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a b s t r a c t 

The use of adjuvant Immune Checkpoint Inhibitors (ICI) after concurrent chemo-radiation therapy (CCRT) has 

become the standard of care for locally advanced non-small cell lung cancer (LA-NSCLC). However, prolonged 

radiotherapy regimens are known to cause radiation-induced lymphopenia (RIL), a long-neglected toxicity that 

has been shown to correlate with response to ICIs and survival of patients treated with adjuvant ICI after CCRT. 

In this study, we aim to develop a novel neural network (NN) approach that integrates patient characteristics, 

treatment related variables, and differential dose volume histograms (dDVH) of lung and heart to predict the 

incidence of RIL at the end of treatment. Multi-institutional data of 139 LA-NSCLC patients from two hospitals 

were collected for training and validation of our suggested model. Ensemble learning was combined with a 

bootstrap strategy to stabilize the model, which was evaluated internally using repeated cross validation. 

The performance of our proposed model was compared to conventional models using the same input fea- 

tures, such as Logistic Regression (LR) and Random Forests (RF), using the Area Under the Curve (AUC) of 

Receiver Operating Characteristics (ROC) curves. Our suggested model (AUC = 0.77) outperformed the compar- 

ison models (AUC = 0.72, 0.74) in terms of absolute performance, indicating that the convolutional structure of 

the network successfully abstracts additional information from the differential DVHs, which we studied using 

Gradient-weighted Class Activation Map. 

This study shows that clinical factors combined with dDVHs can be used to predict the risk of RIL for an 

individual patient and shows a path toward preventing lymphopenia using patient-specific modifications of the 

radiotherapy plan. 
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ntroduction 

Lung cancer is one of the leading causes of cancer-related death

orldwide and its underlying biological heterogeneity as well as the

arge number of confounding factors complicate clinical decision mak-

ng [1] . Following the completion of RTOG 9410 in the early 2010s

2] , concurrent use of Chemo-Radiotherapy (CCRT) has become the

efinitive treatment for unresectable Locally-Advanced Non-Small Cell

ung Cancer (LA-NSCLC). In the late 2010s, the PACIFIC trial demon-

trated superior survival for the addition of Immune Checkpoint In-
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ibitors (ICIs) after the completion of CCRT, which quickly became the

ew standard of care [ 3 , 4 ], and similar regimens are studied in a range

f other indications [5] . 

Concurrent chemoradiotherapy is known to cause both acute and

ate toxicities including esophagitis, pneumonitis, fibrosis, and hema-

ologic toxicities, some of them significantly affecting not only qual-

ty of life but also survival [ 6 , 7 ]. Among these toxicities, Radiation-

nduced Lymphopenia (RIL) has long been disregarded as a common

ut non-critical side effect of CCRT [8] . However, the addition of adju-

ant ICIs to the treatment regimen for lung cancer [3] and other tumor
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ypes [ 9 , 10 ] have brought renewed interest to RIL and how to mitigate

t, due to the realization that the immuno-suppressive effects of radia-

ion may potentially impact the subsequent response to immunotherapy

11–13] . 

Emerging clinical data support this view – while it has been known

or a while that the incidence of RIL correlates to decreased survival

fter CCRT alone in lung cancer patients [ 14 , 15 ], recent data suggest

hat the correlation between RIL and outcome further strengthens in

he post-PACIFIC era of adjuvant ICI [ 16 , 17 ]. As RIL has been shown to

epend on individual factors and the radiotherapy treatment plan [14] ,

fforts have started to predict RIL using statistical or deep learning mod-

ls based on patient and treatment characteristics [ 18 , 19 ]. However, RIL

epends on dose to multiple organs, particularly the heart and lung in

ur case [20] , that are inherently correlated, and on multiple baseline

actors that could interact with these dose metrics. 

Therefore, in this study, we aim to develop a novel deep-learning-

ased model to predict RIL for LA-NSCLC patients undergoing defini-

ive CCRT that efficiently takes into account dose to multiple structures

s well as confounding factors. We developed this model based on a

re-registered study analysis plan [21] , compared it to conventional ap-

roaches (logistic regression and random forests) based on the same pre-

ictors, and investigated the network to understand which dose regions

ctivate high-risk predictions. 

ethod & materials 

atient cohort and characteristics 

This retrospective study includes patients with LA-NSCLC who were

reated with CCRT from two institutions, and the study was approved

y each institution’s institutional review board [ 20 , 22 ]. Patients were >

8 years old, had weekly blood tests, and received Intensity Modulated

adiation Therapy (IMRT). The median total radiation dose was 68 Gy

range 60-78 Gy) given in 2.0 Gy per fraction (range 1.8-2.2 Gy). The

LC at baseline, after the first week of CCRT, and at the end of CCRT,

rgan volumes of the tumor, normal lungs and heart, and mean doses to

ormal lungs and heart were collected. The difference in baseline patient

haracteristics and treatment related characteristics between the two

ohorts was analyzed using Welch’s t test ( R software package, version

.5). 

nput data and endpoint 

Differential Dose Volume Histograms (dDVHs) of normal lungs and

eart with 0.5Gy dose bins and clinical variables were used as input data

or the prediction model. Examples of two different cases are shown in

ig 1. A. Differential DVHs, which have multiple peaks at dose levels that

ere received by large areas, were selected instead of cumulative DVHs

cDVH), which are monotonously decreasing. Although both fundamen-

ally convey the same information, the idea was to have a compact net-

ork with a limited number of layers. The underlying idea is that dDVHs

implify extraction of useful features via convolutional layers and facil-

tate model interpretation in a given compact network structure. The

ery low dose bath below 3Gy in the dDVH has a high peak that is com-

on in every case, dominating the spectrum. Therefore we removed

his area from the input. In addition to the dDVHs, we used the follow-

ng clinical variables as features: baseline Absolute Lymphocyte Count

ALC), ALC after 1st week of RT, organ volumes of normal lungs, heart,

nd tumor, and mean doses of normal lungs and heart. The endpoint of

he prediction model was Grade 4 Radiation-Induced Lymphopenia (G4

IL) at the end of CCRT, which is defined as ALC < 200 / 𝜇𝑙. 

etwork structure and hyperparameters 

The model starts with two pathways, one for the dDVHs and the other

or the clinical variables. In this hybrid structure, dDVHs of normal lungs
2 
nd heart are fed into the convolutional layers while clinical variables

re fed into the fully-connected layers, extracting features from these

wo types of features separately. At the end of these two paths, the two

xtracted feature groups are concatenated using a fully connected layer

o that the interplay between dDVHs and clinical variables can be taken

nto account by the model. We note that a similar structure has been

sed recently by Cui et al. [23] in integrating multi-omics information

ith dosimetric data, a schematic structure of our network is shown in

ig 1. C with detailed description of the hyperparameters specified. 

odel evaluation and ensemble model 

In order to avoid overfitting and to develop a robust and stable

odel, we applied repeated 5-fold internal cross validation integrated

ith a bootstrapped ensemble strategy ( Fig 1. B). After dividing the

ataset into 5 folds in a stratified manner, i.e. with a similar propor-

ion of G4 RIL events in each fold, we used bootstrapping with replace-

ent on the 4 training folds to create 10 bootstrapped subgroups, and

rained a separate model on each of them. The final model prediction

as computed as the average output of these 10 sub-models. We re-

eated this process multiple times to evaluate how robust the model is

gainst random data splits – due to the limited size of the cohort and the

eterogeneity among institutions we did not form a separate validation

ohort in this work. We also report results for the single neural network

sNN) separately from the ensemble neural network (eNN), to demon-

trate the difference in performance and robustness gained by using an

nsemble approach. 

Logistic regression (LR) and random forests (RF) were also imple-

ented and applied for comparison [ 24 , 25 ]. As those models may be

asily overfitted given a large number of highly colinear input features

rom the dosimetric data, we provided these models with the dosimet-

ic input in 5Gy increments to avoid overfitting, similar to published

pproaches [18] . For the RF model, the number of trees in the forest,

he maximum depth of the tree, and the minimum number of samples to

plit an internal node were 100, 5, and 2 respectively. These parameters

rovide a good general choice but were, similar to the hyperparameters

f the CNN described above, not optimized. 

odel comparison – feature importance and examining neural network 

ctivation patterns 

The comparison models were fit and evaluated in parallel with the

eural network using the same cross-validation process and were com-

ared using the Receiver Operating Characteristics (ROC) curve to cal-

ulate the Area Under Curve (AUC). We quantified the robustness of the

odel, i.e. the variability of its performance across data splits, using

onfidence intervals of the observed AUCs. To avoid overly optimistic

eporting of the selected results, our proposed model structure, valida-

ion methodology, endpoints, and metrics were pre-specified in a study

nalysis plan that was published before data collection was initiated

21] , deviations from which are discussed below. 

To investigate possible differences in performance between the lin-

ar, i.e., LR vs more complex models such as RF/NN, we performed three

onsecutive analyses. First, we analyzed the correlation between clini-

al and dosimetric variables and G4 RIL using uni- and multi-variable

ogistic regression. Second, we evaluated the feature importance in the

R using the coefficients and in the RF using the impurity, averaged over

he repeated crossvalidation. 

Third, for the neural network we investigated which areas of the

VH are most correlated to the risk, i.e. which dose levels activate the

etwork most, using a Gradient-weighted Class Activation Map (Grad-

AM) methodology [26] . This class-discriminative visualization allows

s to interrogate the model, indicating the activated region at the end

f convolutional layers. We averaged the activation maps for the entire

opulation and compared the observed activation in patients that expe-

ienced G4 RIL with those who did not in order to understand which
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Fig. 1. Schematic diagram of the network. A. Two example cases of dDVHs for normal lungs and heart. B. Schematic diagram of five-fold cross-validation using 

ensemble strategy. C. Network structure with input channels and hyperparameters. 

Table 1 

Patient characteristics. 

Organ volume ( 𝑳 ) Normal lungs 3.17 (1.47 - 7.38) 

Heart 0.71 (0.18 - 1.47) 

Tumor 0.51 (0.01 - 2.55) 

Mean dose (Gy) Normal lungs 18.0 (2.43 - 49.9) 

Heart 7.49 (0.15 - 27.42) 

ALC (/ 𝝁𝑳 ) Baseline 1.68 (0.3 - 4.27) 

First week of CCRT 1.03 (0.08 - 2.34) 

End of CCRT 0.36 (0.06 - 0.92) 
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a  
ose levels are important for the development of lymphopenia. Differ-

nces in the activation levels between groups were analyzed using the

wo-sample Kolmogorov-Smirnov test. 

esults 

In total 139 LA-NSCLC patients treated with CCRT from two hospitals

ere included in this study. The median and range of the patient char-

cteristics are summarized in Table 1 including organ volumes, mean

oses for organs and ALC at baseline, first week and end of CCRT. The

ndpoint for the prediction model was Grade 4 RIL, which had an inci-

ence of 16% across the cohort – 15% at institution A vs 17% at institu-

ion B (no significant difference). The median ALC at the end of CCRT

cross all patients was 0.38 / 𝜇L, ranging from 0.06-0.92 / 𝜇L. 133 pa-

ients developed G2 + RIL (ALC < 800), 108 developed G3 + (ALC < 500)

nd 22 developed G4 RIL (ALC < 200). 

Table 2 summarizes the difference in patients and treatment charac-

eristics between the two institutions and between the groups of patients

ith G4 RIL at the end of treatment and those without. When compar-

ng the two hospitals, we concluded that it showed clear differences in

ost of the variables, particularly including organ volumes and ALC be-

ore and during the treatment. For example, the lung volumes and ALCs

efore treatment were 3.5 L and 1.66 / 𝜇𝐿 at hospital A and 3.1 L and

.03 / 𝜇𝐿 at hospital B. Among treatment-related factors, the total dose

nd the mean dose to normal lungs were substantially different between

ospitals. On the other hand, mean heart dose was not statistically dif-
3 
erent between the cohorts. These large differences between the insti-

utions led to the decision to perform repeated cross-validation instead

f using one cohort as training and the other as a validation set. Simi-

arly, when comparing patients with G4 RIL and no G4 RIL, we observe

ifferences in normal lung volume, baseline and first week ALCs, and

ean heart dose. Amongst the variables, the mean heart dose showed

he most significant difference with p-value of 0.004. 

Fig. 2 shows the resulting performance of the models: the single Neu-

al Network (sNN), logistic regression (LR) and random forest (RF) mod-

ls showed AUCs of 0.71, 0.73, and 0.73 with a 95% CI of 0.1, 0.04

nd 0.06 respectively. The ensemble strategy (eNN) improved the per-

ormance of the neural network to 0.77 in AUC while increasing the

obustness by lowering the 95% CI from 0.2 to 0.14. We investigated

ilcoxon signed rank sum test to compare the models across all itera-

ions of the repeated cross validation to investigate if there was a sta-

istically significant improvement in AUC values when introducing our

roposed ensemble NN over comparison models. A signed rank sum test

as selected since each training and validation was performed with the

ame stratified split of the data set for all four models. The single NN

odel had a statistically inferior performance, while when comparing

F and LR there was no statistical difference (p-value 0.3). The ensemble

N model on the other hand showed statistically significant improve-

ent of AUC compared to all three models with p-values < 0.0001 for

ll. 

To understand the difference in performance between the logistic re-

ression and the two more complex algorithms (RF and NN), we ran uni-

nd multi-variable logistic regressions of G4RIL and the clinical factors

nd investigated the possible importance of interactions and collinear-

ty. We also included the dosimetric variables that had the strongest

orrelation to G4RIL, which were mean heart dose and lung V15, in our

nalysis (see Table 3 ). ALCs before and after the first week of CCRT, tu-

or volume, lung V15 and mean heart dose were correlated to G4RIL.

ncluding these in a multivariable regression (see last column Table 3 )

eaves only ALC after the first week of CCRT and PTV volume as statis-

ically significant and trending towards significance respectively. 

The analysis of feature importance for both logistic regression

nd random forest models mirror the multivariable regression results,
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Table 2 

Patient- and treatment-related characteristics for the two cohorts, with p value from Welch’s t test. 

Hospital A Hospital B p-value G4 RIL No G4 RIL p-value 

Organ volume ( 𝑳 ) Normal lungs 3.5 3.1 0.007 3.41 3.06 0.05 

Heart 0.69 0.76 0.09 0.70 0.79 0.13 

Tumor (PTV) 0.71 0.46 < 0.001 0.58 0.85 0.06 

ALC (/ 𝝁𝑳 ) Baseline 1.66 2.03 0.003 1.8 1.5 0.03 

First week of CCRT 1.01 1.17 0.041 0.32 0.47 0.03 

End of CCRT 0.38 0.43 0.15 

CCRT regimen Total dose (Gy) 70.9 61.8 < 0.001 68.17 66.25 0.11 

Mean normal 

lung dose (Gy) 

21.2 15.1 < 0.001 19.0 20.0 0.46 

Mean heart 

dose (Gy) 

8.9 7.6 0.22 7.8 12.2 0.004 

Fig. 2. Receiver Operating Characteristics (ROC) curve and bar chart of AUCs throughout repeated cross-validation. A. ROC curves and according AUCs for sNN, 

LR, FR and eNN. B. Bar chart of average AUCs with CI 95% error for all four models. Significance according to Wilcoxon ranked sum test among all data splits and 

cross validation iterations; n.s. = not significant, ∗ = p < 0.05, ∗ ∗ ∗ = p < 0.001. 

Table 3 

Uni- and multi-variable logistic regression correlating G4 RIL with clinical and 

important dosimetric features. 

p value of univariable LR p value of multivariable LR 

ALC before CCRT 0.05 0.87 

ALC after 1st week 0.001 0.007 

PTV 0.01 0.07 

Mean heart dose 0.002 0.93 

Lung V15 0.05 0.99 

Total dose 0.14 
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emonstrating that the clinical features are more relevant to these mod-

ls compared to the dosimetric features. In the feature importance rank-

ng all dose levels seem to contribute similarly when averaged across

ll data splits, with heart dose contributing more to the prediction than

ung dose (see supplementary Fig. 1). 

Fig. 3 A shows the average Grad-CAM activation maps of all patients

left), those without G4 RIL (middle), and those with G4 RIL (right),

ogether with the corresponding dDVHs of normal lungs and heart.

verall, the network mostly focuses on the very low dose area ( < 10

y). However, in the G4 RIL patients, the model also reacted to mid-
4 
le and high dose areas, more so than for the group without G4 RIL.

ig 3 B shows two example patients with their specific Grad-CAM results.

or the patient without radiation-induced lymphopenia (left), lung and

eart dDVHs have peaks in the low dose areas and the activation of the

etwork happens in the same region. On the other hand, the network

ocused on broader regions for the G4 RIL case (right), and the heart

DVH shows a broad range of dose distribution from the low to the

igh dose region. Statistical analyses of the activation maps for the pa-

ients with G4 RIL shows that they are significantly different compared

o the patients experiencing no lymphopenia (p < 0.0001). 

iscussion 

In this study, we developed an NN-based ensemble model to pre-

ict radiation-induced lymphopenia after CCRT for LA-NSCLC patients

ased on a very heterogeneous cohort from two institutions. Our model

howed superior performance compared to logistic regression and ran-

om forests when evaluated using repeated cross-validation on the same

ata splits using the same input data, i.e. same clinical factors and dosi-

etric data. The robustness of the neural network was greatly improved

y introducing an ensemble approach, indicating this strategy could

e useful when fitting complex models that include dosimetric data to
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Fig. 3. Grad-CAM A. Averaged Grad-CAM over all, those without G4 RIL, and G4 RIL patients and corresponding dDVHs of normal lungs and heart. B. Example 

cases of Grad-CAM for two specific patients, without (left) and with (right) radiation-induced lymphopenia. 
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u  
he limited datasets common in radiation oncology. Logistic regression

howed the most stable predictions, though with the poorest overall per-

ormance. 

We compared our model to logistic regression and random forests,

he former a very standard and robust approach and the latter a differ-

nt robust model that allows modeling of the feature interactions. To

rst understand the effects of the input variables on radiation-induced

ymphopenia, we performed a uni- and multi-variable logistic regression

 Table 3 ). As expected, the factors most correlated to the ALC at the end

f CCRT were ALC before and at the first week of CCRT, tumor vol-

me, and dosimetric parameters for lung and heart, which agrees with

he findings in previous studies [ 14 , 20 ]. However, the multi-variable

egression showed how, due to collinearity, only two of these factors

emained important when combined together ( Table 3 ). The fact that

LC after the first week became the most dominant factor in the multi-

ariable regression analysis does not imply that dose level is not im-

ortant and that severe RIL cannot be prevented by focused treatment

lanning strategies – it rather shows that the dose is causing that steep

ecline of ALC in the first week, which has been recently also shown by

llsworth et al. [29] . 

This explains why when analyzing the feature importance in the LR

odels among all data splits (see Supplementary Fig. 1), the dosimetric

eatures have in general a low feature importance compared to the clin-

cal features and even turn negative sometimes, meaning dose would be

egatively correlated to our endpoint. This is common behavior in the

ase of feature collinearity, when weaker collinear features are driven

y the noise among data splits in the dataset. The random forest model

s an improvement in that regard, as it is more robust towards collinear-

ty due to the built-in bootstrap aggregating of data as well as predictors

mong the different decision trees. 

To study the feature importance in the neural network, we used the

ell known Grad-CAM methodology to interpret the network and study

hich regions of the dDVH led to the strongest activation. In contrast

o the LR and RF models, the neural network focused in general on the

ow dose bath area, which is in line with previous clinical studies inves-

igating lung cancer patients [ 14 , 27 , 28 ]. As the clinical and dosimetric

eatures available to the models are the same, our results indicate that

his type of network structure, consisting of multiple dDVHs feeding as
5 
eparate channels into a convolutional layer, is an efficient way to ab-

tract DVH information into higher-order features and let them interact

ith clinical factors in the following layers. Taking the entire dDVHs

s inputs has an advantage as it preserves the continuous changes and

bvious collinearity of neighboring regions in the histogram, which is

fficiently considered by convolutional layers. 

Using a similar approach Cui et al. predicted radiation pneumoni-

is and local control using dDVH and multi-omic features [23] . In that

tudy, the group experiencing pneumonitis did not show clear differ-

nces in activation maps, indicating a common dose range of activation.

n our study, however, the activated area for the G4 RIL patient group

as distinct from the other patients, the network paying more attention

o the broader dose range from low to high dose. 

Initialization of the neural network parameters and weights can sub-

tantially impact the network convergence for training [30] , which is

hy many studies in this field fix the random seed to preserve repro-

ucibility. However, the effect of the random seed becomes dominant

or small networks, and the results can be sensitive to initialization.

herefore, we randomized our initialization in every repeated cross-

alidation, confirming that the outperformance of our model is gener-

lizable, though this might have caused the rather larger confidence

ntervals in the performance of the NN models. 

An important constraint of this study exists in the statistical differ-

nce between the cohorts from the two institutions. Except for the end-

oint - ALC incidence was similar between cohorts - most baseline fac-

ors differed significantly between the two cohorts ( Table 2 ). Consider-

ng this difference, we opted to evaluate the model using repeated inter-

al cross-validation and not using one institutional cohort for training

nd the other one for testing, as this would only yield one AUC for each

odel, making robust conclusions impossible. Internal cross-validation

owever can lead to over-optimistic results, particularly for complex al-

orithms for which a lot of hyper-parameters can be adjusted. We there-

ore did not use hyperparameter optimization to fine-tune the perfor-

ance of the random forest or the neural network but stayed within the

imits set in our study analysis plan [21] , which was submitted during

he data collection phase of the project. 

At the same time, this large heterogeneity in the population gives

s more confidence that the performance estimates of our models are
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ot overly optimistic. Nevertheless, further prospective validation us-

ng an independent dataset is required to strengthen the credibility of

he prediction model, and larger cohorts are expected to lead to bet-

er overall performance. The code is available to interested researchers

pon request, please contact the authors for details. 

Another possible improvement may be made by employing higher

imensional data – studies have recently shown that features of the

hree-dimensional radiation dose distribution can be correlated to lym-

hopenia in thoracic radiotherapy patients [ 20 , 31 ], indicating that the

pper mediastinum might be an important region for the development

f RIL. Given larger training cohorts, we are therefore planning to em-

loy higher dimensional dose distribution information, similar to other

merging approaches [12] , to improve prediction performance in future

tudies. 

onclusion 

In this retrospective study, we developed a novel neural-network-

ased ensemble model to predict radiation-induced lymphopenia at the

nd of CCRT and compared the performance of the proposed model to

hose of existing approaches. Our results show that this type of com-

act convolutional structure can abstract dosimetric information from

ultiple organ DVHs very efficiently and combine them with impor-

ant clinical and patient factors. We also demonstrated that ensemble

odeling succeeds in stabilizing model variance even when randomiz-

ng initial weights at every iteration. Grad-CAM based network analy-

is helped explain which areas of the DVH are most impactful for the

evelopment of lymphopenia and provided valuable insights on how

o prevent RIL using patient-specific modifications of the radiotherapy

reatment plan. Models such as the one proposed here are crucial for the

merging concept of “lymphocyte-sparing radiotherapy ”, which seeks to

inimize the adverse impact of RT on the immune system in the context

f radiotherapy-immunotherapy combination regimen. 
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