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Abstract
Background: Carbohydrate antigen (CA) 19–9 is a known pancreatic cancer 
(PC) biomarker, but is not commonly used for general screening due to its low 
sensitivity and specificity. This study aimed to develop a serum metabolites-based 
diagnostic calculator for detecting PC with high accuracy.
Methods: A targeted quantitative approach of direct flow injection-tandem mass 
spectrometry combined with liquid chromatography–tandem mass spectrome-
try was employed for metabolomic analysis of serum samples using an Absolute 
IDQ™ p180 kit. Integrated metabolomic analysis was performed on 241 pooled 
or individual serum samples collected from healthy donors and patients from 
nine disease groups, including chronic pancreatitis, PC, other cancers, and be-
nign diseases. Orthogonal partial least squares discriminant analysis (OPLS-DA) 
based on characteristics of 116 serum metabolites distinguished patients with PC 
from those with other diseases. Sparse partial least squares discriminant analy-
sis (SPLS-DA) was also performed, incorporating simultaneous dimension re-
duction and variable selection. Predictive performance between discrimination 
models was compared using a 2-by-2 contingency table of predicted probabilities 
obtained from the models and actual diagnoses.
Results: Predictive values obtained through OPLS-DA for accuracy, sensitivity, 
specificity, balanced accuracy, and area under the receiver operating characteristic 
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1   |   INTRODUCTION

Pancreatic cancer (PC) is one of the most fatal malignant 
diseases of the gastrointestinal tract.1 Margin-negative 
resection is essential for ensuring long-term survival.2 
However, less than 20% of patients with PC are resect-
able, and most patients are found to have advanced or 
metastatic disease at the initial stage of diagnosis, result-
ing in an overall 5-year survival rate of less than 10%.3 No 
improvement in survival has been noted in patients with 
PC during the past few decades, with PC likely to become 
the second most deadly form of human cancer by 2030.4

However, advances in surgical approaches, surgical pan-
createctomy techniques, perioperative management, and 
potent chemotherapeutic agents are expected to improve 
the long-term survival of patients with PC5–8 as long as 
more resectable PC could be found in real clinical practice. 
Therefore, many investigators have attempted to identify 
potential biomarkers for the early detection of PC; however, 
due to their unsatisfactory diagnostic performance within 
the general population, there are currently no clinically rel-
evant biomarkers for the accurate diagnosis of PC.9

The integration of metabolomics in cancer biomarker 
research, including that for PC, is an emerging field.10,11 
Metabolomics is the latest type of multi-omics approaches 
that have included genomics, transcriptomics, and pro-
teomics, and focus on phenotypic characteristics rather 
than genetic profiles.12 Metabolomics methodology aims to 
identify and estimate the relative changes in abundance of 
endogenous metabolites during conditions of health and dis-
ease, which can then be used to support the identification 
of biomarkers and potential targets and the development of 
new therapeutics for the diagnosis and treatment of PC.13 
Furthermore, the metabolomic characteristics of patients 
with PC may reflect the functional aspects of PC as a whole.14

Based on a targeted metabolomic approach using high 
performance liquid chromatography (HPLC), we previ-
ously investigated the potential role of serum metabolites 
for predicting the survival of patients with resected PC. 

We found that among 157 serum metabolites detected 
preoperatively in patients with resected PC, serum carbo-
hydrate antigen (CA) 19–9 and three phosphatidyl cho-
line derivatives (PC.aa.C38_4, PC.ae.C42_5, and PC.ae.
C38_6) can be used preoperatively to estimate 1-year 
disease-free survival.15 This provides a preoperative risk 
estimation and additional information useful during the 
decision-making process regarding surgical resection.

In the current study, we aimed to develop a highly 
accurate diagnostic serum metabolomic panel for detec-
tion of PC with high accuracy. Such a preoperative serum 
metabolite-based diagnostic tool could provide all-in-
one clinical advantages to both the detection of PC and 
in predicting early recurrence of resected PC. This would 
support the potential of providing tailored treatment ap-
proaches for patients with resectable PC.

2   |   MATERIALS AND METHODS

2.1  |  Study population

Two separate clinical enrollments were used in the 
study to obtain blood samples for metabolomic analy-
sis. The first enrollment was the source of blood samples 
from a development cohort of 186 individuals that were 
collected by the Biobank, Severance Hospital, Seoul, 
South Korea. Among the first enrollment participants, 
ten patients with PC had missing values and were ex-
cluded from the study. Thus, the development cohort 
used for model building included blood samples from 
176 individuals of which 57 were patients with PC and 
119 were patients with other diseases (Figure  1). The 
second cohort was used as the validation cohort and it 
consisted of 65 individuals who provided bioresources to 
the National Biobank of Korea, The Center for Disease 
Control and Prevention, Republic of Korea. The valida-
tion cohort included 14 patients with PC and 51 patients 
that had other diseases.

curve (AUC) were 0.9825, 0.9916, 0.9870, 0.9866, and 0.9870, respectively. The 
number of metabolite candidates was narrowed to 76 for SPLS-DA. The SPLS-
DA-obtained predictive values for accuracy, sensitivity, specificity, balanced ac-
curacy, and AUC were 0.9773, 0.9649, 0.9832, 0.9741, and 0.9741, respectively.
Conclusions: We successfully developed a 76 metabolome-based diagnostic 
panel for detecting PC that demonstrated high diagnostic performance in differ-
entiating PC from other diseases.

K E Y W O R D S
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2.2  |  Sample preparation

The blood samples were collected after a fasting period 
of at least 8 h prior to sampling. The serum separating 
tube were centrifuged to separate the serum from the 
blood clot (4°C, 10 min, 2500 × g) within 40 min after 
sample collection. Then 1 mL serum was aliquoted into 
the pre-cooled and labeled storage vials. The serum 
aliquots were frozen immediately and stored below 
−80 °C until use.

2.3  |  Detection of preoperative serum 
metabolites

A targeted quantitative approach was used to analyze the 
serum samples for metabolomic analysis. Specifically, di-
rect flow injection-tandem mass spectrometry (FIA-MS/
MS) combined with liquid chromatography–tandem 
mass spectrometry (LC–MS/MS) was performed using an 
Absolute IDQ™ p180 Kit (BIOCRATES Life Sciences AG, 
Innsbruck, Austria) as described previously.15 The kit was 
able to simultaneously quantify 188 metabolites, includ-
ing 21 amino acids, 21 biogenic amines, 40 acylcarnitines, 
90 glycerophospholipids (14 lysophosphatidylcholines 
and 76 phosphatidylcholines [PC.Aa.Cx:y or PC.ae.Cx:y]), 
15 sphingolipids, and 1 hexose. Cx:y denotes the lipid side 
chain configuration, where x indicates the number of car-
bons in the side chain and y indicates the number of un-
saturated chains. Among these 188 metabolites, 21 amino 
acids and 21 biogenic amines were analyzed by LC–MS/
MS while the other 146 metabolites were analyzed by 
FIA-MS/MS. The serum samples were processed in strict 
accordance with the manufacturer's instructions. Briefly, 
10 μL of the supplied internal standard solution was added 
to each well of a 96-well extraction plate, followed by 
10 μL of each serum sample being added to the appropri-
ate wells. The plate was dried under a gentle stream of 
nitrogen. The samples were derivatized with phenyliso-
thiocyanate and eluted with 5 mM ammonium acetate in 
methanol. The samples were diluted with 40% methanol 
in water (15:1) for LC–MS/MS analysis or a proprietary 
running solvent provided by BIOCRATES Life Sciences 
AG (20:1) for FIA-MS/MS. The samples were analyzed 
in 96-well plates using a QTRAP 5500 mass spectrometer 

(SCIEX, Woodlands Central, Singapore) coupled with an 
Agilent 1290 series HPLC system. For LC–MS/MS analysis 
in positive mode, 5 μL of the sample extract were injected 
onto an Agilent Zorbax Eclipse XDB C18, 3.0 × 100 mm, 
3.5 μm protected by an SecurityGuard pre-column C18, 4 
× 3 mm (Phenomenex) at 50°C using a 9.5 min solvent gra-
dient employing 0.2% formic acid in water (mobile phase 
A) and 0.2% formic acid in acetonitrile (mobile phase B). 
LC–MS/MS data were imported into the SCIEX applica-
tion Analyst™ for peak integration, calibration, and con-
centration calculations. Twenty microliters of the sample 
extract were used in the FIA-MS/MS in positive mode to 
measure acylcarnitines, glycerophospholipids, and sphin-
golipids, while hexoses were monitored in a subsequent 
run in negative mode. All FIA injections were carried out 
using the mobile phase prepared by Biocrates Solvent I in 
isocratic mode. The LC and MS settings for LC–MS/MS 
and FIA-MS/MS mode are described in Tables S5 and S6. 
Analytical performance was monitored by three levels of 
quality control (QC) samples (low, middle, high concen-
tration). Three levels of QC samples were placed at the 
beginning of analytical run. For the QC sample with mid-
dle concentration (QC2), additional control samples were 
placed at the middle and end of analytical run. The LC–
MS/MS data from Analyst™ and FIA-MS/MS data were 
analyzed using MetIDQ™ software (BIOCRATES Life 
Sciences AG). To correct for batch effect for both FIA-MS/
MS and LC–MS/MS data, we normalized the data using 
QC2 results of each batch. The following conditions were 
set as data quality requirements for each metabolite: (1) 
the coefficient of variance for the metabolites in the qual-
ity control samples was <25%; and (2) 100% of the meas-
ured metabolite concentrations in the subject samples 
was greater than the limit of detection. A total of 72 of the 
188 metabolites were not detected in one or more samples 
and were therefore excluded from the subsequent analysis 
(Table S4). The remaining 116 metabolites were selected 
for statistical analysis.

2.4  |  Model development and statistical  
analysis

Linear discriminant analysis was used for classification, 
and a five-fold cross-validation method was used to select 

F I G U R E  1   Flow diagram of the 
study cohorts.
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the tuning parameters of the model. This approach was 
used to separate the datasets into training and test data-
sets, to prevent overestimation, and estimate some param-
eters of the model. Discriminant models were developed 
and internally validated using the development cohort. 
These models were then applied to the validation cohort 
for external validation.

The types of diseases of the patients and the corre-
sponding number of patients are shown in Table 1. In the 
development cohort, 57 patients had PC. The remaining 
119 individuals were normal cases or had other types of 
diseases, including gallbladder stones, chronic pancreati-
tis, pancreatic neuroendocrine tumors, thyroid papillary 
carcinomas, breast cancer, lung cancer, or hepatocellular 
carcinomas. Meanwhile, the validation cohort consisted 
of disease groups that were similar to those in the devel-
opment cohort (Table 1).

Continuous variables are presented as median val-
ues with interquartile ranges (IQR) and were com-
pared using the Mann–Whitney U-test. Because serum 
metabolites are highly correlated with each other, or-
thogonal partial least squares discriminant analysis 
(OPLS-DA) was used to distinguish patients with PC 
from those with other diseases based on characteristics 
of the serum metabolites.16 Variable importance in the 
projection (VIP) ranks indicated the overall contribu-
tion of each metabolite to the OPLS-DA model. The 
variables with a VIP >1.0, and Spearman's correlation 
coefficient of |r| > 0.265 were considered to be associ-
ated with discrimination for patients with PC. The p-
value of the correlation coefficient was adjusted using 
Bonferroni's correction. Default 7-cross validation and 
response permutation testing with 200 permutations 
were conducted to evaluate the quality and validity of 
the OPLS-DA model. Moreover, the OPLS-DA mod-
els were assessed for predictability through p-values 
obtained from analysis of variance of cross-validated 

residuals (CV-ANOVA) implemented by SIMCA (ver-
sion 17.0)17 Metabolites responsible for metabolic dif-
ferences between two groups were visually represented 
in corresponding loading and score plots. We also 
performed sparse partial least squares discriminant 
analysis (SPLS-DA), which incorporated simultane-
ous dimension reduction and variable selection, and 
the OPLS-DA method using all serum metabolites.18 A 
classification algorithm developed by Chung and Keles 
was used to perform SPLS-DA, which is advantageous 
in terms of utilization as it can be predictive in the di-
agnosis of cancers using only select significant serum 
metabolites, not all variables.18 In the current study, 
five-fold cross-validation was used to determine the op-
timal threshing parameter and the optimal number of 
hidden components. To analyze the constructed models 
using a net benefit approach, decision curve analysis 
was implemented.19

Performance of the predicted probability obtained 
from the model was compared with the actual diag-
noses using two-by-two contingency tables to evaluate 
sensitivity, specificity, accuracy, balanced accuracy, and 
the area under the receiver operating characteristic 
curve (AUC) for the development cohort and external 
validation cohort datasets. In addition, a 1000 boot-
strap procedure was employed for internal validation. 
Significance was confirmed according to whether the 
95% confidence interval for the differences between 
the two measurements included zero. Statistical sig-
nificance was set at p < 0.05. All statistical analyses 
were performed using the R package, version 4.1.1 (R 
Foundation for Statistical Computing, Vienna, Austria). 
All patients provided written informed consent prior to 
surgery, and the study was approved by the Institutional 
Review Board of Yonsei University College of Medicine 
(registration date: June 18, 2019; registration number: 
4–2019-0415).

Disease
Development cohort 
(n = 176)

Validation 
cohort (n = 65)

Pancreatic ductal adenocarcinoma 57 14

Normal 27 26

Gallbladder stone 20 7

Chronic pancreatitis 24 12

Pancreatic neuroendocrine tumor 9 2

Thyroid papillary carcinoma 10 –

Breast cancer 10 –

Lung cancer 10 –

Hepatocellular carcinoma 9 2

Stomach cancer – 2

T A B L E  1   Development and validation 
dataset construction.
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3   |   RESULTS

3.1  |  Discrimination of PC cases from 
controls using the OPLS-DA model

Serum samples from 176 individuals in the development 
cohort set were evaluated. Of the 188 metabolites meas-
ured, 72 were excluded based on the data quality crite-
ria. As a result, a total of 116 endogenous metabolites 
were included in the statistical analysis. A representa-
tive OPLS-DA scatterplot of this classification model 
based on the development set is shown in Figure 2. Very 
little overlap between the cases and controls was ob-
served. The permutation test statistically assessed class 
separation of the metabolites by measuring and visu-
ally illustrating the statistical significance of case and 
control metabolome separations. There was a lack of 
overfitting among patients with PC vs. those without PC 
in the development set. The performance indices based 
on 200 permutations were R2Y = 0.769 and Q2Y = 0.708, 
and the p-value for CV-ANOVA was <0.001. SPLS-DA 

was then performed to highlight the metabolites that 
best discriminated cases of patients with PC from the 
controls. Seventy-six metabolites with coefficients in 
SPLS-DA are listed in Table 2.

3.2  |  Diagnostic performance of the 
OPLS-DA and SPLS-DA models using the 
development set

OPLS-DA was performed to identify metabolites respon-
sible for the discrimination between patients with PC 
and those with other diseases. As shown in Figure 2, the 
OPLS-DA score plot showed a clustering tendency be-
tween the two groups, indicating obvious metabolic dif-
ferences. Similar results were found in the heat map as 
well, indicating that the metabolomic expression of each 
group was different (Figure S1).

According to the predictive variation between the me-
tabolites and data subjects, 55.2% (R2X cum) of the total 
explained variation in the dataset accounted for 76.9% of 

F I G U R E  2   Plots of the OPLS-DA model. (Top left) OPLS-DA score plot of serum metabolic profiles on samples from pancreatic cancer 
patients and others. (Top right) Loading plot of the OPLS-DA model. Metabolites with the most extreme values for each loading are shown 
in black and labeled. (Bottom left) Permutation test plot on the OPLS-DA model. Seven-cross-validation and two hundred permutations 
were performed, and the results of R2 and Q2 values were dotted. (Bottom right) Relationship between VIP values obtained from the OPLS-
DA model and adjusted p-values from Pearson correlation test. OPLS-DA, orthogonal partial least squares-discriminant analysis; VIP, 
variable importance in the projection.
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T A B L E  2   List of 76 selected metabolites and coefficients in the SPLS-DA.

Metabolite Coefficient Metabolite Coefficient Metabolite Coefficient

Alanine −0.91 lysoPhosphatidylcholine acyl C18:1 0.37 Phosphatidylcholine 
acyl-alkyl C36:4

−0.08

Asparagine −2.13 lysoPhosphatidylcholine acyl C18:2 −1.43 Phosphatidylcholine 
acyl-alkyl C38:0

0.07

Aspartate −0.27 lysoPhosphatidylcholine acyl C20:3 −0.04 Phosphatidylcholine 
acyl-alkyl C38:1

−0.79

Citrulline −1.96 lysoPhosphatidylcholine acyl C20:4 −0.71 Phosphatidylcholine 
acyl-alkyl C38:2

−0.83

Glutamate −0.24 Phosphatidylcholine diacyl C32:0 4.28 Phosphatidylcholine 
acyl-alkyl C38:3

−0.16

Glycine −1.63 Phosphatidylcholine diacyl C32:1 3.11 Phosphatidylcholine 
acyl-alkyl C38:4

0.18

Histidine −1.67 Phosphatidylcholine diacyl C32:2 −0.99 Phosphatidylcholine 
acyl-alkyl C40:1

−1.86

Isoleucine −1.32 Phosphatidylcholine diacyl C32:3 0.71 Phosphatidylcholine 
acyl-alkyl C40:3

−0.23

Leucine −1.91 Phosphatidylcholine diacyl C34:2 0.66 Phosphatidylcholine 
acyl-alkyl C40:4

−0.37

Lysine −0.93 Phosphatidylcholine diacyl C34:4 −0.20 Phosphatidylcholine 
acyl-alkyl C40:5

0.47

Ornithine −1.56 Phosphatidylcholine diacyl C36:2 0.05 Phosphatidylcholine 
acyl-alkyl C42:1

0.05

Phenylalanine −0.97 Phosphatidylcholine diacyl C36:3 0.74 Phosphatidylcholine 
acyl-alkyl C42:2

−0.77

Proline −2.63 Phosphatidylcholine diacyl C36:6 −0.10 Phosphatidylcholine 
acyl-alkyl C42:3

−0.66

Serine −1.29 Phosphatidylcholine diacyl C38:1 −2.02 Phosphatidylcholine 
acyl-alkyl C44:3

−0.82

Threonine −3.16 Phosphatidylcholine diacyl C40:2 −0.45 Phosphatidylcholine 
acyl-alkyl C44:4

−0.83

Tryptophan −1.17 Phosphatidylcholine diacyl C40:3 −0.16 Phosphatidylcholine 
acyl-alkyl C44:5

−0.20

Tyrosine −0.96 Phosphatidylcholine diacyl C42:1 0.42 Phosphatidylcholine 
acyl-alkyl C44:6

0.17

Valine −1.85 Phosphatidylcholine diacyl C42:2 −0.38 Hydroxysphingomyelin 
C22:1

−1.54

Creatinine −1.12 Phosphatidylcholine diacyl C42:4 0.13 Hydroxysphingomyelin 
C22:2

−1.13

trans-4-Hydroxyproline −0.87 Phosphatidylcholine diacyl C42:5 −0.18 Hydroxysphingomyelin 
C24:1

−1.05

Taurine −0.85 Phosphatidylcholine acyl-alkyl 
C32:2

0.37 Sphingomyelin C16:1 0.01

Acetyl-L-carnitine 2.27 Phosphatidylcholine acyl-alkyl 
C34:2

0.21 Sphingomyelin C18:1 0.65

lysoPhosphatidylcholine 
acyl C16:0

−0.09 Phosphatidylcholine acyl-alkyl 
C34:3

0.07 Sphingomyelin C24:0 −0.56

lysoPhosphatidylcholine 
acyl C16:1

0.50 Phosphatidylcholine acyl-alkyl 
C36:1

−0.02 Sphingomyelin C26:1 2.81
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the variance in group separation (R2Y cum). The cross-
validated predictability of the discrimination analysis 
model was 70.8% (Q2Y cum). Based on the positive R2Y 
and negative Q2Y values of the permutation test, the 
performance of the OPLS-DA model was satisfactory. In 
addition, the OPLS-DA loading plot in Figure  2 shows 
the distribution of discriminating metabolites, with me-
tabolites far from the origin in each direction being in-
dicated as black points. Finally, the adjusted p-values for 
the Spearman's correlation coefficients and VIP values 
were evaluated (Figure  2). Significant metabolites sat-
isfying the adjusted p-value <0.05 and VIP value >1.0 
were identified. The results are summarized in Tables S1 
and S2.

After establishing the OPLS-DA and SPLS-DA classifi-
cation models using the development cohort, the discrim-
ination performance of the models were confirmed. The 
number of hidden components and threshold parameter 
for the SPLS-DA model were estimated as 3 and 0.7, re-
spectively. As a result, only 76 metabolites were included 
in the SPLS-DA model, while all 116 metabolites were 
used in the OPLS-DA model. The performance of the 
OPLS-DA and SPLS-DA classification models are sum-
marized in Table 3. OPLS-DA identified 56 true positives, 
one false positive, and one false negative for a sensitivity 
of 0.9825, specificity of 0.9916, and accuracy of 0.9886. 
Meanwhile, SPLS-DA identified 55 true positives, two 
false positives, and two false negatives for a sensitivity 
of 0.9773, specificity of 0.9649, and accuracy of 0.9773. 

Similarly, the balanced accuracy, defined as the average 
of sensitivity and specificity, was 0.9870 for OPLS-DA, 
which was slightly larger than the balanced accuracy bal-
anced accuracy of 0.9741 for SPLS-DA. The AUC values 
for OPLS-DA and SPLS-DA were 0.9870 and 0.9741, re-
spectively. Overall, the OPLS-DA model using all 116 me-
tabolites yielded better results for the development cohort 
compared with that of the SPLS-DA model. However, the 
SPLS-DA model, for which 40 metabolites were excluded, 
also demonstrated good classifying ability.

Interval validation was also performed using bootstrap-
ping samples to determine whether similar performance 
was observed for the OPLS-DA model compared with that 
of the SPLS-DA model, even though only 76 metabolites 
used for the SPLS-DA model. The internal validation was 
performed using 1000 bootstrapping samples, and the 95% 
confidence intervals differences checked. It was deter-
mined that there was no difference between the OPLS-DA 
and SPLS-DA models if the differences in the 95% confi-
dence intervals were zero. As shown in Table 4, the dif-
ferences in terms of accuracy, sensitivity, specificity, and 
balanced accuracy between the OPLS-DA and SPLS-DA 
models were 0.012, 0.018, 0.008, and 0.013, respectively. 
As the differences between the two models were positive 
values, the performance of the OPLS-DA model was con-
firmed to be good. However, because the differences in 
the 95% confidence between the two models were positive 
and tend to zero, the differences could not be shown to be 
statistically significant. The lower boundary of the differ-
ence in sensitivity between the two models being 0 was 
the result of the internal validation dataset not contain-
ing many patients with PC. Even the AUC values included 
confidence intervals of zero, confirming the differences 
between the two models were not statistically significant. 
Therefore, the performance of the SPLS-DA model with 
only 76 metabolites, was similar to that of the OPLS-DA 
model using all 116 serum metabolites.

The selected 76 metabolites for the SPLS-DA model 
and their coefficients are shown in Table  2. Based on 
the coefficient values of the standardized metabolites, 
the SPLS-DA model had the largest absolute coefficient 
values for “Phosphatidylcholine diacyl C32:0” (4.28), 
“Threonine” (−3.16), and “Phosphatidylcholine diacyl 
C32:1” (3.11).

Metabolite Coefficient Metabolite Coefficient Metabolite Coefficient

lysoPhosphatidylcholine 
acyl C17:0

−0.28 Phosphatidylcholine acyl-alkyl 
C36:2

−0.28

lysoPhosphatidylcholine 
acyl C18:0

−0.01 Phosphatidylcholine acyl-alkyl 
C36:3

−0.29

Abbreviation: SPLS-DA, sparse partial least squares discriminant analysis.

T A B L E  2   (Continued)

T A B L E  3   Performance of classifiers for metabolites from the 
development cohort (n = 176).

OPLS-DA 
with 116 
metabolomes

SPLS-DA 
with 76 
metabolomes

Accuracy 0.9886 0.9773

Sensitivity 0.9825 0.9649

Specificity 0.9916 0.9832

Balanced accuracy 0.9870 0.9741

AUC 0.9870 0.9741

Abbreviations: AUC, area under the receiver operating characteristic curve; 
OPLS-DA, orthogonal partial least squares discriminant analysis; SPLS-DA, 
sparse partial least squares discriminant.
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8  |      CHOI et al.

3.3  |  Diagnostic performance of the 
OPLS-DA and SPLS-DA models using the 
validation set

The performance of the models using the development 
cohort was evaluated compared with that using the 
validation cohort. The validation cohort contained 65 
patients, including 14 patients that had PC. As shown 
in Table  5, the specificity of both the OPLS-DA and 
SPLS-DA models was greater than 0.9; however, the sen-
sitivities of the OPLS-DA and SPLS-DA models were only 
0.7143 and 0.6429, respectively. As a result, the balanced 
accuracy value was smaller than the accuracy value. The 
classification ability of the OPLS-DA and SPLS-DA mod-
els were also evaluated and found to be good with AUC 
values of approximately 0.8. The fact that there were only 
14 patients with PC in the validation cohort resulted in 
somewhat less accurate results compared with that in 
the development cohort. However, the overall perfor-
mance, except for sensitivity, was acceptable. Decision 
curve analysis graphically showed the clinical useful-
ness of each model based on the range of threshold prob-
abilities (x-axis) and the net benefit (y-axis), the decision 
curves of the training set (solid line) and validation set 
(dotted line) were expressed, respectively (Figure 3). The 

net benefit of the training set was consistently positive in 
both OPLS-DA and SPLS-DA, and the decision curves for 
both models were similar. Even in the validation set, the 
decision curves had positive values up to the threshold 
up to 80%.

3.4  |  Relevant Metabolites

In the development cohort, 57 of the 176 patients had PC, 
while the remaining 119 patients had other various can-
cers and diseases. The baseline characteristics of the study 
patients in the development cohort are shown in Table S3. 
Among the 116 metabolites shown in Table S3, there were 
95 metabolites that demonstrated statistical significance 
between the two groups, accounting for approximately 
82% of the metabolites. All metabolites starting with 

T A B L E  5   Performance of classifiers for metabolites from the 
external validation cohort (n = 65).

Method

OPLS-DA 
with 116 
metabolomes

SPLS-DA 
with 76 
metabolomes

Accuracy 0.8769 0.8615

Sensitivity 0.7143 0.6429

Specificity 0.9216 0.9216

Balanced accuracy 0.8179 0.7822

AUC 0.8179 0.7981

Abbreviations: AUC, area under the receiver operating characteristic curve; 
OPLS-DA, orthogonal partial least squares discriminant analysis, SPLS-DA, 
sparse partial least squares discriminant analysis.

F I G U R E  3   Decision curve analysis. The y-axis measures the 
net benefit and the x-axis indicates the probability threshold to 
classify a diagnosis of pancreatic cancer. The solid and dashed lines 
represent the net benefit of the validation and test sets, respectively. 
The decision curves for the strategies of treating all subjects and 
treating no subject are expressed as ‘All’ and ‘None’, respectively. 
The higher curve at any given threshold probability is the optimal 
discriminant model to maximize net benefit. OPLS-DA, orthogonal 
partial least squares-discriminant analysis.

T A B L E  4   Performance of classifiers for metabolites from the 1000 bootstrapping internal validation data set (n = 176).

OPLS-DA with 117 
metabolomes

SPLS-DA with 76 
metabolomes Difference

Accuracy (95% CI) 0.988 (0.972, 1) 0.977 (0.955, 0.994) 0.012 (−0.006, 0.034)

Sensitivity (95% CI) 0.982 (0.941, 1) 0.964 (0.905, 1) 0.018 (0, 0.067)

Specificity (95% CI) 0.992 (0.974, 1) 0.983 (0.958, 1) 0.008 (−0.018, 0.037)

Balanced accuracy (95% CI) 0.987 (0.963, 1) 0.974 (0.944, 0.996) 0.013 (−0.004, 0.039)

AUC (95% CI) 0.987 (0.964, 1) 0.974 (0.944, 0.996) 0.013 (−0.016, 0.045)

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval, OPLS-DA, orthogonal partial least squares discriminant 
analysis; SPLS-DA, sparse partial least squares discriminant analysis.
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      |  9CHOI et al.

‘lysoPC.a.C' or ‘SM.OH.C' demonstrated significance. 
In addition, all 76 metabolites selected for the SPLS-DA 
model were statistically significant (Table 5).

3.5  |  Applying random sampling to the 
diagnostic panel

Since the dependent variables used in this study were di-
chotomous data, not continuous data, the PC diagnosis 
was predicted by generalizing through the inverse logit 
function. The metabolites used to construct the SPLS-DA 
model were normalized by correcting the average and 
standard deviation of each metabolite to compare the 
scales of each metabolite equally. The predicted values 
were then derived by multiplying the normalized values 
of the 76 metabolites by each of the specified designated 
metabolite coefficients shown in Table 2 and by summing 
the multiplied values with the intercept value of −11.665. 
Finally, after calculating the predicted PC diagnosis prob-
ability by applying the inverse logit function, we deter-
mined the correctness of a PC diagnosis.

4   |   DISCUSSION

PC is a unique gastrointestinal cancer that has not im-
proved in terms of oncologic outcomes over the past few 
decades.20 However, advances during the last decade in 
diagnostic approaches, perioperative management, radio-
therapy techniques, and treatment strategies for advanced 
PC have resulted in modest incremental progress in pa-
tient outcomes. With advances in surgical techniques and 
perioperative management strategies, margin-negative 
pancreatectomy is now safely performed at experienced 
treatment centers.21,22 In addition, effective and potent 
chemotherapeutic agents have been introduced that re-
sult in significant improvement in survival differences 
for patients with PC.5,23 However, while margin-negative 
resection is currently the most effective monotherapy for 
treating PC, resection as an option is in less than 20% of 
the cases at the initial stage of diagnosis. Therefore, the 
survival outcome of patients with PC could be promi-
nently improved if PC could be more frequently detected 
clinically at an resectable stage.

Serum CA19-9 is currently widely used as a biomarker 
for the detection and evaluation of post-treatment PC. 
However, its clinical availability is thought to be limited for 
monitoring responses to therapy and predicting prognosis. 
The value of CA 19–9 as a diagnostic marker is highly lim-
ited in part due to its low sensitivity (41%–86%) and poor 
specificity (33%–100%).24,25 Serum CA19-9 levels may be 
elevated, even in patients with benign pancreatobiliary 

disorders such as cholecystitis, cholangitis, and pancreati-
tis.26 In addition, approximately 10% of the entire popula-
tion does not express Lewis antigens, suggesting that low 
levels of serum CA 19–9 cannot be used to rule out PC.27 
Other serologic biomarkers have been suggested as poten-
tial screening tools for detecting PC, but none have been 
proven to be better than that of CA 19–9.28

Metabolites are thought to represent the final status of 
functional responses of the body to environmental stim-
uli, thereby providing a functional signal derived from the 
genome-based proteome that closely reflects the current 
phenotypic state of an individual. Therefore, the distribu-
tion of data regarding serum metabolites in a patient may 
potentially be used to detect PC.29 This may be especially 
true according to the Warburg effect, in which cancer cells 
undergo energetically inefficient glycolysis, even in the 
presence of oxygen-rich environments (aerobic glycoly-
sis). This may alter the distribution patterns of serum me-
tabolites in patients with PC.14

Based on this theory, Yun et al. and Kang et al. at-
tempted to modulate PC-related metabolites in patients 
with PC.30,31 Meanwhile, Ritchie et al. found for pa-
tients with PC that serum metabolites, such as 36-carbon 
ultralong-chain fatty acids, phosphatidylcholines, ly-
sophosphatidylcholines, sphingomyelins, and vinyl 
ether-containing plasmalogen ethanolamines, were sig-
nificantly altered compared with those of healthy controls 
(all p < 0.000025).13 Lin et al. and Lacontti et al. investi-
gated the metabolomic changes between pancreatic in-
traepithelial neoplasia (PanIN) and PC in effort to identify 
potential serum biomarkers for the early detection of PC 
in animal models. They demonstrated that some serum 
metabolites are significantly different between PanIN and 
PC, suggesting that a more complex set of metabolomic 
changes occur from noninvasive precursor lesions to in-
vasive cancer.32,33

Based on a better understanding of metabolic dys-
regulation in PC, recent studies have been conducted to 
diagnose PC with metabolomics. Xie et al. found that 
a panel of six metabolites (glycerol, glutamine, glycine, 
proline, serine, and threonine) could discriminate PC 
from chronic pancreatitis or healthy controls with high 
accuracy.34 This suggests that metabolomics could be 
useful in differentiating PC from other pancreatic dis-
eases. Moore et al. analyzed a large number of metab-
olites in plasma samples from patients with different 
stages of PC and healthy controls. The researchers found 
that different stages of PC had distinct metabolic pro-
files, and a combination of metabolites could differenti-
ate pancreatic ductal adenocarcinoma from other types 
of pancreatic tumors.35 Overall, these studies suggest 
that metabolomics has the potential to aid in the early 
detection and diagnosis of PC. In the present study, we 
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10  |      CHOI et al.

successfully developed 76-metabolite-based diagnostic 
calculator for the detection of PC and demonstrated fare 
diagnostic performance for differentiating patients with 
PC from those with other diseases. In an initial analysis 
using 116 metabolites (OPLS-DA, Table S3), the diag-
nostic performance was found to be excellent in a devel-
opment cohort, with an accuracy of 0.9886, sensitivity of 
0.9825, specificity of 0.9916, and AUC of 0.987. Keeping 
this high diagnostic performance in mind, we attempted 
to reduce the number of potential serum metabolites 
needed to establish diagnostic panels for detecting PC. It 
was found using 1000 bootstrapping internal validations 
that at least 76 metabolites were required for the diag-
nostic panel in order to sustain a high diagnostic perfor-
mance (Table 4). The difference in AUC values between 
the OPLS-DA and SPLS-DA models was 0.013 (95% 
CI: −0.016, 0.045), showing no statistical differences 
in terms of diagnostic performance. The validation co-
hort showed a lower diagnostic power level compared 
with that of the development cohort, and although the 
sensitivity was marked decreased, it still showed high 
specificity, sensitivity, and accuracy (sensitivity 0.6429, 
specificity 0.9216, accuracy 0.7822, and AUC 0.7981).

The current study had several strengths. Unlike other 
previous studies that considered only healthy donors, or 
chronic pancreatitis as a control36, our study included 
healthy donors and patients with chronic pancreatitis, 
as well as other benign and malignant conditions, such 
as gall stones, pancreatic neuroendocrine tumors, thy-
roid papillary carcinoma, breast cancer, lung cancer, and 
hepatocellular carcinoma (Table  1). In addition, we be-
lieve the present serum 76-metbolomes diagnostic panel 
had the highest diagnostic performance reported to date 
among studies investigating potential diagnostic values 
of serum metabolites for detecting PC (accuracy 0.977, 
95% CI 0.955–0.994; sensitivity 0.964, 95% CI 0.905–1.000; 
specificity 0.983, 95% CI 0.958–1.000; AUC 0.974, 95% CI 
0.944–0.996; Table 4).

No single metabolite has been previously shown to be 
promising enough for the detection and discrimination of 
patients with PC. Kobayshi et al. constructed an effective 
diagnostic model for PC using four serum metabolites, 
xylitol, 1,5-anhydro-D-glucitol, histidine, and inositol, 
which were selected from 45 potentially altered metab-
olites in patients with PC.36 Sugimoto, et al. conducted 
a comprehensive metabolite analysis of saliva samples 
and identified 57 principal metabolites that can be used 
in diagnostic models to accurately detect PC, suggesting 
that cancer-specific signatures are embedded in salivary 
metabolites.37 Simplifying the diagnostic model by reduc-
ing the number of metabolomic signatures detected in 
patients with PC using high-diagnostic performance will 

facilitate the improved clinical feasibility and usefulness 
of metabolite-based diagnostic strategies for PC.

Bathe et al. attempted to identify potential serum 
metabolites to differentiate between benign and malig-
nant pancreatic diseases, and demonstrated a good dis-
crimination power with an AUC of 0.8308.38 Leichtle 
et al. suggested a multivariate model based on specific 
amino acids in conjunction with CA19-9, and described 
a 3-dimensional analogue of AUC called volume under 
the ROC surface (VUS) that demonstrated good discrim-
ination (VUS value = 0.89).39 Meanwhile, Sugimoto et al. 
investigated the saliva of unstimulated patients and re-
ported five selected metabolite-based models with excel-
lent accuracy for the detection of PC with an AUC of 0.94. 
However, the results from none of the aforementioned 
studies reach performance levels comparable to those cur-
rently observed.37

We recently reported the potential role of serum com-
plement factor B in detecting PC.40and predicting sur-
vival outcomes of patients with resected PC.41,42 This 
new emerging biomarker in conjunction with the current 
serum 76-metabolite-based diagnostic panel may provide 
the opportunity to improve survival outcomes in the near 
future of patients with PC. In fact, Mayerle et al. recently 
identified a biomarker signature of nine metabolites and 
CA19-9 for the differential diagnosis between patients 
with PC and those with chronic pancreatitis, demonstrat-
ing that the clinical use of this biomarker signature can 
improve the diagnosis and treatment stratification of pa-
tients compared with that of CA19-9 alone.11 Considering 
the potential role of neoadjuvant chemotherapy in treat-
ing patients with PC, it seems that the long-term oncologic 
outcome of PC is less pessimistic, with the hope of cures 
based on advances in the diagnosis of PC.

The current study had several limitations. For in-
stance, the study had a retrospective design and was based 
on data from a single ethnicity population with a limited 
number of study samples. External validation using geo-
graphically and demographically different cohorts should 
be performed. In addition, evaluating 76 metabolites may 
be too substantial to be practical for clinical oncology. 
Accordingly, an external validation study using a larger 
sample size should be performed to in effort to support 
or improve the diagnostic performance of the current di-
agnostic panel. Lastly, our study relied on a commercial 
metabolomics kit. Although other techniques could also 
quantify these metabolites, the development and valida-
tion of robust quantification methods for about hundreds 
of metabolites will be hard works for individual research-
ers or clinical laboratory. We selected this commercial kit 
since it has been analytically validated in the previous 
study.40
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      |  11CHOI et al.

In conclusion, we developed a 76-metabolite-based di-
agnostic panel for detecting PC and demonstrated its high 
diagnostic performance in differentiating patients with 
PC from those with other diseases.
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