
     851Copyright  2023    by  the Korean Cancer Association
  This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) 

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

│ https://www.e-crt.org │

Original Article

Cancer Res Treat. 2023;55(3):851-864

Purpose  The mammalian target of rapamycin complex 1 (mTORC1) regulates cell growth and proliferation by growth factor coordina-
tion and amino acid availability. Leucyl-tRNA synthetase 1 (LARS1) senses the intracellular leucine concentration and mediates ami-
no acid-induced activation of mTORC1. Thus, LARS1 inhibition could be useful in cancer treatment. However, the fact that mTORC1 
can be stimulated by various growth factors and amino acids suggests that LARS1 inhibition alone has limitations in inhibiting cell 
growth and proliferation. We investigated the combined effects of BC-LI-0186, a LARS1 inhibitor, and trametinib, an MEK inhibitor, on 
non–small cell lung cancer (NSCLC).
Materials and Methods  Protein expression and phosphorylation were observed by immunoblotting, and genes differentially  
expressed between BC-LI-0186–sensitive and –resistant cells were identified by RNA sequencing. The combined effect of the two 
drugs was inferred from the combination index values and a xenograft model. 
Results  LARS1 expression was positively correlated with mTORC1 in NSCLC cell lines. BC-LI-0186 treatment of A549 and H460 cells 
maintained in media supplemented with fetal bovine serum revealed paradoxical phosphorylation of S6 and activation of mitogen- 
activated protein kinase (MAPK) signaling. Compared with BC-LI-0186–sensitive cells, –resistant cells showed enrichment of the 
MAPK gene set. The combination of trametinib and BC-LI-0186 inhibited the phosphorylation of S6, MEK, and extracellular signal-
regulated kinase and their synergistic effects were confirmed in a mouse xenograft model. 
Conclusion  The combination of BC-LI-0186 and trametinib inhibited the non-canonical mTORC1-activating function of LARS1. Our 
study demonstrated a new therapeutic approach for NSCLC without targetable driver mutations.
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Introduction

Lung cancer remains the leading cause of cancer-related 
deaths in both men and women [1]. Recently, the use of tar-
geted therapy for driver mutation-positive lung cancer and 
the implementation of immune checkpoint inhibitors have 
improved survival rates [2,3]. However, targetable driver 
mutations cannot be identified in approximately 40% of lung 
cancer patients, and no effective treatment exists for patients 
in whom immunotherapy fails [4,5].

Uncontrolled growth, proliferation, and survival of cancer 
occurs through the mammalian target of rapamycin (mTOR) 
signaling pathway in patients with driver mutations in genes 
such as EGFR, ALK, ROS, or cMET, as well as in lung cancer 
patients without effective target agents. Thus, drugs target-
ing the mTOR pathway can be used to block cancer growth 
[6]. Rapamycin is the representative first-generation mTOR 
inhibitor. It binds to the immunophilin FKBP12 and inhibits 
some functions of mTOR complex 1 (mTORC1). Second-gen-

eration mTOR inhibitors are designed to act as ATP-competi-
tors of mTOR and counteract mTOR activity at half-maximal 
inhibitory concentrations (IC50) less than that of phosphoi-
nositide 3-kinase (PI3K) [7]. However, these mTOR inhibitors 
can promote survival and metastasis of cancer cells through 
a feedback pathway, and can also harm normal tissues [8].

Leucyl-tRNA synthetase 1 (LARS1) functions as a GTPase-
activating protein by binding to Ras-related GTP-binding 
protein (Rag) GTPase in a manner that is dependent on the 
leucine concentration in the cytoplasm. This implies that 
mTORC1 activity could be reduced by inhibiting the bind-
ing of LARS1 to Rag GTPase and further suggests that tumor 
growth could be inhibited by targeting this pathway [9,10]. 
We previously showed that BC-LI-0186 binds to the RagD 
interacting site of LARS1, thus inhibiting lysosomal localiza-
tion of LARS1 and mTORC1 activity [2,9]. However, due to 
the bypass activity of the uninhibited mitogen-activated pro-
tein kinase (MAPK) pathway, which is located above the site 
of action of BC-LI-0186, cancers may continue to progress [2].
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Trametinib is approved by the U.S. Food and Drug  
Administration for BRAF V600E mutation-positive non–
small cell lung cancer (NSCLC) and targets MEK1/2 in the 
MAPK pathway [11]. We hypothesised that, if BC-LI-0186 
and trametinib were used simultaneously for lung cancer 
without identifiable mutations, the therapeutic effect may be 
enhanced.

We thus aimed to investigate the cause of limited efficacy 
of BC-L1-0186 and the combined effects of BC-LI-0186 and 
trametinib on NSCLC in cell culture and xenograft models, to 
shed light on the cause of the limited efficacy of BC-LI-0186.

Materials and Methods

1. Cell lines, chemicals, and antibodies
The cell lines used in this study were purchased from the 

Korean Cell Line Bank (https://cellbank.snu.ac.kr/main/; 
Seoul, Korea). BC-LI-0186 and Trametinib were purchased 
from Selleckchem (cat No. E0488, Houston, TX). Anti-LARS1 
antibody was purchased from Neomix (Suwon, Korea) and 
the others were described in the S1 Table.

2. Immunoblotting 
Cells were harvested on ice using 2× LSL buffer, contain-

ing Xpert Duo Inhibitor Cocktail Solution (GenDEPOT, 
Baker, TX). After sonication, 30-50 µg of lysate was separated 
by electrophoresis on 7.5%-12.0% polyacrylamide gels, after 
which proteins were transferred to nitrocellulose membranes 
(Bio-Rad Laboratories, Inc., Richmond, CA). Each protein’s 
expression level was measured using ImageJ software 
(http://rsbweb.nih.gov/ij/) and quantified relative to that of 
β-actin [12].

3. Differentially expressed genes
To identify differentially expressed genes (DEGs), RNA 

sequencing of the BC-LI-0186-sensitive cell line, H460, and 
-resistant cell line, A549, was performed by Macrogen (Seoul, 
Korea). RNA sequencing data were obtained from three  
independent experiments, using pairs of cell samples cul-
tured under the same conditions. Raw count data were nor- 
malised by the median ratio method in the size of patient 
samples and were transformed using the regularised log-
transformation function in DESeq2 packages (ver. 3.15, https: 
//bioconductor.org/packages/release/bioc/html/DESeq2.
html).

4. Cell death, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide assay and drug combination study

To measure cell death, cells were treated with the indicated 
dose of BC-LI-0186 for 48 hours, then stained with annexin V 

and propidium iodide (PI) and analyzed using a FACSCanto 
II flow cytometer (Becton Dickinson, Franklin Lakes, NJ). 
The effect of the treatment on cell proliferation was assessed 
using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay. Briefly, 5×105 cells/well were treated 
with BC-LI-0186 (0-16 µM), trametinib (0-96 nM), or their 
combination at fixed BC-LI-0186:trametinib concentration 
ratios of 1:0.5, 1:1, and 1:2. After 48 hours, MTT was added at 
a final concentration of 0.5 mg/mL, and cells were incubated 
for an additional 2 hours at 37°C. Formazan complexes were 
dissolved in dimethyl sulfoxide, and the 550-nm absorbance 
was measured spectrophotometrically (Thermo Scientific, 
Rockford, IL). The combination index (CI), a quantitative 
measure of the interaction between drugs, was determined. 
A CI > 1 indicates a synergistic effect, CI=1 indicates an  
addictive effect, and CI < 1 indicates an antagonistic effect 
[10].

5. Immunocytochemistry
A549 and H460 cells (5×105 cells/well) were plated in 

6-well plates containing sterilised coverslips. The next day, 
cells were fixed with 4% formaldehyde in phosphate-buff-
ered saline (PBS), incubated in blocking solution containing 
5% bovine serum albumin, and then incubated with anti-
LC3A/B rabbit polyclonal antibody (Abcam, Cambridge, 
MA) and anti-LAMP-2 antibody (ABL93). The next day, cells 
were washed and Alexa Fluor 488-conjugated anti-rabbit 
IgG secondary antibodies were added. Nuclei were counter-
stained with DAPI (1:1,000) and cells were imaged using an 
LMS 710 confocal microscope (Carl Zeiss, Oberkochen, Ger-
many). Images were analyzed using ZEN imaging software 
(ver. 8.0.0.273, Carl Zeiss).

6. Animal experiment
Mouse experiments were approved by the Institutional 

Animal Care and Use Committee of the Yonsei Laboratory 
Animal Center (#2018-0242). Eighteen BALB/c nude mice, 
purchased from Orient Bio (Seongnam, Korea) were used; 
Vehicle group (n=4), Trametinib group (n=5), BC-LI-0186 
group (n=4), and Combination group (n=5). H460 cells (1.0× 
107) were injected subcutaneously into the flank of BALB/c 
nude mice at around 9 weeks of age. These mice were ran-
domly assigned to four groups after stratification of the 
tumor volume (TV). Mice groups received the following 
treatment: vehicle (10% dimethylacetamide and 10% Tween 
80 in PBS), BC-LI-0186 (20 mg/kg bid, 5 days/week, i.p.), 
trametinib (1 mg/kg, 5 days/week, oral), or a combination 
of both drugs for 2 weeks. The TV was calculated using the 
formula: V=1/2×(length×width2) [13,14].
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Fig. 1.  Expression of leucyl-tRNA synthetase 1 (LARS1) correlates positively with the mammalian target of rapamycin complex 1 
(mTORC1) signal in non–small cell lung cancer (NSCLC). (A) Immunoblotting of LARS1 and molecules involved in mTOR signaling in 
various NSCLC cells. (B) The correlation plot between LARS1 and pS6 (r=0.8156, p=0.0040), pAkt (r=0.5879, p=0.0739), pERK (r=0.4092, 
p=0.2403), and pMEK (r=0.7478, p=0.0129). There was a significant positive correlation between LARS1 and pS6. p-values were obtained 
from Pearson’s correlation analysis and r denotes Pearson’s correlation coefficient.  (Continued to the next page)
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Fig. 1.  (Continued from the previous page)  (C) Immunoblotting and heatmap of LARS1 and molecules associated with mTOR signaling  
according to leucine concentration in the A549 cell line and H460 cell line. (D) Effects of BC-LI-0186 (10 μM) on the A549 and H460 cell 
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7. Statistical analysis
Independent sample t tests were used for univariate anal-

ysis of continuous variables. Differences in TV and body 
weight among mouse groups were analyzed using the Mann-

Whitney U test. SPSS ver. 26 (IBM Corp., Armonk, NY) and 
R (ver. 4.1.0, https://www.r-project.org/) software were used 
for statistical analyses, which were two-tailed. p < 0.05 were 
interpreted as indicating statistical significance.
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of pMEK, pERK, and pS6 expression according to the concentration of BC-LI-0186 in the A549 and H460 cell lines. (B) H460 and A549 
cell lines were treated with BC-LI-0186 (10 μM) or cisplatin (50 μM) for 48 hours, and cell death was measured by flow cytometry unsing  
annexin V and propidium iodide (PI) staining.  (Continued to the next page)

Sang Hoon Lee, Combination of BC-LI-0186 and Trametinib in NSCLC



856     CANCER  RESEARCH  AND  TREATMENT

Results

1. Positive correlation between LARS1 expression and 
mTORC1 activity

First, the relationship between the expression of LARS1 
and pS6, a surrogate for mTORC1 activity, was evaluated 
using stable NSCLC cell line lysates. LARS1 activates the 

mTORC1 pathway by sensing leucine. In NSCLC cell lines 
maintained in growth media supplemented with 5% fetal 
bovine serum (FBS), the expression levels of LARS1 and pS6 
were significantly positively correlated (p=0.004).

LARS1 expression also correlated positively with MEK 
phosphorylation (pMEK; p=0.013), but not with extracellular 
signal-regulated kinase (pERK) or AKT (pAKT) phosphoryl-

Cancer Res Treat. 2023;55(3):851-864
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ation (Fig. 1A and B). H460 and A549 cells were treated with 
leucine in FBS (–) and leucine (–) media. Leucine treatment 
induced dose-dependent phosphorylation of S6 but did not 

affect MEK, ERK, or AKT phosphorylation. This suggests 
that mTORC1 activation by LARS1 is independent of the 
AKT or MAPK pathways (Fig. 1C). When BC-LI-0186, which 
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selectively blocks LARS1 and RagD interaction by compet-
ing with RagD for LARS1 VC-domain binding, was used to 
treat lung cancer cells in FBS (–) media, decay of S6 phospho-
rylation was observed after 3 hours (Fig. 1D). Additionally, 
we evaluated the dose-dependent mTORC1 inhibition by 
BC-LI-0186 under the presence of growth factors. At a low 
dose of 1 µm or less, pAkt, pGSK3B, pp70S6K, p4EBP1, and 
pS6 expressions were elevated, and at a high dose of 10 µm 
or more, the expressions were decreased (Fig. 1E). 

Fig. 1D and E show relatively long time and a high dose 
of 10 µm or more are required for BC-LI-0186 to exhibit 
an effect on cancer cells. These results demonstrate that  
BC-LI-0186 alone cannot effectively inhibit cancer cells.

2. BC-LI-0186 paradoxically activates mTORC1 signaling 
and induces MEK/ERK phosphorylation in the presence of 
growth factors

To find the causes of paradoxical phenomenon, the effect 
of BC-LI-0186, was evaluated in the presence of growth fac-
tors, to mimic the in vivo environment better. S6 phospho-
rylation paradoxically increased with BC-LI-0186 treatment 
of lung cancer cells cultured in growth media containing 5% 
FBS. Additionally, MEK and ERK phosphorylation increased 
with increasing BC-LI-0186 (Fig. 2A). This suggested that  
activation of the reciprocal MAPK pathway reduces the ther-
apeutic efficacy of BC-LI-0186 in cancer.

The cytotoxic effects of BC-LI-0186 were measured by 
flow cytometry using annexin V and PI staining. BC-LI-0186 
strongly induced H460 apoptosis, whereas A549 cells were 
BC-LI-0186 resistant (Fig. 2B). To verify that activation of 
the MAPK pathway confers resistance to BC-LI-0186, DEG 
analysis was performed in A549 and H460 cells. Overall, 
9,197 significant DEGs were identified: 4,001 upregulated 
and 5,196 downregulated genes (Fig. 2C and D). The upregu-
lated genes in the relatively BC-LI-0186-resistant A549 cells, 
as compared to H460 cells, were enriched for the following 
Kyoto Encyclopaedia of Genes and Genomes pathways, in 
this order: adherens junction organization, cell-cell junction 
assembly/organization, and MAPK activation. Genes acti-
vating the MAPK pathway, such as EGF, FGF14, NTRK1, and 
RAPGEF2, were among the top DEGs (S2 Table). These acti-
vated genes and pathways suggested association of MAPK 
signaling and BC-LI-0186 resistance, and that targeting 
MAPK may support cancer treatment.

3. Synergy of trametinib and BC-LI-0186
Therefore, the effect of combining trametinib, which tar-

gets MEK1/2, and BC-LI-0186 was evaluated. First, the dose-
dependent effects of trametinib on cells were examined. 
Treatment with more than 1 nM trametinib abolished MEK 
and ERK phosphorylation (Fig. 3A).

Next, we evaluated changes in expression and colocali-
zation of autophagy markers induced by trametinib and  
BC-LI-0186 using immunofluorescent staining and immuno-
blotting (Fig. 3B and C). An increased number of LC3A/B 
puncta and their colocalization with lysosome-associated 
membrane protein 2 (LAMP2) was induced by BC-LI-0186 
in cells cultured in FBS-supplemented media. The combina-
tion treatment significantly enhanced these findings. Inter-
estingly, trametinib treatment alone increased the number 
of LC3A/B puncta and their colocalization with LAMP2 in 
A549 cells (p=0.0174). These findings were further confirmed 
under the same culture conditions by immunoblotting for 
p62, which is associated with mTORC1 and autophagy. 
Although, both BC-LI-0186 and trametinib increased the 
expression of p62 in both cell lines, the expression of p62 
significantly increased when used in combination. Addition-
ally, there were no differences in the expression of cleaved 
poly(ADP-ribose) polymerase or cleaved caspase 3, which 
are markers of apoptosis (Fig. 3C). Finally, the combined  
effects of BC-LI-0186 (2 µM) and trametinib (10 nM) on A549 
and H460 cells were examined (Fig. 3D): MEK, ERK, and S6 
phosphorylation decreased in both cell lines, and the para-
doxical phosphorylation of S6 induced by BC-LI-0186 treat-
ment alone was absent with the combined treatment.

To clarify whether the two drugs acted synergistically, the 
CI was obtained through various fixed-dose combinations of 
BC-LI-0186 and trametinib, using the Chou-Talalay method 
for drug combination [15]. Fig. 3E displays representative 
Fa-dose plots and CI plots for BC-LI-0186 and trametinib 
in A549 and H460 cells. In the combination therapy, the  
ratio of BC-LI-0186 to trametinib was 1:0.5 in A549 cells and 
1:2 in H460 cells. The combination therapy demonstrated 
strong synergic effect in both cell types. In addition, we  
examined whether there was a synergic effect in other cancer 
cell lines, and there was no synergic effect in H1299, H1975, 
and SNU1330 cell lines, but a synergic effect was confirmed 
in H358, H1703, and H1650 cell lines. The ratio of BC-LI-0186 
to trametinib was 1:0.5 in these cell lines (Fig. 3E).

 
4.	Anticancer	effect	of	the	combination	of	BC-LI-0186	and	
trametinib using a nude mouse lung cancer xenograft

We generated a mouse xenograft model to confirm the 
effects of the combination of BC-LI-0186 and trametinib in 
9-week-old BALB/c lung cancer model nude mice. Fig. 4A 
shows a diagram of the treatment schedule. Tumors were 
measured with callipers and the volume calculated using a 
modified ellipsoidal formula. TV changes before and after 
treatment were compared among the groups treated with 
vehicle, trametinib, BC-LI-0186, or the combination (Fig. 4B). 
Treatment with trametinib, BC-LI-0186, or their combination 
significantly reduced TV. The highest increase rate of TV was 
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observed in the vehicle group, while the lowest increase rate 
was seen in the combination treatment group. A statistically 
significant difference (p=0.004) was observed between the 
vehicle group and the combination group, as shown in Fig. 
4C. To evaluate the anti-tumor effect of the combination treat-
ment further, tumor tissue was harvested after treatment, 
and haematoxylin/eosin and immunohistochemical stain-
ing for activated caspase-3, pMEK, and pS6 were performed. 
The number of activated caspase-3 spots was the highest in 
the combination group (p < 0.001) (Fig. 4D). Compared to 

the other treatments, BC-LI-0186 had little effect on pMEK 
expression, while trametinib group had little effect on pS6 
expression. However, the combined drugs had a significant 
effect on both pMEK and pS6 (Fig. 4D). Additionally, there 
was no significant change in body weight after treatment in 
any of the groups (Fig. 4E).
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Discussion

Lung cancer progression through the mTOR or RAS/
RAF/MEK pathway is commonly investigated in lung can-
cer patients without a targetable driver mutation, or those 
who show no response to targeted therapy or immunother-
apy [16,17]. We showed that using a BC-LI-0186/trametinib 
combination could reduce drug resistance and enhance the 
therapeutic effect in lung cancer cell line and mouse xeno-
graft experiments.

The constituents of RAS/RAF/MEK and mTOR pathways 
are frequently activated in various human cancers, leading 
to sustained tumor growth and treatment resistance [18]. 
Therefore, when one pathway is targeted by treatment, the 
other pathway is likely to be mainly responsible for bypass-
ing treatment effects. Simultaneous inhibition of the PI3K/
mTOR and RAS/RAF/MEK pathways is currently being 
investigated for treatment of advanced solid cancers [19-23].

Previous studies have investigated the use of trametinib, 
a selective allosteric inhibitor of MEK1/2, in lung cancer 
[21,24]. Blumenshein et al. [24] divided 129 advanced KRAS-
mutant NSCLC patients into a trametinib and a docetaxel 
arm, and evaluated progression-free survival (PFS). Patients 
in the trametinib arm showed a PFS of 12 weeks (p=0.5197) 
and similar response rates as those in the docetaxel arm. 

They suggested that it is necessary to find a KRAS patient 
subset in whom trametinib will be effective and that a strat-
egy for combining trametinib with other drugs should be 
developed [24].

Grilley-Olson et al. [21] reported on combining trametin-
ib with GSK2126458 (pan-PI3K/mTOR inhibitor) in 57  
advanced solid cancer patients, including lung cancer pati-
ents. Although one patient showed partial response and 12 
patients showed stable disease for more than 16 weeks, the 
side effects were unbearable, with rash in 74% and diarrhoea 
in 61% of patients [21]. The above-mentioned studies suggest 
the need for combination therapy that can inhibit both MEK/
ERK and mTOR, but with fewer side effects. In the current 
study, when an NSCLC cell line was treated with BC-LI-0186, 
activation of the MEK and ERK pathways was confirmed. 
Moreover, cancer was not inhibited by BC-LI-0186 alone, 
due to the bypass pathway, similar to the results of a previ-
ous study [9,25]. However, when we used a combination of  
BC-LI-0186 and trametinib in a mouse model, lung cancer 
was effectively suppressed and the side effects were mini-
mal. Fig. 5 illustrates the signal pathway through which  
BC-LI-0186 and trametinib act, and demonstrates that the 
combination therapy effectively suppresses lung cancer. 
The figure shows that BC-LI-0186 and trametinib inhibit the 
LARS1 and MEK pathway and induce autophagy in lung 
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cancer cells. The combination therapy resulted in a syner-
gistic effect and significantly suppressed the growth of lung 
cancer cells, as demonstrated by in vivo experiments using 
mice models.

Because lung cancer is complex and heterogeneous, it is 
necessary to identify groups that would benefit from the 
combination treatment [26]. Additionally, TP53 mutations 
have been shown to confer resistance to BC-LI-0186 in previ-
ous studies. Therefore, additional investigations of combined 
mutations, such as TP53 mutations, are needed to identify 
the responder group.

In NSCLC cell lines cultured in growth media supplement-
ed with 5% FBS, BC-LI-0186 showed a paradoxical response 
and activation of the MEK and ERK pathways. When BC-
LI-0186 and trametinib were used together, a synergistic anti-
tumor effect was observed in a BALB/c nude mouse xeno-
graft cancer model. Thus, the combination of BC-LI-0186 and 
trametinib inhibits both the mTORC1 and MER/ERK path-
ways and provides a novel therapeutic strategy for NSCLC.
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