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Abstract: This study aimed to investigate the clinical implications and prognostic value of artificial
intelligence (AI)-based results for chest radiographs (CXR) in coronavirus disease 2019 (COVID-19)
patients. Patients who were admitted due to COVID-19 from September 2021 to March 2022 were
retrospectively included. A commercial AI-based software was used to assess CXR data for con-
solidation and pleural effusion scores. Clinical data, including laboratory results, were analyzed
for possible prognostic factors. Total O2 supply period, the last SpO2 result, and deterioration
were evaluated as prognostic indicators of treatment outcome. Generalized linear mixed model
and regression tests were used to examine the prognostic value of CXR results. Among a total of
228 patients (mean 59.9 ± 18.8 years old), consolidation scores had a significant association with
erythrocyte sedimentation rate and C-reactive protein changes, and initial consolidation scores were
associated with the last SpO2 result (estimate −0.018, p = 0.024). All consolidation scores during
admission showed significant association with the total O2 supply period and the last SpO2 result.
Early changing degree of consolidation score showed an association with deterioration (odds ratio
1.017, 95% confidence interval 1.005–1.03). In conclusion, AI-based CXR results for consolidation
have potential prognostic value for predicting treatment outcomes in COVID-19 patients.

Keywords: artificial intelligence; COVID-19; lung diseases; prognosis; software

1. Introduction

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic disease since 2019 [1].
Compared with two other coronavirus-related diseases in the past two decades, COVID-19
is more widespread and has a fatality rate of 1.4% [2]. This virus is easily spread through
respiratory droplets and causes frequent radiologic and laboratory abnormalities after
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exposure. Even with massive global efforts, the disease has not been completely conquered
yet because of the wide genetic recombination and variations of the virus, which causes
frequent hospitalization, mortalities and adverse outcomes [1].

Artificial intelligence (AI) is being widely applied in medicine, and efforts have fo-
cused on integrating AI for the efficient diagnosis, treatment, and prediction of outcomes
of COVID-19 patients [3–5]. COVID-19 manifests radiologic abnormalities on chest ra-
diographs (CXR), such as peripherally located increased opacity areas with lower lobe
predominance, even though these findings overlap with those of other diseases, such as or-
ganizing pneumonia or other infectious diseases [6,7]. These CXR abnormalities were used
to develop an AI algorithm to detect COVID-19 infection, and recently some researchers
attempted to demonstrate the prognostic implications of detecting CXR abnormalities
using AI [3,8–10]. Previous researchers developed their own algorithm for predicting
mortality from COVID-19 by analyzing CXR data in addition to the clinical data [8,10,11].
They demonstrated that their respective algorithms had good prognostic performance
and showed that the addition of an AI algorithm for CXR to existing prognostic factors
improved performance. However, there is still a lack of studies demonstrating whether
AI-based CXR results could reflect the clinical course and show prognostic value during
the treatment of COVID-19 infection.

Therefore, the purpose of this study was to investigate the clinical implication and
prognostic value of AI-based CXR results in addition to the clinical indicators for assessing
the disease course and outcome of COVID-19 infection.

2. Materials and Methods

The Institutional Review Board (IRB) of Yongin Severance Hospital approved this
retrospective study (IRB number 9-2022-0046) and the requirement of informed consent was
waived due to the study’s retrospective design. The study was conducted according to the
guidelines of the Declaration of Helsinki and Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE).

2.1. Subjects and Clinical Features

Patients who were admitted to our hospital due to COVID-19 infection from September
2021 to March 2022 were retrospectively included. Inclusion criteria were as follows: (1)
positive result of COVID-19 PCR and admission to our hospital during the study period,
and (2) CXR exams and laboratory results more than once during the admission dates. The
exclusion criteria were as follows: (1) patients under 18 years of age at the time of diagnosis
of COVID-19 infection, and (2) patients who did not undergo CXR or laboratory results
during the admission.

After reviewing electronic medical records, age, sex, and laboratory results were
recorded. The laboratory results, including WBC (103/µL), neutrophil (%), lymphocyte (%),
erythrocyte sedimentation rate (ESR, mm/h), C-reactive protein (CRP, mg/L), prothrombin
time (PT, s, %), aspartate aminotransferase (AST, IU/L), and alanine aminotransferase
(ALT, IU/L) results, known to be associated with severity of COVID-19 infection during the
admission were evaluated [4]. If the patients had repeated laboratory exams, the repeated
results within 3 days of all CXRs taken during admission dates were all recorded.

To evaluate outcome after treatment, clinical features such as total O2 application
period (days), last SpO2 (%), and deterioration at the discharge date were evaluated.
Because our hospital is a general hospital, after the treatment of COVID-19 infection
following the National Institutes of Health guidelines [12], patients who needed intensive
treatment including ventilator care and invasive procedures for COVID-19 infection were
transferred according to the national guidelines. Therefore, if the patients were getting
worse without recovery, they were discharged and transferred to hospitals dedicated to
COVID-19 treatment; others who had recovered well during the admission without need
for O2 supply and any symptoms were discharged without transferring. Therefore, we
could assess whether the patient deteriorated or not at the time of discharge and used this
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information as one of the prognostic results. The total O2 application period was defined as
the days needed to supply O2 during the admission because the patient could not sustain
O2 saturation in room air. The last SpO2 was SpO2 at the time of discharge date and this
was used as one of the prognostic factors of treatment outcomes.

2.2. AI-Based CXR Results

As an imaging manifestation of COVID-19 infection, increased opacity area and pleu-
ral effusion on CXR were evaluated using AI-based lesion-detection software. COVID-19
infection exhibits increased opacity areas, such as ground-glass opacity (GGO) and con-
solidation, mainly in subpleural spaces of both lungs and is rarely associated with pleural
effusion. In our hospital, commercially available AI-based lesion-detection software (Lunit
INSIGHT CXR, version 3, Lunit Inc., South Korea) was integrated into all CXRs in the
pictures archiving and communication system (PACS). This software could detect eight
lesions on CXR, including consolidation (increased opacity area on CXR, encompassing the
terms of GGO and consolidation) and pleural effusion [13,14]. In the previous study, the di-
agnostic accuracy for consolidation and pleural effusion using the same algorithm was 93%
and 99.2%, respectively [15]. When considering consolidation, nodules, and pneumothorax
together, the AI algorithm’s stand-alone performance had an area-under-the-curve (AUC)
of 0.867 with a sensitivity of 88.5% and specificity of 72.3% [16]. To determine the presence
of each lesion, the software presents an abnormality score ranging from 0 to 100%; this
score represents the probability that a given CXR has lesions as determined by AI. When
the abnormality score of each lesion type is above 15% [17], this software determines that a
lesion is present on the CXR and displays a contour map and abbreviation (where “Csn”
stands for consolidation and “Pef” stands for pleural effusion, as pre-defined format in the
software) with the abnormality score for each lesion (Figure 1). For the study population,
we extracted abnormality scores of consolidation and pleural effusion for CXRs that the
patients underwent during the admission dates. For patients with repeated exams, all
results of each follow-up day were extracted from the server.

2.3. Statistical Analysis

Data were analyzed by SAS 9.4 (SAS Institute, Cary, NC, USA) and SPSS (version
26.0, IBM Corp, Armonk, NY, USA). After the normality test using the Shapiro–Wilk test,
continuous values were presented as means and standard deviations. To determine the
association between patterns of clinical and CXR results during the admission period, a
generalized linear mixed model was used.

To examine the prognostic value of the initial CXR and laboratory results for the
prediction of total O2 supply period, last SpO2, and deterioration after the treatment,
univariate and multivariate linear regression and logistic regression were used. To evaluate
whether the pattern of change in all CXR and laboratory results during the admission period
could be used to predict the prognostic outcome, the generalized linear mixed model was
used for only patients who have more than two repeated exams. We also evaluated whether
early changes in CXR and laboratory results during the first 3 days could be used to predict
the prognosis of COVID-19 infection using linear regression and logistic regression tests. In
this retrospective study, the timing of the first follow-up CXR after hospitalization can vary
among patients. To account for the magnitude of early changes and evaluate treatment
response, the approach of calculating the gradient of sequentially measured values was
used. Therefore, early changes of results in the first 3 days were calculated using an
equation. The formula for calculating the changing degree in the first 3 days is as follows:
(measured results of the second follow-up exam minus the results of the first exam at
admission) divided by the follow-up days between the second and first exams, multiplied
by 3 days. This was also evaluated for patients who had repeated CXR or laboratory results.
A p-value less than 0.05 was regarded as statistically significant.
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Figure 1. Two chest radiographs (CXR) of a 72-year-old man who had deterioration after treatment
for COVID-19. The AI algorithm generates a contour map with abbreviations (where “Csn” stands
for consolidation) and its abnormality score for lesion localization. (a) Initial CXR taken on the day of
admission showed consolidation score of 62% in right lower lung field. His WBC level was 6980/µL,
CRP level was 33.3 mg/L, and SpO2 was 96% on the same day. (b) His follow-up CXR on the 6th day
showed increased consolidation score of 97%. His WBC level was 9760/µL, CRP level was 234 mg/L,
and SpO2 was 90% on the same date. He was transferred to a dedicated hospital for intensive care
due to the deterioration.

3. Results
3.1. Patients and Clinical Results

During the study period, a total of 228 patients (Male: Female = 135:93, mean age
59.9 ± 18.8 years old) who had positive results for COVID-19 reverse transcriptase poly-
merase chain reaction (RT-PCR) and were admitted to our hospital were included in this
study. During the study period, from the third week of January 2022, the Omicron variant
became predominant in South Korea, while the Delta variant was dominant prior to that
period. No one was excluded due to lack of CXR or laboratory results during the admission
period. Among the 228 patients, 136 patients had repeated CXR and laboratory exams
(mean 1.9 times, maximum 8 times). The mean admission period was 9 days, ranging from
1 to 33 days. Approximately 22.4% (51/228) of patients were asymptomatic. Demographics
of the patients and exams are summarized in Table 1. The mean abnormality score for
consolidation was 36.6 ± 33.4% for the initial 228 CXRs and 49.7 ± 34.8% for all 463 CXRs
including repeated exams. The mean abnormality score for pleural effusion was 3.2 ± 10%
for the initial CXR and 3.4 ± 8.8% for all CXRs. As a prognostic outcome, total O2 supply
period was 2.6 ± 18.8 days and the last SpO2 was 94.7 ± 2.6%. Approximately 11.8%
(27/228) patients showed deterioration and were transferred to dedicated hospitals for
intensive care.
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Table 1. Results of patients and repeated exams during admission from COVID-19.

Number of Patients
with Initial Exam/with

Repeated Exams

Mean ± SD of
Patients or

Initial Exams

Total Number of Exams
Performed during Admission

(Min-Max Number of
Repeated Exams in a Patient)

Mean ± SD of
Total Exams

AI-based abnormality scores on CXR

Consolidation (%) 228/136 36.6 ± 33.4 463 (1–8) 49.7 ± 34.8

Pleural effusion (%) 228/136 3.2 ± 10.0 463 (1–8) 3.4 ± 8.8

Laboratory results

WBC 228/136 78.6 ± 570.5 463 (1–8) 42 ± 402

Neutrophil 227/136 63.1 ± 12.6 462 (1–8) 64.3 ± 13.9

lymphocyte 227/136 25.7 ± 10.6 462 (1–8) 25.3 ± 11.6

ESR 204/41 42.3 ± 26.3 276 (1–8) 41.7 ± 26

CRP 220/133 28.4 ± 37.5 453 (1–8) 31.4 ± 44.3

PT (s) 141/14 8.7 ± 1.4 163 (1–5) 8.8 ± 1.8

PT (%) 141/14 121.7 ± 22.4 163 (1–5) 122 ± 23.2

AST 225/116 34.6 ± 25.1 431 (1–8) 35.4 ± 27.1

ALT 223/116 28.8 ± 24.5 431 (1–8) 33.3 ± 29

Prognostic outcomes

O2 supply
period (days) 228 2.6 ± 18.8

Last SpO2 (%) 228 94.7 ± 2.6

Deterioration 27/228 (11.8%)

Values are presented as mean ± standard deviation or number (percentage or minimum-maximum numbers).
Abbreviations: SD = standard deviation, AI = artificial intelligence, CXR = chest radiograph, WBC = white blood
cell, ESR = erythrocyte sedimentation rate, CRP = C-reactive protein, PT = prothrombin time, AST = aspartate
aminotransferase, ALT = alanine transaminase.

3.2. Association between Pattern of Change in Clinical and CXR Results for COVID-19 Patients

Table 2 shows the results of association between the pattern of change in clinical and
CXR results during the admission period. In univariate analysis, patterns of neutrophil,
lymphocyte, ESR, CRP and AST results showed a significant association with the change
in consolidation score on CXR in each patient (all, p < 0.001). In multivariate analysis, the
pattern of change in ESR and CRP showed a significant association with consolidation
score (p ≤ 0.001). For pleural effusion, neutrophil and lymphocytes showed significant
association on univariate analysis but no significant result on multivariate analysis.

3.3. Prognostic Value of CXR and Laboratory Results for the Prediction of Outcome

Table 3 shows the results for the prognostic value of the initial CXR and laboratory
results at the time of admission for predicting prognostic outcomes including total O2
supply period, last SpO2, and deterioration. In multivariate analysis, the initial WBC result
showed significant association with the total O2 supply period (estimate 0.005, p = 0.022).
Initial consolidation score (estimate −0.018, p = 0.024), CRP (estimate −0.02, p = 0.007), and
ALT (estimate −0.037, p = 0.023) showed a significant association for the last SpO2 result.
For the aspect of deterioration, consolidation score, neutrophil, lymphocyte, ESR, and CRP
showed significant association in univariate logistic regression analysis but showed no
significant association in multivariate analysis.
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Table 2. Association between patterns of change in clinical and AI-based CXR results on
COVID-19 patients.

AI-Based Abnormality
Score on CXR (%)

Consolidation Pleural Effusion

Univariate Multivariate Univariate Multivariate

Beta p-Value Beta p-Value Beta p-Value Beta p-Value

WBC 0.003 0.393 0.000 0.962

Neutrophil 0.768 <0.001 0.551 0.241 0.080 0.040 0.011 0.926

lymphocyte −0.778 <0.001 0.125 0.816 −0.100 0.032 −0.088 0.537

ESR 0.584 <0.001 0.417 <0.001 0.015 0.456

CRP 0.239 <0.001 0.231 0.001 0.013 0.257

PT (s) −0.816 0.697 −0.071 0.866

PT (%) 0.016 0.922 −0.009 0.749

AST 0.201 <0.001 0.036 0.648 0.001 0.972

ALT 0.069 0.367 −0.013 0.506

Abbreviations: AI = artificial intelligence, CXR = chest radiograph, WBC = white blood cell, ESR = erythro-
cyte sedimentation rate, CRP = C-reactive protein, PT = prothrombin time, AST = aspartate aminotransferase,
ALT = alanine transaminase.

To determine whether the patterns of results during the admission period showed
a significant association with prognostic outcomes, we evaluated 136 patients who had
repeated CXR and laboratory exams (Table 4). On multivariable analysis, consolidation
score and CRP results showed a significant association with the total O2 supply period
(p = 0.013 and 0.009, respectively) and with the last SpO2 (p = 0.037 and 0.047, respectively).
In addition, CRP level showed a significant association with deterioration (estimate 0.009,
p = 0.018).

We also examined whether the early changes of CXR and laboratory results during the
first 3 days after admission could predict prognostic outcome, and the results are presented
in Table 5. Only the changing degree of consolidation score between 3 days after treatment
and at admission date showed a significant association with deterioration (odds ratio 1.017,
95% confidence interval 1.005–1.03, p = 0.005).
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Table 3. Prognostic value of initial CXR and laboratory results to predict outcome of COVID-19 patients.

Outcomes
(n = 228)

Total O2 Supply Period (Days) Last SpO2 (%) Deterioration

Univariate Multivariate Univariate Multivariate Univariate Multivariate

Beta p-Value Beta p-Value Beta p-Value Beta p-Value OR 95% CI p-Value OR 95% CI p-Value

AI-based abnormality scores on CXR (%)

Consolidation 0.129 <0.001 0.053 0.295 −0.035 <0.001 −0.018 0.024 1.031 1.018–1.045 <0.001 1.015 0.998–1.033 0.087

Pleural effusion 0.189 0.129 −0.053 0.019 −0.019 0.342 1.016 0.987–1.045 0.297

Laboratory results

WBC 0.007 0.001 0.005 0.022 −0.001 0.014 0.000 0.254 1.000 1.000–1.001 0.058

Neutrophil 0.329 0.001 0.168 0.605 −0.074 <0.001 0.056 0.266 0.162 1.074–1.182 <0.001 1.076 0.926–1.251 0.339

Lymphocyte −0.352 0.003 0.023 0.95 0.092 <0.001 0.098 0.095 0.06 0.833–0.934 <0.001 1.006 0.841–1.203 0.946

ESR 0.112 0.031 0.034 0.565 −0.019 0.032 0.006 0.529 0.593 1.008–1.040 0.003 1.003 0.982–1.025 0.778

CRP 0.128 <0.001 0.042 0.369 −0.034 <0.001 −0.02 0.007 1.021 1.012–1.030 <0.001 1.015 0.998–1.033 0.087

PT (s) 0.437 0.76 0.024 0.914 0.927 0.593–1.450 0.74

PT (%) −0.076 0.388 0.015 0.261 0.995 0.976–1.014 0.598

AST −0.037 <0.001 0.007 0.669 1.01 0.998–1.022 0.101

ALT −0.033 <0.001 −0.37 0.023 1.005 0.992–1.019 0.444

Abbreviations: AI = artificial intelligence, CXR = chest radiograph, OR = odds radio, CI = confidence interval, WBC = white blood cell, ESR = erythrocyte sedimentation rate, CRP =
C-reactive protein, PT = prothrombin time, AST = aspartate aminotransferase, ALT = alanine transaminase.

Table 4. Prognostic value of patterns of change in all CXR and laboratory results during admission period to predict outcome.

Outcomes
(n = 136)

Total O2 Supply Period (Days) Last SpO2 (%) Deterioration

Univariate Multivariate Univariate Multivariate Univariate Multivariate

Beta p-Value Beta p-Value Beta p-Value Beta p-Value Beta p-Value Beta p-Value

Consolidation 0.007 <0.001 0.005 0.013 −0.027 <0.001 −0.018 0.037 0.017 0.01 0.009 0.215

Pleural effusion 0.015 0.147 −0.046 0.101 0 0.986

WBC 0 0.964 −0.001 0.137 0.001 0.215

Neutrophil 0.012 0.035 0.005 0.294 −0.052 0.004 0.005 0.933 0.05 0.002 0.058 0.312

Lymphocyte −0.013 0.054 0.058 0.006 0.03 0.675 −0.053 0.009 0.045 0.504

CRP 0.005 0.002 0.003 0.009 −0.02 <0.001 −0.012 0.047 0.013 <0.001 0.009 0.018

Abbreviations: CXR = chest radiograph, WBC = white blood cell, CRP = C-reactive protein.
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Table 5. Prognostic value of early changes of CXR and laboratory results during the first 3 days for
predicting outcome.

Outcomes
(n = 136)

Total O2 Supply
Period (Days) Last SpO2 (%) Deterioration

Univariate Univariate Univariate

Beta p-Value Beta p-Value OR 95% CI

Consolidation 0.001 0.729 −0.001 0.815 1.017 a 1.005–1.03

Pleural effusion 0.012 0.443 0.011 0.839 1.12 0.985–1.274

WBC 0 0.717 0 0.312 1 0.999–1.000

Neutrophil 0.004 0.273 0.001 0.952 0.993 0.966–1.019

Lymphocyte −0.001 0.851 −0.008 0.578 1.012 0.983–1.042

CRP 0 0.742 −0.002 0.597 1.008 0.998–1.019
a p-value = 0.005. Abbreviations: CXR = chest radiograph, OR = odds radio, CI = confidence interval,
WBC = white blood cell, CRP = C-reactive protein.

4. Discussion

Our results demonstrated that clinical features such as ESR and CRP levels showed a
significant association with patterns of change in consolidation on CXR determined by AI
in COVID-19 patients. Increased ESR and CRP levels were associated with an increased
consolidation score on CXR during the admission (beta = 0.417, 0.231, respectively). We
examined the prognostic value of CXR and laboratory results for COVID-19 patients and
found that a lower initial consolidation score, as well as CRP and ALT levels, showed a
significant association with a higher last SpO2 result, while a higher initial WBC result
showed a significant association with a longer total O2 supply period. In addition to these
findings with the initial results, increased consolidation scores on all repeated CXRs during
the admission period showed significant association with increased total O2 supply period
and decreased last SpO2 result. In addition, increased CRP results in repeated exams
showed a significant association with increased O2 supply period and decreased last SpO2
and also predicted deterioration. Notably, an early changing degree of consolidation score
during the first 3 days after admission had a prognostic value on predicting deterioration
of COVID-19 admission.

There have been many recent efforts to use AI for diagnosing and validating prog-
nostic power for management of pulmonary infection. Several studies have already been
conducted to find the meaning of AI on CXR in diagnosing pneumonia, evaluating treat-
ment response, or predicting prognosis [18–20]. In addition to pneumonia, researchers
have focused on developing an AI algorithm to detect COVID-19 using CXR because CXR
is the first-line imaging study for diagnosing and guiding treatment options of patients
with respiratory symptoms [21–24]. There have also been attempts to apply AI to the
diagnosis of COVID-19 using chest computed tomography (CT) in addition to CXR [25].
Some efforts were made to predict the outcome of COVID-19 patients using radiomics
features on CXR or AI-based prediction models using CXR [11,26–28]. Similar to our study,
Mushtaq et al. used Conformité Européenne (CE)-certified AI software on initial CXRs to
predict the mortality of COVID-19 patients and the authors demonstrated that initial CXRs
could be used as a predictor of adverse outcome in COVID-19 patients [3]. However, this
software could quantify areas in pixels with increased opacities on the CXR representing
the extent. Another study by Jiao et al. demonstrated that an AI model trained with CXR
and clinical data together showed good prognostic performance compared with clinical
data or conventional severity scores for predicting progression of COVID-19 patients [8].
Despite several studies aiming to develop and validate AI algorithms, the quantification
of CXR results itself using AI software with guaranteed repeatability and generalizability
is challenging. It is important to use the clinical implications of AI-based lesion-detection
software for CXR—which is a basic tool for screening and follow-up and can be easily used
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for evaluating therapeutic responsiveness of lung infection patients, especially those with
diseases such as COVID-19—where the use of chest CT is not readily available. Under-
standing its clinical impact on treatment, not just diagnostic accuracy, is also important, but
needs more evidence.

Therefore, our study has a strength in using commercially available AI software
that was proven to have high diagnostic performance in previous studies, and this could
guarantee the relative repeatability of our results in other centers [14,15,29–31]. While
various AI algorithms have been developed by research teams, overfitting has been a
major obstacle to their actual clinical application. However, this study used a commercially
available program, which makes it possible for other institutions to apply the results.
Whether the abnormality score presented by AI could be used to represent disease severity
or extent was questionable. The use of this score in the same way as area of pixels or
opacity of images requires caution because of the unexplainable characteristics of AI [32].
However, our results demonstrated that laboratory results of ESR and CRP levels showed
a similar pattern with consolidation score on CXR as determined by AI. Therefore, this
score could reflect some degree of disease extent and severity presented on the images.
From this result, we suggest that AI would present high scores when the lesion was more
obvious with clear opacity and a large extent. Starting from this result, we demonstrated
that the consolidation score of AI could be used to predict whether the patients would
need a longer O2 supply period or have a good prognosis using the longitudinal data, not
limited to the initial results.

Using an equation, we demonstrated that early changes of CXR results during the
first 3 days after admission showed a significant association with deterioration. While
examining patients, we came up with the idea that the pattern of early consolidation
changes could be quantified by AI and used to evaluate the patient’s treatment response by
measuring the degree of increase or decrease. To test this idea, we proposed an equation.
However, due to the limitations of retrospective research, it was not possible to obtain
consistent results on a uniform date as the follow-up periods for actual patients varied.
As an alternative, we devised a method to evaluate the pattern of changes over the first
three days of hospitalization. Nevertheless, due to the limited number of patients who
underwent follow-up (only 136 out of the total number of patients), most of the predicted
outcomes did not yield significant results, as shown in Table 5. However, as the most
critical factor was whether the patient’s condition improved or worsened, the initial pattern
of consolidation response showed significant results, indicating some promise. Therefore,
we believe that a well-established prospective large-scale study will be needed to validate
this idea in the future.

While we also included pleural effusion score, it did not show significant results.
COVID-19 infection manifests mainly as consolidation or GGO in the subpleural portion of
lower lobes [6]. Pleural effusion is uncommon for COVID-19 infection and considered an
atypical imaging pattern, similar to other types of viral pneumonia [6]. This could affect the
results of our study that showed that the mean abnormality score for pleural effusion was
3.2–3.4% for initial and all repeated CXR, below the cutoff value of 15%. For the 228 initial
CXRs, the score range for pleural effusion was 0.12% to 94.42%. Among them, 220 CXRs
had a pleural effusion score of less than 15%, resulting in a higher standard deviation. We
included pleural effusion in the imaging findings because it is known to be accompanied
by consolidation in typical pneumonia. However, this result could be seen as reflecting
the fact that COVID-19 pneumonia differs from previous bacterial pneumonia in that it
is less likely to be accompanied by pleural effusion, while also serving as evidence that
AI results reflect differences in imaging findings due to the actual etiology. Our results
showed that the consolidation score of AI reflected well the radiologic characteristics of
COVID-19 infection and could be used to determine treatment response as well as the usual
visual diagnosis of CXR in routine practice, in addition to the other well-known clinical
laboratory results.
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During the study period, the Delta and Omicron variants were predominant. There
may be concerns about whether the results of this study can be applied uniformly across
different variants due to the differences in the strains. The transmission, symptoms, and
vaccine effectiveness could be different between two variants. Clinical outcomes suggest
that the proportion of severe cases was higher with Delta than with Omicron infections.
However, regardless of the variant, the transition to severe cases can occur equally in elderly
patients, patients with underlying diseases, and patients with compromised immune
systems. Moreover, no differences in imaging findings have been reported between different
variants. Therefore, it is expected that the results of this study can be clinically applicable
regardless of the variant, as prognosis prediction for severe patients is more important than
management for mild patients.

There are several limitations in this study. First, we only used one commercially
available AI software. While this could enhance the repeatability compared with other
studies with their own AI algorithm, the problem of generalization still exists. The issue of
generalization is presented as a limitation in various AI studies. However, to overcome this,
we used a commercialized program that has a certain level of performance and diagnostic
accuracy, backed by various studies and evidence, for this study [13–15,30,31,33]. It is
currently applied to all CXR at the hospital of the actual researchers and is used for patient
clinical treatment. Although using multiple AI programs together and comparing their
performance might be a good method to overcome generalization, it is also a significant
research topic and does not align with the purpose of our study. Hence, we aimed to report
its clinical significance using a program proven through numerous studies. Therefore,
we believe that comparing the performance of various AI programs in future research, as
proposed in this study, could be another good research topic, and we hope that researchers
will pursue it following this study. Second, the number of the patients with repeated
exams was relatively small. Because our hospital was not a dedicated hospital for intensive
care of critical COVID-19 patients, disease outcome was limited as the O2 supply period,
the last SpO2, and deteriorated patients who need a transfer, and we could not include
mortalities. Third, in this retrospective study, due to slight variations in the timing of follow-
up CXR after hospitalization, we could only represent the magnitude of numerical changes
using the formula to calculate the gradient. While the presented results were reviewed by
expert statisticians, we acknowledge the limitation that it may not fully capture the actual
measured values. Therefore, starting from this initial study, further prospective research
with a larger patient population is needed to demonstrate the utility of artificial intelligence
as a tool for evaluating treatment response and predicting prognosis. At last, we were
unable to evaluate or upgrade the diagnostic accuracy of the AI software due to the fact that
detecting chest lesions was beyond the scope of this study, and we could not modify the
performance of commercially available AI software, as it was not developed by the authors.
Nonetheless, we were able to use an AI program with diagnostic performance proven by
previous studies to overcome this limitation [13,15,16,30,31,34]. Additionally, we strived to
present the most objective and accurate analysis in conjunction with two statistical experts
for the research methodology and analytical aspect, while following various methodological
proofs and advices [35,36]. In the future, conducting a large prospective study focused on
the accuracy of AI software would be critical for advancing this area of research.

5. Conclusions

This study showed that AI-based CXR results for consolidation showed a similar
pattern to changes in ESR and CRP results during the treatment of COVID-19 and exhibit
potential prognostic value for predicting treatment outcomes. This study demonstrated
the potential of using AI-based results from CXR to predict disease progression, treatment
outcomes, and prognosis in an important respiratory disease.



Diagnostics 2023, 13, 2090 11 of 12

Author Contributions: Conceptualization, H.J.S., E.-K.K., M.H.K. and T.K.; data curation, H.J.S.;
formal analysis, H.J.S. and N.-H.S.; methodology, H.J.S., N.-H.S., K.H., M.H.K. and T.K.; software,
H.J.S. and E.-K.K.; validation, H.J.S., M.H.K., E.-K.K. and T.K.; investigation, H.J.S., E.-K.K., M.H.K.
and T.K.; writing—original draft, H.J.S.; writing—review and editing, H.J.S., M.H.K., N.-H.S., K.H.,
E.-K.K., Y.C.K., Y.S.P., E.H.L. and T.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by a faculty research grant of Yonsei University College of
Medicine (6-2022-0083).

Institutional Review Board Statement: The Institutional Review Board (IRB) of Yongin Severance
Hospital approved this retrospective study (IRB number 9-2022-0046) and the requirement of in-
formed consent was waived due to the study’s retrospective design. The study was conducted
according to the guidelines of the Declaration of Helsinki and Strengthening the Reporting of Obser-
vational Studies in Epidemiology (STROBE).

Informed Consent Statement: Patient consent was waived due to due to the study’s retrospective design.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Acknowledgments: The authors would like to thank Jun Tae Kim for his dedicated help in our
research. We would also like to thank the Center for Digital Health of Yongin Severance Hospital.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of

coronavirus disease 2019 (COVID-19): A review. Jama 2020, 324, 782–793. [CrossRef] [PubMed]
2. Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection,

control and prevention. Viruses 2021, 13, 202. [CrossRef]
3. Mushtaq, J.; Pennella, R.; Lavalle, S.; Colarieti, A.; Steidler, S.; Martinenghi, C.M.A.; Palumbo, D.; Esposito, A.; Rovere-Querini, P.;

Tresoldi, M.; et al. Initial chest radiographs and artificial intelligence (ai) predict clinical outcomes in COVID-19 patients: Analysis
of 697 Italian patients. Eur. Radiol. 2021, 31, 1770–1779. [CrossRef] [PubMed]

4. Zhu, J.S.; Ge, P.; Jiang, C.; Zhang, Y.; Li, X.; Zhao, Z.; Zhang, L.; Duong, T.Q. Deep-learning artificial intelligence analysis of
clinical variables predicts mortality in COVID-19 patients. J. Am. Coll. Emerg. Phys. Open 2020, 1, 1364–1373. [CrossRef]

5. Kim, H.J.; Heo, J.; Han, D.; Oh, H.S. Validation of machine learning models to predict adverse outcomes in patients with
COVID-19: A prospective pilot study. Yonsei Med. J. 2022, 63, 422–429. [CrossRef]

6. Kanne, J.P.; Bai, H.; Bernheim, A.; Chung, M.; Haramati, L.B.; Kallmes, D.F.; Little, B.P.; Rubin, G.D.; Sverzellati, N. COVID-19
imaging: What we know now and what remains unknown. Radiology 2021, 299, E262–E279. [CrossRef]

7. AlNuaimi, D.; AlKetbi, R. The role of artificial intelligence in plain chest radiographs interpretation during the COVID-19
pandemic. BJR Open 2022, 4, 20210075. [CrossRef]

8. Jiao, Z.; Choi, J.W.; Halsey, K.; Tran, T.M.L.; Hsieh, B.; Wang, D.; Eweje, F.; Wang, R.; Chang, K.; Wu, J.; et al. Prognosti-
cation of patients with COVID-19 using artificial intelligence based on chest x-rays and clinical data: A retrospective study.
Lancet Digit. Health 2021, 3, e286–e294. [CrossRef]

9. Chung, J.; Kim, D.; Choi, J.; Yune, S.; Song, K.; Kim, S.; Chua, M.; Succi, M.D.; Conklin, J.; Longo, M.G.F.; et al. Prediction
of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xai model: Efficient development of
auditable risk prediction models via a fine-tuning approach. Sci. Rep. 2022, 12, 21164. [CrossRef]

10. Cheng, J.; Sollee, J.; Hsieh, C.; Yue, H.; Vandal, N.; Shanahan, J.; Choi, J.W.; Tran, T.M.L.; Halsey, K.; Iheanacho, F.; et al. COVID-19
mortality prediction in the intensive care unit with deep learning based on longitudinal chest X-rays and clinical data. Eur. Radiol.
2022, 32, 4446–4456. [CrossRef]

11. Matsumoto, T.; Walston, S.L.; Walston, M.; Kabata, D.; Miki, Y.; Shiba, M.; Ueda, D. Deep learning-based time-to-death prediction
model for COVID-19 patients using clinical data and chest radiographs. J. Digit. Imaging 2022, 36, 178–188. [CrossRef] [PubMed]

12. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health (US): Bethesda, MD, USA, 2021.
13. Hwang, E.J.; Goo, J.M.; Yoon, S.H.; Beck, K.S.; Seo, J.B.; Choi, B.W.; Chung, M.J.; Park, C.M.; Jin, K.N.; Lee, S.M. Use of artificial

intelligence-based software as medical devices for chest radiography: A position paper from the korean society of thoracic
radiology. Korean J. Radiol. 2021, 22, 1743–1748. [CrossRef] [PubMed]

14. Lee, S.; Shin, H.J.; Kim, S.; Kim, E.K. Successful implementation of an artificial intelligence-based computer-aided detection
system for chest radiography in daily clinical practice. Korean J. Radiol. 2022, 23, 847–852. [CrossRef] [PubMed]

15. Shin, H.J.; Son, N.H.; Kim, M.J.; Kim, E.K. Diagnostic performance of artificial intelligence approved for adults for the interpreta-
tion of pediatric chest radiographs. Sci. Rep. 2022, 12, 10215. [CrossRef]

https://doi.org/10.1001/jama.2020.12839
https://www.ncbi.nlm.nih.gov/pubmed/32648899
https://doi.org/10.3390/v13020202
https://doi.org/10.1007/s00330-020-07269-8
https://www.ncbi.nlm.nih.gov/pubmed/32945968
https://doi.org/10.1002/emp2.12205
https://doi.org/10.3349/ymj.2022.63.5.422
https://doi.org/10.1148/radiol.2021204522
https://doi.org/10.1259/bjro.20210075
https://doi.org/10.1016/S2589-7500(21)00039-X
https://doi.org/10.1038/s41598-022-24721-5
https://doi.org/10.1007/s00330-022-08588-8
https://doi.org/10.1007/s10278-022-00691-y
https://www.ncbi.nlm.nih.gov/pubmed/35941407
https://doi.org/10.3348/kjr.2021.0544
https://www.ncbi.nlm.nih.gov/pubmed/34564966
https://doi.org/10.3348/kjr.2022.0193
https://www.ncbi.nlm.nih.gov/pubmed/35762186
https://doi.org/10.1038/s41598-022-14519-w


Diagnostics 2023, 13, 2090 12 of 12

16. Jin, K.N.; Kim, E.Y.; Kim, Y.J.; Lee, G.P.; Kim, H.; Oh, S.; Kim, Y.S.; Han, J.H.; Cho, Y.J. Diagnostic effect of artificial intelligence
solution for referable thoracic abnormalities on chest radiography: A multicenter respiratory outpatient diagnostic cohort study.
Eur. Radiol. 2022, 32, 3469–3479. [CrossRef]

17. Kim, E.Y.; Kim, Y.J.; Choi, W.J.; Jeon, J.S.; Kim, M.Y.; Oh, D.H.; Jin, K.N.; Cho, Y.J. Concordance rate of radiologists and a
commercialized deep-learning solution for chest x-ray: Real-world experience with a multicenter health screening cohort.
PLoS ONE 2022, 17, e0264383. [CrossRef]

18. Quah, J.; Liew, C.J.Y.; Zou, L.; Koh, X.H.; Alsuwaigh, R.; Narayan, V.; Lu, T.Y.; Ngoh, C.; Wang, Z.; Koh, J.Z.; et al. Chest
radiograph-based artificial intelligence predictive model for mortality in community-acquired pneumonia. BMJ Open Respir. Res.
2021, 8, e001045. [CrossRef]

19. Ebrahimian, S.; Homayounieh, F.; Rockenbach, M.; Putha, P.; Raj, T.; Dayan, I.; Bizzo, B.C.; Buch, V.; Wu, D.; Kim, K.; et al.
Artificial intelligence matches subjective severity assessment of pneumonia for prediction of patient outcome and need for
mechanical ventilation: A cohort study. Sci. Rep. 2021, 11, 858. [CrossRef]

20. Becker, J.; Decker, J.A.; Römmele, C.; Kahn, M.; Messmann, H.; Wehler, M.; Schwarz, F.; Kroencke, T.; Scheurig-Muenkler, C.
Artificial intelligence-based detection of pneumonia in chest radiographs. Diagnostics 2022, 12, 1465. [CrossRef]

21. Kuo, M.D.; Chiu, K.W.H.; Wang, D.S.; Larici, A.R.; Poplavskiy, D.; Valentini, A.; Napoli, A.; Borghesi, A.; Ligabue, G.;
Fang, X.H.B.; et al. Multi-center validation of an artificial intelligence system for detection of COVID-19 on chest radiographs in
symptomatic patients. Eur. Radiol. 2023, 33, 23–33. [CrossRef]

22. Wang, G.; Liu, X.; Shen, J.; Wang, C.; Li, Z.; Ye, L.; Wu, X.; Chen, T.; Wang, K.; Zhang, X.; et al. A deep-learning pipeline for the
diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images. Nat. Biomed. Eng. 2021,
5, 509–521. [CrossRef]

23. Rahman, S.; Sarker, S.; Miraj, M.A.A.; Nihal, R.A.; Nadimul Haque, A.K.M.; Noman, A.A. Deep learning-driven automated
detection of COVID-19 from radiography images: A comparative analysis. Cogn. Comput. 2021, 1–30. [CrossRef] [PubMed]

24. Khan, S.H.; Sohail, A.; Khan, A.; Lee, Y.S. COVID-19 detection in chest X-ray images using a new channel boosted CNN.
Diagnostics 2022, 12, 267. [CrossRef] [PubMed]

25. Guo, X.; Lei, Y.; He, P.; Zeng, W.; Yang, R.; Ma, Y.; Feng, P.; Lyu, Q.; Wang, G.; Shan, H. An ensemble learning method based on
ordinal regression for COVID-19 diagnosis from chest ct. Phys. Med. Biol. 2021, 66, 244001. [CrossRef] [PubMed]

26. Nakashima, M.; Uchiyama, Y.; Minami, H.; Kasai, S. Prediction of COVID-19 patients in danger of death using radiomic features
of portable chest radiographs. J. Med. Radiat. Sci. 2023, 70, 13–20. [CrossRef]

27. Munera, N.; Garcia-Gallo, E.; Gonzalez, Á.; Zea, J.; Fuentes, Y.V.; Serrano, C.; Ruiz-Cuartas, A.; Rodriguez, A.; Reyes, L.F. A novel
model to predict severe COVID-19 and mortality using an artificial intelligence algorithm to interpret chest radiographs and
clinical variables. ERJ Open Res. 2022, 8, 10. [CrossRef]

28. Tricarico, D.; Calandri, M.; Barba, M.; Piatti, C.; Geninatti, C.; Basile, D.; Gatti, M.; Melis, M.; Veltri, A. Convolutional neural
network-based automatic analysis of chest radiographs for the detection of COVID-19 pneumonia: A prioritizing tool in the
emergency department, phase i study and preliminary “real life” results. Diagnostics 2022, 12, 570. [CrossRef]

29. Kim, S.J.; Roh, J.W.; Kim, S.; Park, J.Y.; Choi, D. Current state and strategy for establishing a digitally innovative hospital:
Memorial review article for opening of yongin severance hospital. Yonsei Med. J. 2020, 61, 647–651. [CrossRef]

30. Kwak, S.H.; Kim, E.K.; Kim, M.H.; Lee, E.H.; Shin, H.J. Incidentally found resectable lung cancer with the usage of artificial
intelligence on chest radiographs. PLoS ONE 2023, 18, e0281690. [CrossRef] [PubMed]

31. Shin, H.J.; Lee, S.; Kim, S.; Son, N.H.; Kim, E.K. Hospital-wide survey of clinical experience with artificial intelligence applied to
daily chest radiographs. PLoS ONE 2023, 18, e0282123. [CrossRef]

32. Pennisi, M.; Kavasidis, I.; Spampinato, C.; Schinina, V.; Palazzo, S.; Salanitri, F.P.; Bellitto, G.; Rundo, F.; Aldinucci, M.;
Cristofaro, M.; et al. An explainable ai system for automated COVID-19 assessment and lesion categorization from CT-scans.
Artif. Intell. Med. 2021, 118, 102114. [CrossRef] [PubMed]

33. Nam, J.G.; Park, S.; Hwang, E.J.; Lee, J.H.; Jin, K.N.; Lim, K.Y.; Vu, T.H.; Sohn, J.H.; Hwang, S.; Goo, J.M.; et al. Development
and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs.
Radiology 2019, 290, 218–228. [CrossRef] [PubMed]

34. Shin, H.J.; Han, K.; Ryu, L.; Kim, E.K. The impact of artificial intelligence on the reading times of radiologists for chest radiographs.
NPJ Digit. Med. 2023, 6, 82. [CrossRef] [PubMed]

35. Park, S.H.; Han, K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for
medical diagnosis and prediction. Radiology 2018, 286, 800–809. [CrossRef] [PubMed]

36. Park, S.H.; Han, K.; Jang, H.Y.; Park, J.E.; Lee, J.G.; Kim, D.W.; Choi, J. Methods for clinical evaluation of artificial intelligence
algorithms for medical diagnosis. Radiology 2023, 306, 20–31. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00330-021-08397-5
https://doi.org/10.1371/journal.pone.0264383
https://doi.org/10.1136/bmjresp-2021-001045
https://doi.org/10.1038/s41598-020-79470-0
https://doi.org/10.3390/diagnostics12061465
https://doi.org/10.1007/s00330-022-08969-z
https://doi.org/10.1038/s41551-021-00704-1
https://doi.org/10.1007/s12559-020-09779-5
https://www.ncbi.nlm.nih.gov/pubmed/33680209
https://doi.org/10.3390/diagnostics12020267
https://www.ncbi.nlm.nih.gov/pubmed/35204358
https://doi.org/10.1088/1361-6560/ac34b2
https://www.ncbi.nlm.nih.gov/pubmed/34715678
https://doi.org/10.1002/jmrs.631
https://doi.org/10.1183/23120541.00010-2022
https://doi.org/10.3390/diagnostics12030570
https://doi.org/10.3349/ymj.2020.61.8.647
https://doi.org/10.1371/journal.pone.0281690
https://www.ncbi.nlm.nih.gov/pubmed/36897865
https://doi.org/10.1371/journal.pone.0282123
https://doi.org/10.1016/j.artmed.2021.102114
https://www.ncbi.nlm.nih.gov/pubmed/34412837
https://doi.org/10.1148/radiol.2018180237
https://www.ncbi.nlm.nih.gov/pubmed/30251934
https://doi.org/10.1038/s41746-023-00829-4
https://www.ncbi.nlm.nih.gov/pubmed/37120423
https://doi.org/10.1148/radiol.2017171920
https://www.ncbi.nlm.nih.gov/pubmed/29309734
https://doi.org/10.1148/radiol.220182

	Introduction 
	Materials and Methods 
	Subjects and Clinical Features 
	AI-Based CXR Results 
	Statistical Analysis 

	Results 
	Patients and Clinical Results 
	Association between Pattern of Change in Clinical and CXR Results for COVID-19 Patients 
	Prognostic Value of CXR and Laboratory Results for the Prediction of Outcome 

	Discussion 
	Conclusions 
	References

