bridge, MA, USA), as described previously.7 Initially, type I col-
lagen (8 μg/filter) was dissolved in 100 μL of medium and 
poured into the upper part of the polyethylene filter (pore size, 
8 μm). The wells were coated overnight in a laminar flow hood. 
Then, 1×104 cells (in 100 μL of culture medium) were added to 
the top of the filter in the upper transwell chamber. The cham-
ber was incubated for 24 h in 5% CO2 at 37°C. Finally, attached 
cells in the lower section (invading cells) were stained with he-
matoxylin and eosin (H&E) and counted in four representative 
fields by light microscopy (×200 magnification).

Fig. 2. Cell death after 1, 3, and 5 min NTP treatment according to gases (N2, He, or Ar). (B) Annexin V-PI assay and quantification of MSKQLL1. Bar graph: 
mean±SD of 3 independent experiments. *p<0.05. NTP, non-thermal plasma; PI, propidium iodide.
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Gelatin zymogram assay
MMP-2/9 activity was examined using gelatin zymography as 
described previously.17 The cells were treated with He, Ar, or N2 
plasma for 5 min and incubated for an additional 24 h. The su-
pernatant (100 μL) from each sample was mixed with 1 μL of 
100 mM APMA (4-aminophenylmercuric acetate, Sigma-Al-
drich, St. Louis, MO, USA) and the samples were activated for 1 
h at 37°C incubator. Next, each sample was placed in sample 
buffer (without mercaptoethanol) for 10 min and electropho-

resed in sodium dodecyl sulfate (SDS) page gelatin gels at 125 V 
for 120 min at room temperature using a Novex Xcell II system 
(Thermo Scientific, Waltham, MA, USA). The gels were incu-
bated in renaturation buffer for 60 min at room temperature, 
followed by incubation for 18 h in 100 mL of Novex zymogram 
developing buffer (Thermo Scientific) at 37°C with orbital shak-
ing. The gels were then stained for 3 h with Coomassie brilliant 
blue. After decolorization in 400 mL of methanol, 100 mL of 
acetic acid, and 500 mL of distilled water, images were taken us-

NTP

NTP

Fig. 3. Wound healing assay of 3 min NTP treatment according to gases (N2, He, or Ar) on (A) SCC1483 and (B) MSKQLL1. Data represents mean±SD of 
three independent experiments. *p<0.05, ***p<0.001. NTP, non-thermal plasma.
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ing an image analyzer.

Western blot
For Western blot, reduced protein samples were lysed by RIPA 
buffer containing 150 mM NaCl, 1.0% nonidet-P 40, 0.5% sodi-
um deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0, and protease 
inhibitor cocktail (Roche Applied Science, Vienna, Austria; pH 
7.4), as described previously.12 The following antibodies were 
used for Western blot analysis: anti-focal adhesion kinase 
(FAK), -integrin, -Paxillin, and -α-tubulin (1:1000; Cell Signaling 

Technology, Danvers, MA, USA).

Immunocytochemistry
After culture on a microscope cover glass (Thermo Scientific), 
the cells were treated with He, Ar, and N2 of NTP, and incubated 
for an additional 24 h. The cells were fixed with 4% formalde-
hyde and blocked in bovine serum albumin in 5% PBS for 45 
min. Slides were then incubated with a polyclonal rabbit anti-
p-FAK antibody (1:50; Cell Signaling Technology) for 2 h, washed 
with PBS and incubated with an Alexa 546-labeled goat anti-

NTP

NTP

Fig. 4. Invasion assay of 3 min NTP treatment according to gases (N2, He, or Ar) on SCC1483 (A) and MSKQLL1 (B). Data represent mean±SD of three in-
dependent experiments. **p<0.01, ***p<0.001. NTP, non-thermal plasma.
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rabbit antibody (1:250; Molecular Probe, Eugene, Oregon, CA, 
USA) for 45 min. After rinsing in PBS, Hoechst 33258 (Molecular 
Probe) was added to slides for 15 min to counterstain nuclei. 
Slides were washed with PBS, mounted with Vectashield (Vec-
tor laboratories, Inc., Burlingame, CA, USA), and then visual-
ized using a fluorescence microscope (Carl Zeiss, Oberkochen, 
Germany).

Statistical analyses
All data from three independent experiments are expressed as 
mean±SD. A p<0.05 was considered statistically significant 
(*p<0.05; **p<0.01; ***p<0.001).

The means for the different groups were compared using 
One-way analysis of variance, followed by post hoc Tukey’s test, 
performed using SPSS 20.0 statistical software (SPSS Inc., Chi-
cago, IL, USA). 

RESULTS

The emission spectra of NTP are different depending 
on the type of gas
To estimate various species produced from the plasma jet, we 
performed optical emission spectrum analyses. Optical emis-
sion spectroscopy was conducted from 280 nm to 920 nm wave-
lengths by optical emission spectroscope (SV 2100, K-MAC, 

Daejeon, Korea) (Fig. 1), and the optical emissions of three gas-
es were compared: N2, He, and Ar from a NTP jet at 5 L/min. The 
N2 emission spectrum (Fig. 1A) was settled mostly by the pres-
ence of nitrogen (N) species, including N2 second (290–410 
nm), first positive systems (600–700 nm) and N2

+ first negative 
system (410–600 nm). Moreover, considerably reactive radicals 
were tied to oxygen, such as oxygen ions (O2

+) at 500–600 nm and 
weak atomic N at 747, 822, and 868 nm, were observed. The Ar 
and He NTP emission spectra (Fig. 1B and C) showed that the 
respective plasma species tied to argon and helium were supe-
rior. From Ar and He NTP in the emission spectra, we detected 
hydroxyl radicals and excited oxygen atoms. However, the in-
tensities of oxygen atoms in Ar and He NTP were weaker than 
in N2 NTP. These findings imply that N2 NTP would be more ef-
fective for biomedical applications than He or Ar NTP.

NTP by all types of gas induce apoptotic cell death 
in OSCCs
It has been previously demonstrated that NTP induce apoptotic 
cancer cell death.12 Therefore, to estimate the effects of NTP on 
apoptotic cell death by different gas types, we measured annex-
in V-PI staining according to the processing time of each gas 
(Fig. 2). No significant SCC1483 and MSKQLL1 cell death was 
induced by 1 and 3 min NTP treatment with various gas sources 
(N2, Ar, and He). However, significant cell death in both SCC1483 
(Fig. 2A) and MSKQLL1 (Fig. 2B) cell lines was noted in all three 
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Fig. 4. (C) Gelatin zymography of 3 min NTP treatment according to gases (N2, He, or Ar) for MMP-2/9 on SCC1483 and MSKQLL1. *p<0.05, ***p<0.001. NTP, 
non-thermal plasma; MMPs, matrix metalloproteinases. 
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gas plasmas after 5 min treatments.

N2 NTP suppressed cell migration in OSCC more than 
other gas types
Our previous studies showed that NTP treatement with the 
mixture of O2 and He induces cellular morphological change 
and reduces tumor cell migration.3 To estimate the effect of NTP 

on cell migration in OSCC by gas type, we performed a wound-
healing assay (Fig. 3): NTP treatment for 3 min was used, be-
cause NTP treatment for 5 min induced significant cancer cell 
death (Fig. 2). Thus, cells were exposed to N2, He, and Ar NTP 
for 3 min and incubated for 24 h. Results showed that that NTP 
with all three gases significantly suppressed the migration of 
SCC1483 (Fig. 3A) and MSKQLL1 (Fig. 3B) cells across the de-

Fig. 5. (A) Western blots of p-focal adhesion kinase (FAK), FAK, Integrin (b3), p-paxillin, paxillin, and uncleaved caspase-3 after 3 min NTP treatment ac-
cording to gases (N2, He, or Ar). (B) Immunocytochemical assay for p-FAK after 3 min NTP treatment according to gases (N2, He, or Ar) in SCC1483 and (C) 
MSKQLL1. Scale bar=10 μm. Each figure is representative of three experiments with triplicates. NTP, non-thermal plasma.
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nuded zone compared with control group. Furthermore, N2 
NTP significantly suppressed the migration of both cell lines 
compared with He and Ar NTP.

N2 NTP inhibits cell invasion in OSCC more than other 
gas types
To elucidate the suppressive effect of NTP induced by each gas 
on cellular invasion, we performed an invasion assay (Fig. 4). 
Twenty-four hours after incubation, H&E-stained OSCC cells 
were placed on the undersurface of the membrane. NTP treat-
ment reduced the number of invading cells compared with gas-
only treatment. It should be noted that N2 NTP among N2, He, 
and Ar NTP showed the most deterrent effect on cell invasion 
(Fig. 4A and B). In order to understand the mechanism of sup-
pression effect of NTP on tumor invasion in vitro, we per-
formed the gelatin zymography. Fig. 4C shows visible changes 
in MMP-2/9 activity in NTP-treated SCC1483 and MSKQLL1 
cells (Fig. 4C), with the most significant reduction by N2 NTP 
among the gases.

N2 NTP downregulates protein expressions of FAK, 
intergrin and paxillin in OSCC
FAK, integrin, and paxillin are well known proteins involved in 
cell migration and invasion.23 Thus, to elucidate the suppressive 
effect of NTP on migration, the expressions of T-FAK, p-FAK, 
integrin β3, t-paxillin, and p-paxillin were examined by western 
blot anlysis. As shown in Fig. 5A, the levels of p-FAK and integ-
rin β3 in N2 NTP treated cells were significantly lower than 
those in He and Ar NTP in both cell lines. Moreover, immuno-
cytochemistry confirmed that intracellular distribution of p-
FAK underwent the most significant alteration in N2 NTP-treat-
ed SCC1483 and MSKQLL1 cells (Fig. 5B and C), respectively.

DISCUSSION

Recently, many research groups are actively involved in plas-
ma medicine, and NTP has already been used widely in in-
dustrial and medical applications. According to previous 
studies, NTP is a novel therapeutic method which can induce 
cell death and inhibit cell migration and invasion in various 
cancers including HNC,2,11,12 and many studies showed the 
anticancer effect of NTP via various mechanisms including cell 
cycle arrest and apoptosis induction.7,8,10 We previously, report-
ed that NTP exert a tumor suppression by inhibiting migra-
tion and invasion of cancer cell.4 However, the results were 
not reproducible due to different experimental system condi-
tions.11,12,24 In this study, we compared the NTP effects on can-
cer cell survival, migration, and invasion with different gases 
(N2, He, and Ar). To our best knowledge, it is the first time to 
explore optimized NTP condition which induces the best an-
ticancer effect in OSCC cells.

To optimize the time of NTP treatment, we performed an-

nexin V-PI staining after 1, 3, and 5 min of NTP treatment using 
N2, Ar, and He as gas sources. Fine min NTP treatment by all the 
three gases induced significant apoptotic cell death in both 
SCC1483 and MSKQLL1 cell lines. Therefore, to clearly evaluate 
the effect on cancer cell migaration and invasion, we selected 3 
min NTP treatment condition.

MMPs are main members of proteases to degrade the ECM 
components. MMP activity is associated with tumor growth 
and metastasis. MMP-2/9 are highly expressed in colon, lung, 
prostate and breast cancer, and increased MMP-2/9 activity is 
due to the activation of FAK/ERK signaling.25-27 Control of MMP 
is closely related to reducing the cancer cell invasion. In the 
present study, to compare the NTP suppression effect on tumor 
invasion by gas type in vitro,23 gelatin zymography was per-
formed to confirm the MMP-2/9 activity, and the results of the 
zymography showed that NTP treatment by all the gases re-
duced MMP-2/9 expressions. In particular, N2 NTP induced the 
decrease more than other gases.

We also observed the inhibitory effect of NTP by various gas-
es on OSCC cell invasion via the FAK and MMP system. FAK is 
a non-receptor tyrosine kinase whose expression increased in 
various invasive and metastatic cancer including OSCC.28 FAK 
signalings are also correlated to tumor invasion during cancer 
metastasis by ECM degradation.29 The connection of FAK and 
MMP-2/9 pathway has been shown previously;30 FAK promotes 
cell migration via the process of combination with Src and sub-
sequent paxillin phosphorylation.31 In cancer cells, the inhibi-
tion of FAK decreases MMP-9 secretion.32 Our present results 
are in agreement with earlier studies, since the cell migration 
was inhibited by suppression of FAK and paxillin signaling after 
NTP treatment with various gases, even though the most prom-
inent results were induced by N2 NTP.

In summary, N2 NTP suppressed OSCC cell migration and 
invasion more strongly than the other two gases, and most po-
tently reduced FAK, integrin β3, and paxillin expression, which 
play key roles in tumor migration. N2 NTP also significantly at-
tenuated the activity of MMP-2/9, suggesting that N2 might be 
more useful gas than Ar or He NTP for cancer treatment by NTP.
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