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Abstract
Background: Carbohydrate	 antigen	 (CA)	 19–	9	 is	 a	 known	 pancreatic	 cancer	
(PC)	biomarker,	but	is	not	commonly	used	for	general	screening	due	to	its	low	
sensitivity	and	specificity.	This	study	aimed	to	develop	a	serum	metabolites-	based	
diagnostic	calculator	for	detecting	PC	with	high	accuracy.
Methods: A	targeted	quantitative	approach	of	direct	flow	injection-	tandem	mass	
spectrometry	 combined	 with	 liquid	 chromatography–	tandem	 mass	 spectrome-
try	was	employed	for	metabolomic	analysis	of	serum	samples	using	an	Absolute	
IDQ™	p180	kit.	Integrated	metabolomic	analysis	was	performed	on	241	pooled	
or	 individual	 serum	 samples	 collected	 from	 healthy	 donors	 and	 patients	 from	
nine	disease	groups,	 including	chronic	pancreatitis,	PC,	other	cancers,	and	be-
nign	diseases.	Orthogonal	partial	least	squares	discriminant	analysis	(OPLS-	DA)	
based	on	characteristics	of	116	serum	metabolites	distinguished	patients	with	PC	
from	those	with	other	diseases.	Sparse	partial	least	squares	discriminant	analy-
sis	 (SPLS-	DA)	 was	 also	 performed,	 incorporating	 simultaneous	 dimension	 re-
duction	and	variable	selection.	Predictive	performance	between	discrimination	
models	was	compared	using	a	2-	by-	2	contingency	table	of	predicted	probabilities	
obtained	from	the	models	and	actual	diagnoses.
Results: Predictive	values	obtained	through	OPLS-	DA	for	accuracy,	sensitivity,	
specificity,	balanced	accuracy,	and	area	under	the	receiver	operating	characteristic	
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1 	 | 	 INTRODUCTION

Pancreatic	cancer	(PC)	is	one	of	the	most	fatal	malignant	
diseases	 of	 the	 gastrointestinal	 tract.1	 Margin-	negative	
resection	 is	 essential	 for	 ensuring	 long-	term	 survival.2	
However,	 less	 than	 20%	 of	 patients	 with	 PC	 are	 resect-
able,	 and	 most	 patients	 are	 found	 to	 have	 advanced	 or	
metastatic	disease	at	the	initial	stage	of	diagnosis,	result-
ing	in	an	overall	5-	year	survival	rate	of	less	than	10%.3	No	
improvement	in	survival	has	been	noted	in	patients	with	
PC	during	the	past	few	decades,	with	PC	likely	to	become	
the	second	most	deadly	form	of	human	cancer	by	2030.4

However,	advances	in	surgical	approaches,	surgical	pan-
createctomy	 techniques,	 perioperative	 management,	 and	
potent	 chemotherapeutic	 agents	 are	 expected	 to	 improve	
the	 long-	term	 survival	 of	 patients	 with	 PC5–	8	 as	 long	 as	
more	resectable	PC	could	be	found	in	real	clinical	practice.	
Therefore,	 many	 investigators	 have	 attempted	 to	 identify	
potential	biomarkers	for	the	early	detection	of	PC;	however,	
due	to	their	unsatisfactory	diagnostic	performance	within	
the	general	population,	there	are	currently	no	clinically	rel-
evant	biomarkers	for	the	accurate	diagnosis	of	PC.9

The	 integration	 of	 metabolomics	 in	 cancer	 biomarker	
research,	 including	 that	 for	 PC,	 is	 an	 emerging	 field.10,11	
Metabolomics	 is	 the	 latest	 type	of	multi-	omics	approaches	
that	 have	 included	 genomics,	 transcriptomics,	 and	 pro-
teomics,	 and	 focus	 on	 phenotypic	 characteristics	 rather	
than	genetic	profiles.12	Metabolomics	methodology	aims	to	
identify	and	estimate	the	relative	changes	in	abundance	of	
endogenous	metabolites	during	conditions	of	health	and	dis-
ease,	which	can	then	be	used	to	support	 the	identification	
of	biomarkers	and	potential	targets	and	the	development	of	
new	 therapeutics	 for	 the	 diagnosis	 and	 treatment	 of	 PC.13	
Furthermore,	 the	 metabolomic	 characteristics	 of	 patients	
with	PC	may	reflect	the	functional	aspects	of	PC	as	a	whole.14

Based	on	a	targeted	metabolomic	approach	using	high	
performance	 liquid	 chromatography	 (HPLC),	 we	 previ-
ously	investigated	the	potential	role	of	serum	metabolites	
for	predicting	 the	survival	of	patients	with	resected	PC.	

We	 found	 that	 among	 157	 serum	 metabolites	 detected	
preoperatively	in	patients	with	resected	PC,	serum	carbo-
hydrate	antigen	 (CA)	19–	9	and	 three	phosphatidyl	cho-
line	 derivatives	 (PC.aa.C38_4,	 PC.ae.C42_5,	 and	 PC.ae.
C38_6)	 can	 be	 used	 preoperatively	 to	 estimate	 1-	year	
disease-	free	survival.15	This	provides	a	preoperative	risk	
estimation	and	additional	information	useful	during	the	
decision-	making	process	regarding	surgical	resection.

In	 the	 current	 study,	 we	 aimed	 to	 develop	 a	 highly	
accurate	 diagnostic	 serum	 metabolomic	 panel	 for	 detec-
tion	of	PC	with	high	accuracy.	Such	a	preoperative	serum	
metabolite-	based	 diagnostic	 tool	 could	 provide	 all-	in-	
one	 clinical	 advantages	 to	 both	 the	 detection	 of	 PC	 and	
in	predicting	early	recurrence	of	resected	PC.	This	would	
support	the	potential	of	providing	tailored	treatment	ap-
proaches	for	patients	with	resectable	PC.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Study population

Two	 separate	 clinical	 enrollments	 were	 used	 in	 the	
study	 to	 obtain	 blood	 samples	 for	 metabolomic	 analy-
sis.	The	first	enrollment	was	the	source	of	blood	samples	
from	a	development	cohort	of	186	individuals	that	were	
collected	 by	 the	 Biobank,	 Severance	 Hospital,	 Seoul,	
South	 Korea.	 Among	 the	 first	 enrollment	 participants,	
ten	 patients	 with	 PC	 had	 missing	 values	 and	 were	 ex-
cluded	 from	 the	 study.	 Thus,	 the	 development	 cohort	
used	 for	 model	 building	 included	 blood	 samples	 from	
176	individuals	of	which	57	were	patients	with	PC	and	
119	 were	 patients	 with	 other	 diseases	 (Figure  1).	 The	
second	cohort	was	used	as	the	validation	cohort	and	it	
consisted	of	65	individuals	who	provided	bioresources	to	
the	National	Biobank	of	Korea,	The	Center	for	Disease	
Control	and	Prevention,	Republic	of	Korea.	The	valida-
tion	cohort	included	14	patients	with	PC	and	51	patients	
that	had	other	diseases.

curve	(AUC)	were	0.9825,	0.9916,	0.9870,	0.9866,	and	0.9870,	 respectively.	The	
number	of	metabolite	candidates	was	narrowed	to	76	 for	SPLS-	DA.	The	SPLS-	
DA-	obtained	predictive	values	for	accuracy,	sensitivity,	specificity,	balanced	ac-
curacy,	and	AUC	were	0.9773,	0.9649,	0.9832,	0.9741,	and	0.9741,	respectively.
Conclusions: We	 successfully	 developed	 a	 76	 metabolome-	based	 diagnostic	
panel	for	detecting	PC	that	demonstrated	high	diagnostic	performance	in	differ-
entiating	PC	from	other	diseases.

K E Y W O R D S
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2.2	 |	 Sample preparation

The	blood	samples	were	collected	after	a	fasting	period	
of	at	 least	8	h	prior	 to	sampling.	The	serum	separating	
tube	 were	 centrifuged	 to	 separate	 the	 serum	 from	 the	
blood	 clot	 (4°C,	 10	min,	 2500	 ×	 g)	 within	 40	min	 after	
sample	collection.	Then	1	mL	serum	was	aliquoted	into	
the	 pre-	cooled	 and	 labeled	 storage	 vials.	 The	 serum	
aliquots	 were	 frozen	 immediately	 and	 stored	 below	
−80	°C	until	use.

2.3	 |	 Detection of preoperative serum 
metabolites

A	targeted	quantitative	approach	was	used	to	analyze	the	
serum	samples	for	metabolomic	analysis.	Specifically,	di-
rect	 flow	 injection-	tandem	 mass	 spectrometry	 (FIA-	MS/
MS)	 combined	 with	 liquid	 chromatography–	tandem	
mass	spectrometry	(LC–	MS/MS)	was	performed	using	an	
Absolute	IDQ™	p180	Kit	(BIOCRATES	Life	Sciences	AG,	
Innsbruck,	Austria)	as	described	previously.15	The	kit	was	
able	 to	simultaneously	quantify	188	metabolites,	 includ-
ing	21	amino	acids,	21	biogenic	amines,	40	acylcarnitines,	
90	 glycerophospholipids	 (14	 lysophosphatidylcholines	
and	76	phosphatidylcholines	[PC.Aa.Cx:y	or	PC.ae.Cx:y]),	
15	sphingolipids,	and	1	hexose.	Cx:y	denotes	the	lipid	side	
chain	configuration,	where	x	indicates	the	number	of	car-
bons	in	the	side	chain	and	y	indicates	the	number	of	un-
saturated	chains.	Among	these	188	metabolites,	21	amino	
acids	and	21	biogenic	amines	were	analyzed	by	LC–	MS/
MS	 while	 the	 other	 146	 metabolites	 were	 analyzed	 by	
FIA-	MS/MS.	The	serum	samples	were	processed	in	strict	
accordance	with	the	manufacturer's	instructions.	Briefly,	
10	μL	of	the	supplied	internal	standard	solution	was	added	
to	 each	 well	 of	 a	 96-	well	 extraction	 plate,	 followed	 by	
10	μL	of	each	serum	sample	being	added	to	the	appropri-
ate	 wells.	 The	 plate	 was	 dried	 under	 a	 gentle	 stream	 of	
nitrogen.	 The	 samples	 were	 derivatized	 with	 phenyliso-
thiocyanate	and	eluted	with	5	mM	ammonium	acetate	in	
methanol.	The	samples	were	diluted	with	40%	methanol	
in	 water	 (15:1)	 for	 LC–	MS/MS	 analysis	 or	 a	 proprietary	
running	 solvent	 provided	 by	 BIOCRATES	 Life	 Sciences	
AG	 (20:1)	 for	 FIA-	MS/MS.	 The	 samples	 were	 analyzed	
in	96-	well	plates	using	a	QTRAP	5500	mass	spectrometer	

(SCIEX,	Woodlands	Central,	Singapore)	coupled	with	an	
Agilent	1290	series	HPLC	system.	For	LC–	MS/MS	analysis	
in	positive	mode,	5	μL	of	the	sample	extract	were	injected	
onto	an	Agilent	Zorbax	Eclipse	XDB	C18,	3.0	×	100	mm,	
3.5	μm	protected	by	an	SecurityGuard	pre-	column	C18,	4	
×	3	mm	(Phenomenex)	at	50°C	using	a	9.5	min	solvent	gra-
dient	employing	0.2%	formic	acid	in	water	(mobile	phase	
A)	and	0.2%	formic	acid	in	acetonitrile	(mobile	phase	B).	
LC–	MS/MS	data	were	 imported	 into	 the	SCIEX	applica-
tion	Analyst™	for	peak	integration,	calibration,	and	con-
centration	calculations.	Twenty	microliters	of	the	sample	
extract	were	used	in	the	FIA-	MS/MS	in	positive	mode	to	
measure	acylcarnitines,	glycerophospholipids,	and	sphin-
golipids,	while	hexoses	were	monitored	 in	a	 subsequent	
run	in	negative	mode.	All	FIA	injections	were	carried	out	
using	the	mobile	phase	prepared	by	Biocrates	Solvent	I	in	
isocratic	 mode.	 The	 LC	 and	 MS	 settings	 for	 LC–	MS/MS	
and	FIA-	MS/MS	mode	are	described	in	Tables	S5	and	S6.	
Analytical	performance	was	monitored	by	three	levels	of	
quality	control	(QC)	samples	(low,	middle,	high	concen-
tration).	 Three	 levels	 of	 QC	 samples	 were	 placed	 at	 the	
beginning	of	analytical	run.	For	the	QC	sample	with	mid-
dle	concentration	(QC2),	additional	control	samples	were	
placed	at	the	middle	and	end	of	analytical	run.	The	LC–	
MS/MS	data	 from	Analyst™	and	FIA-	MS/MS	data	were	
analyzed	 using	 MetIDQ™	 software	 (BIOCRATES	 Life	
Sciences	AG).	To	correct	for	batch	effect	for	both	FIA-	MS/
MS	and	LC–	MS/MS	data,	we	normalized	 the	data	using	
QC2	results	of	each	batch.	The	following	conditions	were	
set	as	data	quality	requirements	 for	each	metabolite:	 (1)	
the	coefficient	of	variance	for	the	metabolites	in	the	qual-
ity	control	samples	was	<25%;	and	(2)	100%	of	the	meas-
ured	 metabolite	 concentrations	 in	 the	 subject	 samples	
was	greater	than	the	limit	of	detection.	A	total	of	72	of	the	
188	metabolites	were	not	detected	in	one	or	more	samples	
and	were	therefore	excluded	from	the	subsequent	analysis	
(Table	S4).	The	remaining	116	metabolites	were	selected	
for	statistical	analysis.

2.4	 |	 Model development and statistical  
analysis

Linear	 discriminant	 analysis	 was	 used	 for	 classification,	
and	a	five-	fold	cross-	validation	method	was	used	to	select	

F I G U R E  1  Flow	diagram	of	the	
study	cohorts.
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the	 tuning	 parameters	 of	 the	 model.	 This	 approach	 was	
used	to	separate	the	datasets	 into	training	and	test	data-
sets,	to	prevent	overestimation,	and	estimate	some	param-
eters	of	the	model.	Discriminant	models	were	developed	
and	 internally	 validated	 using	 the	 development	 cohort.	
These	models	were	then	applied	to	the	validation	cohort	
for	external	validation.

The	 types	 of	 diseases	 of	 the	 patients	 and	 the	 corre-
sponding	number	of	patients	are	shown	in	Table 1.	In	the	
development	cohort,	57	patients	had	PC.	The	remaining	
119	individuals	were	normal	cases	or	had	other	types	of	
diseases,	including	gallbladder	stones,	chronic	pancreati-
tis,	 pancreatic	 neuroendocrine	 tumors,	 thyroid	 papillary	
carcinomas,	breast	cancer,	lung	cancer,	or	hepatocellular	
carcinomas.	 Meanwhile,	 the	 validation	 cohort	 consisted	
of	disease	groups	that	were	similar	to	those	in	the	devel-
opment	cohort	(Table 1).

Continuous	 variables	 are	 presented	 as	 median	 val-
ues	 with	 interquartile	 ranges	 (IQR)	 and	 were	 com-
pared	using	the	Mann–	Whitney	U-	test.	Because	serum	
metabolites	 are	 highly	 correlated	 with	 each	 other,	 or-
thogonal	 partial	 least	 squares	 discriminant	 analysis	
(OPLS-	DA)	 was	 used	 to	 distinguish	 patients	 with	 PC	
from	those	with	other	diseases	based	on	characteristics	
of	the	serum	metabolites.16	Variable	importance	in	the	
projection	 (VIP)	 ranks	 indicated	 the	 overall	 contribu-
tion	 of	 each	 metabolite	 to	 the	 OPLS-	DA	 model.	 The	
variables	 with	 a	 VIP	>1.0,	 and	 Spearman's	 correlation	
coefficient	 of	 |r|	>	0.265	 were	 considered	 to	 be	 associ-
ated	 with	 discrimination	 for	 patients	 with	 PC.	 The	 p-	
value	of	the	correlation	coefficient	was	adjusted	using	
Bonferroni's	correction.	Default	7-	cross	validation	and	
response	 permutation	 testing	 with	 200	 permutations	
were	conducted	to	evaluate	the	quality	and	validity	of	
the	 OPLS-	DA	 model.	 Moreover,	 the	 OPLS-	DA	 mod-
els	 were	 assessed	 for	 predictability	 through	 p-	values	
obtained	 from	 analysis	 of	 variance	 of	 cross-	validated	

residuals	 (CV-	ANOVA)	 implemented	 by	 SIMCA	 (ver-
sion	 17.0)17	 Metabolites	 responsible	 for	 metabolic	 dif-
ferences	between	two	groups	were	visually	represented	
in	 corresponding	 loading	 and	 score	 plots.	 We	 also	
performed	 sparse	 partial	 least	 squares	 discriminant	
analysis	 (SPLS-	DA),	 which	 incorporated	 simultane-
ous	 dimension	 reduction	 and	 variable	 selection,	 and	
the	OPLS-	DA	method	using	all	serum	metabolites.18	A	
classification	algorithm	developed	by	Chung	and	Keles	
was	used	to	perform	SPLS-	DA,	which	is	advantageous	
in	terms	of	utilization	as	it	can	be	predictive	in	the	di-
agnosis	 of	 cancers	 using	 only	 select	 significant	 serum	
metabolites,	 not	 all	 variables.18	 In	 the	 current	 study,	
five-	fold	cross-	validation	was	used	to	determine	the	op-
timal	 threshing	parameter	and	the	optimal	number	of	
hidden	components.	To	analyze	the	constructed	models	
using	 a	 net	 benefit	 approach,	 decision	 curve	 analysis	
was	implemented.19

Performance	 of	 the	 predicted	 probability	 obtained	
from	 the	 model	 was	 compared	 with	 the	 actual	 diag-
noses	using	two-	by-	two	contingency	tables	to	evaluate	
sensitivity,	specificity,	accuracy,	balanced	accuracy,	and	
the	 area	 under	 the	 receiver	 operating	 characteristic	
curve	 (AUC)	 for	 the	development	cohort	and	external	
validation	 cohort	 datasets.	 In	 addition,	 a	 1000	 boot-
strap	 procedure	 was	 employed	 for	 internal	 validation.	
Significance	 was	 confirmed	 according	 to	 whether	 the	
95%	 confidence	 interval	 for	 the	 differences	 between	
the	 two	 measurements	 included	 zero.	 Statistical	 sig-
nificance	 was	 set	 at	 p	<	0.05.	 All	 statistical	 analyses	
were	performed	using	 the	R	package,	version	4.1.1	 (R	
Foundation	for	Statistical	Computing,	Vienna,	Austria).	
All	patients	provided	written	informed	consent	prior	to	
surgery,	and	the	study	was	approved	by	the	Institutional	
Review	Board	of	Yonsei	University	College	of	Medicine	
(registration	date:	 June	18,	2019;	 registration	number:	
4–	2019-	0415).

Disease
Development cohort 
(n = 176)

Validation 
cohort (n = 65)

Pancreatic	ductal	adenocarcinoma 57 14

Normal 27 26

Gallbladder	stone 20 7

Chronic	pancreatitis 24 12

Pancreatic	neuroendocrine	tumor 9 2

Thyroid	papillary	carcinoma 10 –	

Breast	cancer 10 –	

Lung	cancer 10 –	

Hepatocellular	carcinoma 9 2

Stomach	cancer –	 2

T A B L E  1 	 Development	and	validation	
dataset	construction.
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3 	 | 	 RESULTS

3.1	 |	 Discrimination of PC cases from 
controls using the OPLS- DA model

Serum	samples	from	176	individuals	in	the	development	
cohort	set	were	evaluated.	Of	the	188	metabolites	meas-
ured,	72	were	excluded	based	on	the	data	quality	crite-
ria.	 As	 a	 result,	 a	 total	 of	 116	 endogenous	 metabolites	
were	 included	 in	 the	 statistical	 analysis.	 A	 representa-
tive	 OPLS-	DA	 scatterplot	 of	 this	 classification	 model	
based	on	the	development	set	is	shown	in	Figure 2.	Very	
little	 overlap	 between	 the	 cases	 and	 controls	 was	 ob-
served.	The	permutation	test	statistically	assessed	class	
separation	 of	 the	 metabolites	 by	 measuring	 and	 visu-
ally	 illustrating	 the	 statistical	 significance	 of	 case	 and	
control	 metabolome	 separations.	 There	 was	 a	 lack	 of	
overfitting	among	patients	with	PC	vs.	those	without	PC	
in	the	development	set.	The	performance	indices	based	
on	200	permutations	were	R2Y	=	0.769	and	Q2Y	=	0.708,	
and	 the	p-	value	 for	CV-	ANOVA	was	<0.001.	SPLS-	DA	

was	 then	 performed	 to	 highlight	 the	 metabolites	 that	
best	 discriminated	 cases	 of	 patients	 with	 PC	 from	 the	
controls.	 Seventy-	six	 metabolites	 with	 coefficients	 in	
SPLS-	DA	are	listed	in	Table 2.

3.2	 |	 Diagnostic performance of the 
OPLS- DA and SPLS- DA models using the 
development set

OPLS-	DA	was	performed	to	identify	metabolites	respon-
sible	 for	 the	 discrimination	 between	 patients	 with	 PC	
and	those	with	other	diseases.	As	shown	in	Figure 2,	the	
OPLS-	DA	 score	 plot	 showed	 a	 clustering	 tendency	 be-
tween	 the	 two	 groups,	 indicating	 obvious	 metabolic	 dif-
ferences.	 Similar	 results	 were	 found	 in	 the	 heat	 map	 as	
well,	indicating	that	the	metabolomic	expression	of	each	
group	was	different	(Figure	S1).

According	to	the	predictive	variation	between	the	me-
tabolites	and	data	subjects,	55.2%	(R2X	cum)	of	the	total	
explained	variation	in	the	dataset	accounted	for	76.9%	of	

F I G U R E  2  Plots	of	the	OPLS-	DA	model.	(Top	left)	OPLS-	DA	score	plot	of	serum	metabolic	profiles	on	samples	from	pancreatic	cancer	
patients	and	others.	(Top	right)	Loading	plot	of	the	OPLS-	DA	model.	Metabolites	with	the	most	extreme	values	for	each	loading	are	shown	
in	black	and	labeled.	(Bottom	left)	Permutation	test	plot	on	the	OPLS-	DA	model.	Seven-	cross-	validation	and	two	hundred	permutations	
were	performed,	and	the	results	of	R2	and	Q2	values	were	dotted.	(Bottom	right)	Relationship	between	VIP	values	obtained	from	the	OPLS-	
DA	model	and	adjusted	p-	values	from	Pearson	correlation	test.	OPLS-	DA,	orthogonal	partial	least	squares-	discriminant	analysis;	VIP,	
variable	importance	in	the	projection.
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6 |   CHOI et al.

T A B L E  2 	 List	of	76	selected	metabolites	and	coefficients	in	the	SPLS-	DA.

Metabolite Coefficient Metabolite Coefficient Metabolite Coefficient

Alanine −0.91 lysoPhosphatidylcholine	acyl	C18:1 0.37 Phosphatidylcholine	
acyl-	alkyl	C36:4

−0.08

Asparagine −2.13 lysoPhosphatidylcholine	acyl	C18:2 −1.43 Phosphatidylcholine	
acyl-	alkyl	C38:0

0.07

Aspartate −0.27 lysoPhosphatidylcholine	acyl	C20:3 −0.04 Phosphatidylcholine	
acyl-	alkyl	C38:1

−0.79

Citrulline −1.96 lysoPhosphatidylcholine	acyl	C20:4 −0.71 Phosphatidylcholine	
acyl-	alkyl	C38:2

−0.83

Glutamate −0.24 Phosphatidylcholine	diacyl	C32:0 4.28 Phosphatidylcholine	
acyl-	alkyl	C38:3

−0.16

Glycine −1.63 Phosphatidylcholine	diacyl	C32:1 3.11 Phosphatidylcholine	
acyl-	alkyl	C38:4

0.18

Histidine −1.67 Phosphatidylcholine	diacyl	C32:2 −0.99 Phosphatidylcholine	
acyl-	alkyl	C40:1

−1.86

Isoleucine −1.32 Phosphatidylcholine	diacyl	C32:3 0.71 Phosphatidylcholine	
acyl-	alkyl	C40:3

−0.23

Leucine −1.91 Phosphatidylcholine	diacyl	C34:2 0.66 Phosphatidylcholine	
acyl-	alkyl	C40:4

−0.37

Lysine −0.93 Phosphatidylcholine	diacyl	C34:4 −0.20 Phosphatidylcholine	
acyl-	alkyl	C40:5

0.47

Ornithine −1.56 Phosphatidylcholine	diacyl	C36:2 0.05 Phosphatidylcholine	
acyl-	alkyl	C42:1

0.05

Phenylalanine −0.97 Phosphatidylcholine	diacyl	C36:3 0.74 Phosphatidylcholine	
acyl-	alkyl	C42:2

−0.77

Proline −2.63 Phosphatidylcholine	diacyl	C36:6 −0.10 Phosphatidylcholine	
acyl-	alkyl	C42:3

−0.66

Serine −1.29 Phosphatidylcholine	diacyl	C38:1 −2.02 Phosphatidylcholine	
acyl-	alkyl	C44:3

−0.82

Threonine −3.16 Phosphatidylcholine	diacyl	C40:2 −0.45 Phosphatidylcholine	
acyl-	alkyl	C44:4

−0.83

Tryptophan −1.17 Phosphatidylcholine	diacyl	C40:3 −0.16 Phosphatidylcholine	
acyl-	alkyl	C44:5

−0.20

Tyrosine −0.96 Phosphatidylcholine	diacyl	C42:1 0.42 Phosphatidylcholine	
acyl-	alkyl	C44:6

0.17

Valine −1.85 Phosphatidylcholine	diacyl	C42:2 −0.38 Hydroxysphingomyelin	
C22:1

−1.54

Creatinine −1.12 Phosphatidylcholine	diacyl	C42:4 0.13 Hydroxysphingomyelin	
C22:2

−1.13

trans-	4-	Hydroxyproline −0.87 Phosphatidylcholine	diacyl	C42:5 −0.18 Hydroxysphingomyelin	
C24:1

−1.05

Taurine −0.85 Phosphatidylcholine	acyl-	alkyl	
C32:2

0.37 Sphingomyelin	C16:1 0.01

Acetyl-	L-	carnitine 2.27 Phosphatidylcholine	acyl-	alkyl	
C34:2

0.21 Sphingomyelin	C18:1 0.65

lysoPhosphatidylcholine	
acyl	C16:0

−0.09 Phosphatidylcholine	acyl-	alkyl	
C34:3

0.07 Sphingomyelin	C24:0 −0.56

lysoPhosphatidylcholine	
acyl	C16:1

0.50 Phosphatidylcholine	acyl-	alkyl	
C36:1

−0.02 Sphingomyelin	C26:1 2.81
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   | 7CHOI et al.

the	variance	in	group	separation	(R2Y	cum).	The	cross-	
validated	 predictability	 of	 the	 discrimination	 analysis	
model	was	70.8%	(Q2Y	cum).	Based	on	the	positive	R2Y	
and	 negative	 Q2Y	 values	 of	 the	 permutation	 test,	 the	
performance	of	the	OPLS-	DA	model	was	satisfactory.	In	
addition,	 the	 OPLS-	DA	 loading	 plot	 in	 Figure  2	 shows	
the	distribution	of	discriminating	metabolites,	with	me-
tabolites	far	from	the	origin	in	each	direction	being	in-
dicated	as	black	points.	Finally,	the	adjusted	p-	values	for	
the	 Spearman's	 correlation	 coefficients	 and	 VIP	 values	
were	 evaluated	 (Figure  2).	 Significant	 metabolites	 sat-
isfying	 the	 adjusted	 p-	value	 <0.05	 and	 VIP	 value	 >1.0	
were	identified.	The	results	are	summarized	in	Tables	S1	
and	S2.

After	establishing	the	OPLS-	DA	and	SPLS-	DA	classifi-
cation	models	using	the	development	cohort,	the	discrim-
ination	performance	of	the	models	were	confirmed.	The	
number	of	hidden	components	and	threshold	parameter	
for	 the	SPLS-	DA	model	were	estimated	as	3	and	0.7,	 re-
spectively.	As	a	result,	only	76	metabolites	were	included	
in	 the	 SPLS-	DA	 model,	 while	 all	 116	 metabolites	 were	
used	 in	 the	 OPLS-	DA	 model.	 The	 performance	 of	 the	
OPLS-	DA	 and	 SPLS-	DA	 classification	 models	 are	 sum-
marized	in	Table 3.	OPLS-	DA	identified	56	true	positives,	
one	false	positive,	and	one	false	negative	for	a	sensitivity	
of	 0.9825,	 specificity	 of	 0.9916,	 and	 accuracy	 of	 0.9886.	
Meanwhile,	 SPLS-	DA	 identified	 55	 true	 positives,	 two	
false	 positives,	 and	 two	 false	 negatives	 for	 a	 sensitivity	
of	 0.9773,	 specificity	 of	 0.9649,	 and	 accuracy	 of	 0.9773.	

Similarly,	 the	 balanced	 accuracy,	 defined	 as	 the	 average	
of	 sensitivity	 and	 specificity,	 was	 0.9870	 for	 OPLS-	DA,	
which	was	slightly	larger	than	the	balanced	accuracy	bal-
anced	accuracy	of	0.9741	 for	SPLS-	DA.	The	AUC	values	
for	 OPLS-	DA	 and	 SPLS-	DA	 were	 0.9870	 and	 0.9741,	 re-
spectively.	Overall,	the	OPLS-	DA	model	using	all	116	me-
tabolites	yielded	better	results	for	the	development	cohort	
compared	with	that	of	the	SPLS-	DA	model.	However,	the	
SPLS-	DA	model,	for	which	40	metabolites	were	excluded,	
also	demonstrated	good	classifying	ability.

Interval	validation	was	also	performed	using	bootstrap-
ping	samples	to	determine	whether	similar	performance	
was	observed	for	the	OPLS-	DA	model	compared	with	that	
of	the	SPLS-	DA	model,	even	though	only	76	metabolites	
used	for	the	SPLS-	DA	model.	The	internal	validation	was	
performed	using	1000	bootstrapping	samples,	and	the	95%	
confidence	 intervals	 differences	 checked.	 It	 was	 deter-
mined	that	there	was	no	difference	between	the	OPLS-	DA	
and	SPLS-	DA	models	if	the	differences	in	the	95%	confi-
dence	 intervals	were	zero.	As	shown	 in	Table 4,	 the	dif-
ferences	in	terms	of	accuracy,	sensitivity,	specificity,	and	
balanced	 accuracy	 between	 the	 OPLS-	DA	 and	 SPLS-	DA	
models	 were	 0.012,	 0.018,	 0.008,	 and	 0.013,	 respectively.	
As	the	differences	between	the	two	models	were	positive	
values,	the	performance	of	the	OPLS-	DA	model	was	con-
firmed	 to	 be	 good.	 However,	 because	 the	 differences	 in	
the	95%	confidence	between	the	two	models	were	positive	
and	tend	to	zero,	the	differences	could	not	be	shown	to	be	
statistically	significant.	The	lower	boundary	of	the	differ-
ence	 in	 sensitivity	 between	 the	 two	 models	 being	 0	 was	
the	 result	 of	 the	 internal	 validation	 dataset	 not	 contain-
ing	many	patients	with	PC.	Even	the	AUC	values	included	
confidence	 intervals	 of	 zero,	 confirming	 the	 differences	
between	the	two	models	were	not	statistically	significant.	
Therefore,	 the	performance	of	 the	SPLS-	DA	model	with	
only	76	metabolites,	was	similar	to	that	of	the	OPLS-	DA	
model	using	all	116	serum	metabolites.

The	 selected	 76	 metabolites	 for	 the	 SPLS-	DA	 model	
and	 their	 coefficients	 are	 shown	 in	 Table  2.	 Based	 on	
the	 coefficient	 values	 of	 the	 standardized	 metabolites,	
the	 SPLS-	DA	 model	 had	 the	 largest	 absolute	 coefficient	
values	 for	 “Phosphatidylcholine	 diacyl	 C32:0”	 (4.28),	
“Threonine”	 (−3.16),	 and	 “Phosphatidylcholine	 diacyl	
C32:1”	(3.11).

Metabolite Coefficient Metabolite Coefficient Metabolite Coefficient

lysoPhosphatidylcholine	
acyl	C17:0

−0.28 Phosphatidylcholine	acyl-	alkyl	
C36:2

−0.28

lysoPhosphatidylcholine	
acyl	C18:0

−0.01 Phosphatidylcholine	acyl-	alkyl	
C36:3

−0.29

Abbreviation:	SPLS-	DA,	sparse	partial	least	squares	discriminant	analysis.

T A B L E  2 	 (Continued)

T A B L E  3 	 Performance	of	classifiers	for	metabolites	from	the	
development	cohort	(n	=	176).

OPLS- DA 
with 116 
metabolomes

SPLS- DA 
with 76 
metabolomes

Accuracy 0.9886 0.9773

Sensitivity 0.9825 0.9649

Specificity 0.9916 0.9832

Balanced	accuracy 0.9870 0.9741

AUC 0.9870 0.9741

Abbreviations:	AUC,	area	under	the	receiver	operating	characteristic	curve;	
OPLS-	DA,	orthogonal	partial	least	squares	discriminant	analysis;	SPLS-	DA,	
sparse	partial	least	squares	discriminant.
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8 |   CHOI et al.

3.3	 |	 Diagnostic performance of the 
OPLS- DA and SPLS- DA models using the 
validation set

The	 performance	 of	 the	 models	 using	 the	 development	
cohort	 was	 evaluated	 compared	 with	 that	 using	 the	
validation	 cohort.	 The	 validation	 cohort	 contained	 65	
patients,	 including	 14	 patients	 that	 had	 PC.	 As	 shown	
in	 Table  5,	 the	 specificity	 of	 both	 the	 OPLS-	DA	 and	
SPLS-	DA	models	was	greater	than	0.9;	however,	the	sen-
sitivities	of	the	OPLS-	DA	and	SPLS-	DA	models	were	only	
0.7143	and	0.6429,	respectively.	As	a	result,	the	balanced	
accuracy	value	was	smaller	than	the	accuracy	value.	The	
classification	ability	of	the	OPLS-	DA	and	SPLS-	DA	mod-
els	were	also	evaluated	and	found	to	be	good	with	AUC	
values	of	approximately	0.8.	The	fact	that	there	were	only	
14	patients	with	PC	in	the	validation	cohort	resulted	 in	
somewhat	 less	 accurate	 results	 compared	 with	 that	 in	
the	 development	 cohort.	 However,	 the	 overall	 perfor-
mance,	 except	 for	 sensitivity,	 was	 acceptable.	 Decision	
curve	 analysis	 graphically	 showed	 the	 clinical	 useful-
ness	of	each	model	based	on	the	range	of	threshold	prob-
abilities	(x-	axis)	and	the	net	benefit	(y-	axis),	the	decision	
curves	 of	 the	 training	 set	 (solid	 line)	 and	 validation	 set	
(dotted	line)	were	expressed,	respectively	(Figure 3).	The	

net	benefit	of	the	training	set	was	consistently	positive	in	
both	OPLS-	DA	and	SPLS-	DA,	and	the	decision	curves	for	
both	models	were	similar.	Even	in	the	validation	set,	the	
decision	 curves	 had	 positive	 values	 up	 to	 the	 threshold	
up	to	80%.

3.4	 |	 Relevant Metabolites

In	the	development	cohort,	57	of	the	176	patients	had	PC,	
while	the	remaining	119	patients	had	other	various	can-
cers	and	diseases.	The	baseline	characteristics	of	the	study	
patients	in	the	development	cohort	are	shown	in	Table	S3.	
Among	the	116	metabolites	shown	in	Table	S3,	there	were	
95	 metabolites	 that	 demonstrated	 statistical	 significance	
between	 the	 two	 groups,	 accounting	 for	 approximately	
82%	 of	 the	 metabolites.	 All	 metabolites	 starting	 with	

T A B L E  5 	 Performance	of	classifiers	for	metabolites	from	the	
external	validation	cohort	(n	=	65).

Method

OPLS- DA 
with 116 
metabolomes

SPLS- DA 
with 76 
metabolomes

Accuracy 0.8769 0.8615

Sensitivity 0.7143 0.6429

Specificity 0.9216 0.9216

Balanced	accuracy 0.8179 0.7822

AUC 0.8179 0.7981

Abbreviations:	AUC,	area	under	the	receiver	operating	characteristic	curve;	
OPLS-	DA,	orthogonal	partial	least	squares	discriminant	analysis,	SPLS-	DA,	
sparse	partial	least	squares	discriminant	analysis.

F I G U R E  3  Decision	curve	analysis.	The	y-	axis	measures	the	
net	benefit	and	the	x-	axis	indicates	the	probability	threshold	to	
classify	a	diagnosis	of	pancreatic	cancer.	The	solid	and	dashed	lines	
represent	the	net	benefit	of	the	validation	and	test	sets,	respectively.	
The	decision	curves	for	the	strategies	of	treating	all	subjects	and	
treating	no	subject	are	expressed	as	‘All’	and	‘None’,	respectively.	
The	higher	curve	at	any	given	threshold	probability	is	the	optimal	
discriminant	model	to	maximize	net	benefit.	OPLS-	DA,	orthogonal	
partial	least	squares-	discriminant	analysis.

T A B L E  4 	 Performance	of	classifiers	for	metabolites	from	the	1000	bootstrapping	internal	validation	data	set	(n	=	176).

OPLS- DA with 117 
metabolomes

SPLS- DA with 76 
metabolomes Difference

Accuracy	(95%	CI) 0.988	(0.972,	1) 0.977	(0.955,	0.994) 0.012	(−0.006,	0.034)

Sensitivity	(95%	CI) 0.982	(0.941,	1) 0.964	(0.905,	1) 0.018	(0,	0.067)

Specificity	(95%	CI) 0.992	(0.974,	1) 0.983	(0.958,	1) 0.008	(−0.018,	0.037)

Balanced	accuracy	(95%	CI) 0.987	(0.963,	1) 0.974	(0.944,	0.996) 0.013	(−0.004,	0.039)

AUC	(95%	CI) 0.987	(0.964,	1) 0.974	(0.944,	0.996) 0.013	(−0.016,	0.045)

Abbreviations:	AUC,	area	under	the	receiver	operating	characteristic	curve;	CI,	confidence	interval,	OPLS-	DA,	orthogonal	partial	least	squares	discriminant	
analysis;	SPLS-	DA,	sparse	partial	least	squares	discriminant	analysis.
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   | 9CHOI et al.

‘lysoPC.a.C'	 or	 ‘SM.OH.C'	 demonstrated	 significance.	
In	addition,	all	76	metabolites	 selected	 for	 the	SPLS-	DA	
model	were	statistically	significant	(Table 5).

3.5	 |	 Applying random sampling to the 
diagnostic panel

Since	the	dependent	variables	used	in	this	study	were	di-
chotomous	 data,	 not	 continuous	 data,	 the	 PC	 diagnosis	
was	 predicted	 by	 generalizing	 through	 the	 inverse	 logit	
function.	The	metabolites	used	to	construct	the	SPLS-	DA	
model	 were	 normalized	 by	 correcting	 the	 average	 and	
standard	 deviation	 of	 each	 metabolite	 to	 compare	 the	
scales	 of	 each	 metabolite	 equally.	 The	 predicted	 values	
were	then	derived	by	multiplying	the	normalized	values	
of	the	76	metabolites	by	each	of	the	specified	designated	
metabolite	coefficients	shown	in	Table 2	and	by	summing	
the	multiplied	values	with	the	intercept	value	of	−11.665.	
Finally,	after	calculating	the	predicted	PC	diagnosis	prob-
ability	 by	 applying	 the	 inverse	 logit	 function,	 we	 deter-
mined	the	correctness	of	a	PC	diagnosis.

4 	 | 	 DISCUSSION

PC	 is	 a	 unique	 gastrointestinal	 cancer	 that	 has	 not	 im-
proved	in	terms	of	oncologic	outcomes	over	the	past	few	
decades.20	 However,	 advances	 during	 the	 last	 decade	 in	
diagnostic	approaches,	perioperative	management,	radio-
therapy	techniques,	and	treatment	strategies	for	advanced	
PC	 have	 resulted	 in	 modest	 incremental	 progress	 in	 pa-
tient	outcomes.	With	advances	in	surgical	techniques	and	
perioperative	 management	 strategies,	 margin-	negative	
pancreatectomy	 is	 now	 safely	 performed	 at	 experienced	
treatment	 centers.21,22	 In	 addition,	 effective	 and	 potent	
chemotherapeutic	 agents	 have	 been	 introduced	 that	 re-
sult	 in	 significant	 improvement	 in	 survival	 differences	
for	patients	with	PC.5,23	However,	while	margin-	negative	
resection	is	currently	the	most	effective	monotherapy	for	
treating	PC,	resection	as	an	option	is	in	less	than	20%	of	
the	cases	at	 the	 initial	 stage	of	diagnosis.	Therefore,	 the	
survival	 outcome	 of	 patients	 with	 PC	 could	 be	 promi-
nently	improved	if	PC	could	be	more	frequently	detected	
clinically	at	an	resectable	stage.

Serum	CA19-	9	is	currently	widely	used	as	a	biomarker	
for	 the	 detection	 and	 evaluation	 of	 post-	treatment	 PC.	
However,	its	clinical	availability	is	thought	to	be	limited	for	
monitoring	responses	to	therapy	and	predicting	prognosis.	
The	value	of	CA	19–	9	as	a	diagnostic	marker	is	highly	lim-
ited	in	part	due	to	its	low	sensitivity	(41%–	86%)	and	poor	
specificity	 (33%–	100%).24,25	Serum	CA19-	9	 levels	may	be	
elevated,	 even	 in	 patients	 with	 benign	 pancreatobiliary	

disorders	such	as	cholecystitis,	cholangitis,	and	pancreati-
tis.26	In	addition,	approximately	10%	of	the	entire	popula-
tion	does	not	express	Lewis	antigens,	suggesting	that	low	
levels	of	serum	CA	19–	9	cannot	be	used	to	rule	out	PC.27	
Other	serologic	biomarkers	have	been	suggested	as	poten-
tial	screening	tools	for	detecting	PC,	but	none	have	been	
proven	to	be	better	than	that	of	CA	19–	9.28

Metabolites	are	thought	to	represent	the	final	status	of	
functional	responses	of	 the	body	to	environmental	stim-
uli,	thereby	providing	a	functional	signal	derived	from	the	
genome-	based	proteome	 that	closely	 reflects	 the	current	
phenotypic	state	of	an	individual.	Therefore,	the	distribu-
tion	of	data	regarding	serum	metabolites	in	a	patient	may	
potentially	be	used	to	detect	PC.29	This	may	be	especially	
true	according	to	the	Warburg	effect,	in	which	cancer	cells	
undergo	 energetically	 inefficient	 glycolysis,	 even	 in	 the	
presence	 of	 oxygen-	rich	 environments	 (aerobic	 glycoly-
sis).	This	may	alter	the	distribution	patterns	of	serum	me-
tabolites	in	patients	with	PC.14

Based	 on	 this	 theory,	 Yun	 et	 al.	 and	 Kang	 et	 al.	 at-
tempted	 to	 modulate	 PC-	related	 metabolites	 in	 patients	
with	 PC.30,31	 Meanwhile,	 Ritchie	 et	 al.	 found	 for	 pa-
tients	with	PC	that	serum	metabolites,	such	as	36-	carbon	
ultralong-	chain	 fatty	 acids,	 phosphatidylcholines,	 ly-
sophosphatidylcholines,	 sphingomyelins,	 and	 vinyl	
ether-	containing	 plasmalogen	 ethanolamines,	 were	 sig-
nificantly	altered	compared	with	those	of	healthy	controls	
(all	 p	<	0.000025).13	 Lin	 et	 al.	 and	 Lacontti	 et	 al.	 investi-
gated	 the	 metabolomic	 changes	 between	 pancreatic	 in-
traepithelial	neoplasia	(PanIN)	and	PC	in	effort	to	identify	
potential	serum	biomarkers	for	the	early	detection	of	PC	
in	 animal	 models.	 They	 demonstrated	 that	 some	 serum	
metabolites	are	significantly	different	between	PanIN	and	
PC,	 suggesting	 that	 a	 more	 complex	 set	 of	 metabolomic	
changes	occur	 from	noninvasive	precursor	 lesions	 to	 in-
vasive	cancer.32,33

Based	 on	 a	 better	 understanding	 of	 metabolic	 dys-
regulation	in	PC,	recent	studies	have	been	conducted	to	
diagnose	 PC	 with	 metabolomics.	 Xie	 et	 al.	 found	 that	
a	panel	of	six	metabolites	(glycerol,	glutamine,	glycine,	
proline,	 serine,	 and	 threonine)	 could	 discriminate	 PC	
from	chronic	pancreatitis	or	healthy	controls	with	high	
accuracy.34	 This	 suggests	 that	 metabolomics	 could	 be	
useful	 in	 differentiating	 PC	 from	 other	 pancreatic	 dis-
eases.	Moore	et	al.	analyzed	a	 large	number	of	metab-
olites	 in	 plasma	 samples	 from	 patients	 with	 different	
stages	of	PC	and	healthy	controls.	The	researchers	found	
that	 different	 stages	 of	 PC	 had	 distinct	 metabolic	 pro-
files,	and	a	combination	of	metabolites	could	differenti-
ate	pancreatic	ductal	adenocarcinoma	from	other	types	
of	 pancreatic	 tumors.35	 Overall,	 these	 studies	 suggest	
that	metabolomics	has	the	potential	 to	aid	 in	the	early	
detection	and	diagnosis	of	PC.	In	the	present	study,	we	
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successfully	 developed	 76-	metabolite-	based	 diagnostic	
calculator	for	the	detection	of	PC	and	demonstrated	fare	
diagnostic	performance	for	differentiating	patients	with	
PC	from	those	with	other	diseases.	In	an	initial	analysis	
using	 116	 metabolites	 (OPLS-	DA,	 Table	 S3),	 the	 diag-
nostic	performance	was	found	to	be	excellent	in	a	devel-
opment	cohort,	with	an	accuracy	of	0.9886,	sensitivity	of	
0.9825,	specificity	of	0.9916,	and	AUC	of	0.987.	Keeping	
this	high	diagnostic	performance	in	mind,	we	attempted	
to	 reduce	 the	 number	 of	 potential	 serum	 metabolites	
needed	to	establish	diagnostic	panels	for	detecting	PC.	It	
was	found	using	1000	bootstrapping	internal	validations	
that	at	 least	76	metabolites	were	required	 for	 the	diag-
nostic	panel	in	order	to	sustain	a	high	diagnostic	perfor-
mance	(Table 4).	The	difference	in	AUC	values	between	
the	 OPLS-	DA	 and	 SPLS-	DA	 models	 was	 0.013	 (95%	
CI:	 −0.016,	 0.045),	 showing	 no	 statistical	 differences	
in	 terms	of	diagnostic	performance.	The	validation	co-
hort	 showed	 a	 lower	 diagnostic	 power	 level	 compared	
with	that	of	the	development	cohort,	and	although	the	
sensitivity	 was	 marked	 decreased,	 it	 still	 showed	 high	
specificity,	 sensitivity,	and	accuracy	(sensitivity	0.6429,	
specificity	0.9216,	accuracy	0.7822,	and	AUC	0.7981).

The	current	study	had	several	strengths.	Unlike	other	
previous	studies	 that	considered	only	healthy	donors,	or	
chronic	 pancreatitis	 as	 a	 control36,	 our	 study	 included	
healthy	 donors	 and	 patients	 with	 chronic	 pancreatitis,	
as	 well	 as	 other	 benign	 and	 malignant	 conditions,	 such	
as	 gall	 stones,	 pancreatic	 neuroendocrine	 tumors,	 thy-
roid	papillary	carcinoma,	breast	cancer,	lung	cancer,	and	
hepatocellular	 carcinoma	 (Table  1).	 In	 addition,	 we	 be-
lieve	 the	present	serum	76-	metbolomes	diagnostic	panel	
had	the	highest	diagnostic	performance	reported	to	date	
among	 studies	 investigating	 potential	 diagnostic	 values	
of	 serum	 metabolites	 for	 detecting	 PC	 (accuracy	 0.977,	
95%	CI	0.955–	0.994;	sensitivity	0.964,	95%	CI	0.905–	1.000;	
specificity	0.983,	95%	CI	0.958–	1.000;	AUC	0.974,	95%	CI	
0.944–	0.996;	Table 4).

No	single	metabolite	has	been	previously	shown	to	be	
promising	enough	for	the	detection	and	discrimination	of	
patients	with	PC.	Kobayshi	et	al.	constructed	an	effective	
diagnostic	 model	 for	 PC	 using	 four	 serum	 metabolites,	
xylitol,	 1,5-	anhydro-	D-	glucitol,	 histidine,	 and	 inositol,	
which	 were	 selected	 from	 45	 potentially	 altered	 metab-
olites	 in	 patients	 with	 PC.36	 Sugimoto,	 et	 al.	 conducted	
a	 comprehensive	 metabolite	 analysis	 of	 saliva	 samples	
and	 identified	57	principal	metabolites	 that	 can	be	used	
in	diagnostic	models	 to	accurately	detect	PC,	 suggesting	
that	 cancer-	specific	 signatures	 are	 embedded	 in	 salivary	
metabolites.37	Simplifying	the	diagnostic	model	by	reduc-
ing	 the	 number	 of	 metabolomic	 signatures	 detected	 in	
patients	with	PC	using	high-	diagnostic	performance	will	

facilitate	 the	 improved	clinical	 feasibility	and	usefulness	
of	metabolite-	based	diagnostic	strategies	for	PC.

Bathe	 et	 al.	 attempted	 to	 identify	 potential	 serum	
metabolites	 to	 differentiate	 between	 benign	 and	 malig-
nant	 pancreatic	 diseases,	 and	 demonstrated	 a	 good	 dis-
crimination	 power	 with	 an	 AUC	 of	 0.8308.38	 Leichtle	
et	 al.	 suggested	 a	 multivariate	 model	 based	 on	 specific	
amino	 acids	 in	 conjunction	 with	 CA19-	9,	 and	 described	
a	 3-	dimensional	 analogue	 of	 AUC	 called	 volume	 under	
the	ROC	surface	(VUS)	that	demonstrated	good	discrim-
ination	(VUS	value	=	0.89).39	Meanwhile,	Sugimoto	et	al.	
investigated	 the	 saliva	 of	 unstimulated	 patients	 and	 re-
ported	five	selected	metabolite-	based	models	with	excel-
lent	accuracy	for	the	detection	of	PC	with	an	AUC	of	0.94.	
However,	 the	 results	 from	 none	 of	 the	 aforementioned	
studies	reach	performance	levels	comparable	to	those	cur-
rently	observed.37

We	recently	reported	the	potential	role	of	serum	com-
plement	 factor	 B	 in	 detecting	 PC.40and	 predicting	 sur-
vival	 outcomes	 of	 patients	 with	 resected	 PC.41,42	 This	
new	emerging	biomarker	in	conjunction	with	the	current	
serum	76-	metabolite-	based	diagnostic	panel	may	provide	
the	opportunity	to	improve	survival	outcomes	in	the	near	
future	of	patients	with	PC.	In	fact,	Mayerle	et	al.	recently	
identified	a	biomarker	signature	of	nine	metabolites	and	
CA19-	9	 for	 the	 differential	 diagnosis	 between	 patients	
with	PC	and	those	with	chronic	pancreatitis,	demonstrat-
ing	 that	 the	clinical	use	of	 this	biomarker	signature	can	
improve	the	diagnosis	and	treatment	stratification	of	pa-
tients	compared	with	that	of	CA19-	9	alone.11	Considering	
the	potential	role	of	neoadjuvant	chemotherapy	in	treat-
ing	patients	with	PC,	it	seems	that	the	long-	term	oncologic	
outcome	of	PC	is	less	pessimistic,	with	the	hope	of	cures	
based	on	advances	in	the	diagnosis	of	PC.

The	 current	 study	 had	 several	 limitations.	 For	 in-
stance,	the	study	had	a	retrospective	design	and	was	based	
on	data	from	a	single	ethnicity	population	with	a	limited	
number	of	study	samples.	External	validation	using	geo-
graphically	and	demographically	different	cohorts	should	
be	performed.	In	addition,	evaluating	76	metabolites	may	
be	 too	 substantial	 to	 be	 practical	 for	 clinical	 oncology.	
Accordingly,	 an	 external	 validation	 study	 using	 a	 larger	
sample	 size	 should	 be	 performed	 to	 in	 effort	 to	 support	
or	improve	the	diagnostic	performance	of	the	current	di-
agnostic	panel.	Lastly,	our	study	relied	on	a	commercial	
metabolomics	kit.	Although	other	 techniques	could	also	
quantify	 these	metabolites,	 the	development	and	valida-
tion	of	robust	quantification	methods	for	about	hundreds	
of	metabolites	will	be	hard	works	for	individual	research-
ers	or	clinical	laboratory.	We	selected	this	commercial	kit	
since	 it	 has	 been	 analytically	 validated	 in	 the	 previous	
study.40

 20457634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cam

4.6233 by Y
onsei U

niversity C
entral L

ibrary, W
iley O

nline L
ibrary on [04/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



   | 11CHOI et al.

In	conclusion,	we	developed	a	76-	metabolite-	based	di-
agnostic	panel	for	detecting	PC	and	demonstrated	its	high	
diagnostic	 performance	 in	 differentiating	 patients	 with	
PC	from	those	with	other	diseases.
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