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Objective: To assess the feasibility and accuracy of 
synthetic MRI compared to conventional T1 weighted and 
multi-echo spin-echo (MESE) sequences for obtaining T2 
values in the knee joint at 3 Tesla.
Methods: This retrospective study included 19 patients 
with normal findings in the knee joint who under-
went both synthetic MRI and MESE pulse sequences 
for T2 quantification. T2 values of the two sequences 
at the articular cartilage, bone marrow and muscle 
were measured. Relative signal intensity (SI) of each 
structure and relative contrast among structures of 
the knee were measured quantitatively by T1 weighted 
sequences.
Results: The mean T2 values for cartilage and muscle 
were not significantly different between MESE pulse 
sequences and synthetic MRI. For the bone marrow, 
the mean T2 value obtained by MESE sequences (124.3 
± 3.6 ms) was significantly higher than that obtained 

by synthetic acquisition (73.1 ± 5.3 ms). There were no 
significant differences in the relative SI of each struc-
ture between the methods. The relative contrast of bone 
marrow to muscle was significantly higher with conven-
tional T1 weighted images, while that for bone marrow to 
cartilage was similar for both sequences.
Conclusion: Synthetic MRI is able to simultaneously 
acquire conventional images and quantitative maps, and 
has the potential to reduce the overall examination time. 
It provides comparable image quality to conventional 
MRI for the knee joint, with the exception of the bone 
marrow. With further optimization, it will be possible to 
take advantage of the image quality of musculoskeletal 
tissue with synthetic imaging.
Advances in knowledge: Synthetic MRI produces images 
of good contrast and is also a time-saving technique. 
Thus, it may be useful for assessing osteoarthritis in the 
knee joint in the early stages.
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InTRODuCTIOn
MRI provides high soft tissue contrast and can be used to 
assess the internal derangement of joints. However, MRI 
scans can take a long time, and unlike CT, the signal inten-
sities (SIs) obtained with conventional MRI are not quan-
titative. Therefore, the intensities of pathological processes 
obtained by this technique can neither be used as a compar-
ison for follow-up examinations nor can they be compared 
to reference normal values.1

SyMRI is a synthetic MRI method based on a quantita-
tive approach in which a single saturation recovery turbo 
spin echo sequence is used to estimate absolute physical 
properties, proton density (PD), longitudinal relaxation 

rate and transverse relaxation rate, including correction 
for B1 inhomogeneities.2 Rather than predetermining the 
acquisition parameters such as echo time (TE), repetition 
time (TR) and inversion time, to maximize tissue contrast, 
synthetic MRI produces a free range of synthetic weight-
ings based on a single sequence through mathematical 
inference.3–5 The quantitative sequences used in synthetic 
MRI measure inherent tissue properties (T1, T2 and PD), 
and these measurements can be used for individual patient 
follow-up and comparison between patients.

The clinical use of synthetic MRI has been demonstrated 
in the brain in various disease processes.1,2,6–8 However, 
there have been no reports regarding its application to the 
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Table 1. MR parameters

Imaging parameter Synthetic Conventional T1 MESE
Acquisition plane Sagittal Sagittal Sagittal

Field of view (cm) 16 16 16

Matrix 320 × 224 320 × 224 320 × 224

Section thickness (mm) 4.0 4.0 4.0

Slices 24 24 24

Interslice gap (mm) 0.4 0.4 0.4

Flip angle 120 90 90

TR (ms) 4000a 640–800 800

TE (ms) 22, 90a 7 7.2, 14.4, 21.6, 28.8, 36, 43.2, 50.4, 57.6

Echo train length 12 3 1

Bandwidth (Hz/pixel) 81.37 162.77 244.14

Number of excitations 1 2 1

Parallel factor 2 1 1

Acquisition time 5 min 36 s 1 min 40 s 9 min 3 s

MESE, multi-echo spin-echo; TE, echo time; TR, repetition time.
aAcquisition parameters. Synthetic images were generated using TR and TE matching the conventional or traditional sequences.

musculoskeletal system. In this study, we assessed the image 
contrast of synthetic MRI compared to corresponding conven-
tionally obtained clinical MRIs of the knee joint. This study was 
performed to assess the T2 values in the knee, as measured by 
synthetic MR sequences compared to 2D fast spin-echo (FSE) 
multi-echo spin-echo (MESE) sequences. The secondary aim was 
to evaluate synthetic MRI in a clinical setting by assessing the rela-
tive SI and contrast compared to conventional T1 weighted images.

MeThODS AnD MATeRIAlS
Case selection
This study received Institutional Review Board approval, and the 
requirement for informed consent was waived. The study popu-
lation consisted of 218 consecutive patients who had undergone 
knee MRI from March 2016 to May 2016. The inclusion criteria 
were normal knee MRI findings in the routine protocol sequences 
with additional synthetic sequences, comparable conventional 
T1  weighted sequences and 2D FSE MESE sequences used for 
T2 mapping. Patients with the following abnormal findings were 
excluded: osteoarthritis with or without meniscal degeneration 
or tear (n = 103), substantial trauma with fracture or ligament 
injury (n = 44), inappropriate MR protocol (n = 23), previous 
operative status (n = 11), septic or inflammatory arthritis  
(n = 10) and bone or soft tissue tumour (n = 8). Thus, a total of 19 
patients were included and evaluated in this retrospective study. 
The mean age was 39.3 years (range, 17–54 years); 12 patients 
were males and 7 were females.

MR parameters
All of the MR studies were acquired on a 3.0 T MR unit 
(Discovery MR750W; GE Healthcare, Waukesha, WI) using a 
transmit-receive quadrature knee coil (GE Healthcare). Sagittal 
T1  weighted, 2D FSE MESE sequences for T2 mapping and 

synthetic MR sequences were acquired during clinical MRI 
in addition to the conventional MRI sequences in the knee at 
our institution. The imaging parameters of each sequences are 
summarized in Table 1.

Synthetic MRI was performed using MAGiC, which is a custom-
ized version of SyntheticMR’s SyMRI software. The MAGiC 
sequences are 2D FSE multi dynamic, multi-echo sequences that 
use an interleaved slice-selective 120° saturation and multi-echo 
acquisition, and images are obtained with different combina-
tions of TE and saturation delay time. Each acquisition led to 
eight complex images per section with different combinations of 
four saturation delays and two TEs. The acquisition time of the 
synthetic MR sequences was 5 min, 36 s. Sagittal conventional 
T1  weighted and MESE sequences for T2 values were acquired 
with section thickness and in-plane resolution matching those 
of the synthetic MR sequences. Imaging parameters (TR, TE) 
were also selected to provide  visual image contrast similar to the 
synthetic MR images. T2 quantification sequences were obtained 
using a sagittal MESE acquisition with eight TEs (7.2, 14.4, 21.6, 
28.8, 36, 43.2, 50.4 and 57.6 ms). The T2 map from MESE was 
obtained using dedicated software (Discovery 750w, T2 Map; GE 
Healthcare). Synthetic T1  weighted images and T2 maps were 
created from raw quantification data with SyMRI software in the 
GE 3T scanner console. Figure 1 shows examples of a conven-
tional T1 weighted image, a T2 map and synthetic MR images.

Image analysis
Quantitative assessment was performed using a picture archiving 
and communication system and Advantage Workstation (GE 
Healthcare). In all of the subjects, the regions of interest (ROIs) 
were measured for cartilage, bone and muscle.9,10 ROIs on a 
sagittal plane were positioned on the superior lateral trochlear 
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Figure 1. Example of conventional and synthetic images of the 
knee. (a) Conventional T1 weighted image (TR/TE = 650/7). 
(b) T2 map from the MESE sequences (scale 25–75 ms). Stand-
ard conventional images are shown in the top row (a, b), and 
the corresponding synthetic images for the same patients 
are shown in the bottom row (c, d). Regions of interest were 
placed within the superior lateral trochlear cartilage (not 
shown), medial femoral condyle in the first full slice from the 
intercondylar notch for bone (1) and gastrocnemius muscle 
medial head (2). MESE, multi-echo spin-echo; TE, echo time; 
TR, repetition time.

Figure 2. Means and standard deviations of T2 values for mul-
ti-echo spin-echo and synthetic MR sequences.

cartilage, medial femoral condyle in the first full slice from 
the intercondylar notch for bone and gastrocnemius muscle  
medial head, as done in previous studies.9,11 The circular ROI for 
cartilage measurement was 3 mm in diameter, and that for the 
bone marrow and muscle was 9 mm in diameter.12 ROIs for each 
patient were identical in size and placed in identical positions 
on matching sections. Each measurement was performed by 
two radiologists with 14 and 9 years of experience, respectively. 
To secure reproducibility, tiny dots were marked and recorded 
at the point of the previously measured area by the first reader. 
The second reader measured the values with ROIs around the 
dots.13 We measured the mean T2 values at each ROI on the T2 
map generated from both MESE and synthetic MR sequences, 
and compared the differences in T2 values between the two 
sequences. The means and standard deviation of the SI within 
each ROI on conventional and synthetic T1 weighted MR images 
were recorded. The relative SI and relative contrast were used for 
direct comparison of image quality between the conventional 
and synthetic T1 weighted images. The relative SI of each struc-
ture was calculated as SI/SD, and the relative contrast of struc-
ture A (a) to structure B (b) was calculated as (SIa–SIb) / (SDa

2 + 
SDb

2)1/2 14–16

Statistical analysis
To assess differences between measurements of T2 values, 
we generated Bland–Altman plots  for plotting the difference 

between measurements (y-axis) and mean of measurements 
(x-axis). The horizontal dashed lines reflect the mean difference 
between measurements (2 × SD of difference in measurements). 
The  interobserver agreement of T2 values between MESE and 
synthetic MR sequences was quantified using the intraclass 
correlation coefficient. The r values were classified as follows: 
1.0, perfect agreement; 0.81–0.99, almost perfect agreement; 
0.61–0.80, substantial agreement; 0.41–0.60, moderate agree-
ment; 0.21–0.40, fair agreement; and ≤ 0.20, slight agreement.17 
Wilcoxon’s signed-rank test was used to determine if there were 
statistically significant differences in relative SI and relative 
contrast obtained with conventional and synthetic T1 weighted 
images. Statistical analyses were performed using the SPSS (ver. 
22; IBM corp., Armonk, NY) and MedCalc (ver. 16; MedCalc, 
Ostend, Belgium) software packages. In all of the analyses,  
p < 0.05 was taken to indicate statistical significance.

ReSulTS
For cartilage and muscle, the mean T2 values in the MESE 
sequences were slightly lower than those in the synthetic MR 
sequences. However, the differences were not statistically signif-
icant (cartilage, 36.7 ± 3.4 ms and 37.2 ± 3.5 ms, p = 0.686; 
muscle, 34.2 ± 2.7 ms and 34.3 ± 2.0 ms, p = 0.863). The mean T2 
value of bone marrow was significantly higher for MESE (124.3 
± 3.6 ms, p < 0.001) than for synthetic MR sequences (73.1 ± 5.3 
ms) (Figure 2). Bland–Altman plots indicated good agreement 
between the sequences, as demonstrated by the small differences 
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Figure 3. Bland–Altman plots of T2 values of cartilage (a) bone marrow (b) and muscle (c). The y- and x-axes indicate the differ-
ence and average between multi-echo spin-echo and synthetic MR sequences, respectively. The blue lines show the means of 
differences, while the 95% confidence intervals are denoted by the pairs of dotted red lines.

Table 2. Intraclass correlation coefficient for agreement between MESE and synthetic MR sequences for T2 values

MESE Synthetic
Cartilage Spearman correlation (ρ) 0.740 (0.326–0.900) 0.731 (0.303–0.897)

p-value 0.003 0.004

Bone marrow Spearman correlation (ρ) 0.763 (0.386–0.909) 0.762 (0.393–0.908)

p-value  < 0.001 0.002

Muscle Spearman correlation (ρ) 0.814 (0.516–0.928) 0.655 (0.121–0.866)

p-value < 0.001 0.016

MESE, multi-echo spin-echo.
Numbers in parentheses are 95% confidence intervals.

between T2 values of cartilage and muscle. The mean differences 
in T2 values were -0.5 ± 3.5 ms at the cartilage and 0 ± 4.7 at 
the muscle (Figure  3). The  interobserver agreements for each 
parameter are summarized in Table 2. The T2 values for cartilage, 
bone marrow and muscle exhibited substantial or almost perfect 
agreement.

The mean values for the relative SI of each structure and rela-
tive contrast of bone marrow to cartilage and bone marrow to 
muscle are shown in Table  3. There were no significant differ-
ences among the structures, although the mean relative SI for 
cartilage and muscle were slightly higher for the conventional 
T1 weighted sequences, except in the bone marrow. The relative 
contrast of bone marrow to cartilage in the synthetic sequences 
was similar to that for the conventional T1 weighted sequences. 
The conventional T1  weighted sequences showed significantly 
higher relative contrast of bone marrow to muscle compared to 
the synthetic MR sequences (p = 0.011).

DISCuSSIOn
The MAGiC sequence is very fast; the data are acquired in 
a  single scan, the image contrast can be adjusted after scan-
ning by manipulating TR, TE and inversion time, and quanti-
tative maps provide absolute values of the physical properties of 
patients. The majority of the literature regarding synthetic MRI 
and its clinical application has focused on the pathology of the 

brain. In our initial experience with this technique in the knee 
joint, we showed that synthetic MRI in the knee yields similar 
T1 weighted contrast and T2 values as conventionally acquired 
images, suggesting that it may be useful for evaluating the 
internal derangement of the knee joint.

MRI acquisition time is critical in the musculoskeletal area. 
Compared to other anatomical structures, the PD-weighted 
sequences, which has excellent signal distinction among fluid, 
hyaline cartilage and fibrocartilage are essential for the assess-
ment of joints. Furthermore, an additional imaging plane that 
has an oblique orientation for evaluating structures such as liga-
ments may add time to the examination and limit workflow. 
Several authors18–22 have reported that a 3D sequence capable 
of reformatting in various planes is a promising method for 
imaging the musculoskeletal system and would allow faster 
isotropic acquisition of musculoskeletal MR images. Previous 
studies23,24 have shown that the mDixon technique rapidly 
generates multiple images in a single acquisition, and the use 
of mDixon images as substitutes for T2  weighted images and 
fat-suppressed T2 weighted images would reduce the total exam-
ination time. In addition, Andreisek et al25 reported that image 
generation with the synthetic TE technique was a potentially 
viable alternative to standard T2  weighted images obtained at 
different TEs for evaluation of meniscus and articular cartilage 
in the knee joint. Where previous studies have focused mostly 
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Table 3. Comparison of the relative SI of each structure and relative contrast between conventional T1 weighted and synthetic MR 
images

Conventional T1 Synthetic T1 p-value
Relative SI

  Cartilage 17.2 ± 7.5 15.2 ± 6.1 0.370

  Bone marrow 12.1 ± 3.8 13.8 ± 3.1 0.075

  Muscle 13.3 ± 4.9 12.0 ± 3.8 0.418

Relative contrast

  Bone marrow to cartilage 7.3 ± 2.9 6.7 ± 2.0 0.624

  Bone marrow to muscle 7.5 ± 2.0 6.1 ± 1.6 0.011

SI, signal intensity.
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