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Non-invasive chronic kidney disease risk stratification tool
derived from retina-based deep learning and clinical factors
Young Su Joo 1,2,10, Tyler Hyungtaek Rim3,4,5,10✉, Hee Byung Koh 1,6, Joseph Yi 7, Hyeonmin Kim3, Geunyoung Lee3,
Young Ah Kim8, Shin-Wook Kang1, Sung Soo Kim9 and Jung Tak Park 1✉

Despite the importance of preventing chronic kidney disease (CKD), predicting high-risk patients who require active intervention is
challenging, especially in people with preserved kidney function. In this study, a predictive risk score for CKD (Reti-CKD score) was
derived from a deep learning algorithm using retinal photographs. The performance of the Reti-CKD score was verified using two
longitudinal cohorts of the UK Biobank and Korean Diabetic Cohort. Validation was done in people with preserved kidney function,
excluding individuals with eGFR <90mL/min/1.73 m2 or proteinuria at baseline. In the UK Biobank, 720/30,477 (2.4%) participants
had CKD events during the 10.8-year follow-up period. In the Korean Diabetic Cohort, 206/5014 (4.1%) had CKD events during the
6.1-year follow-up period. When the validation cohorts were divided into quartiles of Reti-CKD score, the hazard ratios for CKD
development were 3.68 (95% Confidence Interval [CI], 2.88–4.41) in the UK Biobank and 9.36 (5.26–16.67) in the Korean Diabetic
Cohort in the highest quartile compared to the lowest. The Reti-CKD score, compared to eGFR based methods, showed a superior
concordance index for predicting CKD incidence, with a delta of 0.020 (95% CI, 0.011–0.029) in the UK Biobank and 0.024 (95% CI,
0.002–0.046) in the Korean Diabetic Cohort. In people with preserved kidney function, the Reti-CKD score effectively stratifies future
CKD risk with greater performance than conventional eGFR-based methods.
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INTRODUCTION
Chronic kidney disease (CKD) is a leading cause of cardiovascular
disease and non-communicable disease mortality1–3. CKD pre-
valence is growing rapidly due to an aging global population and
increased prevalence of hypertension and diabetes, two major
causes of CKD4,5. Since CKD is an irreversible condition, prevention
is a key factor in decreasing CKD-related morbidity and mortality.
The current approach to CKD screening is based on measuring

the estimated glomerular filtration rate (eGFR, calculated from
serum creatinine) or examining urine for proteinuria6. However,
recent evidence indicates that these biomarkers are suboptimal
for kidney disease early detection7,8. Predicting kidney damage is
difficult, especially in people without blood or urine test
abnormalities. In addition, risk stratification based on eGFR, which
incorporates age and serum creatinine levels, can be misleading in
younger, older, pregnant, overweight, or muscular individuals9.
Similarly, amount of urine proteinuria is also affected by various
factors10. Moreover, screening adherence tends to be low due to
the invasive nature of collecting blood samples11.
Retinal photography, a non-invasive and widely utilized

diagnostic test, provides information on not only the eye but
also the systemic vasculature. The kidney and eye are both highly
vascularized organs and share common developmental, physio-
logical, and pathogenic pathways. Damage of one organ often
indicates damage to the other which is typically noticeable in
hypertensive and diabetic conditions12–14. Recently, artificial
intelligence application was shown to be capable of providing

biomarker estimates, including creatinine, which also led to
effective detection of prevalent CKD15–17.
In this study, we develop a non-invasive CKD risk stratification

tool (“Reti-CKD” score) for people with preserved kidney function,
hypothesizing that subtle retinal vasculature changes provide
information for future CKD development risk. This is done by
applying deep learning algorithms trained on 158,216 retinal
photographs and incorporating clinical factors. Internal and
external validation in the UK Biobank and Korean Diabetes
Cohorts show that the Reti-CKD score effectively stratifies CKD
development risk and its predictive performance is superior to
traditional eGFR-based methods.

RESULTS
Characteristics of the study population
The clinical characteristics of the participants are shown in Table 1
and Supplementary Table 1. In the Korean health screening data
(n= 79,108) used for the development of the deep-learning
algorithm, mean age was 49.5 (standard deviation [SD], 11.8) years
and mean eGFR was 100.3 (SD, 14.3) mL/min/1.73 m2.
In the UK Biobank, among 30,477 participants, 720 (2.4%) were

diagnosed with CKD during a mean follow-up duration of 10.8
(interquartile range [IQR], 10.7–11.0) years. Additionally, in the
Korean Diabetic Cohort, among 5,014 participants, 206 (4.1%)
were diagnosed with CKD during a follow-up duration of 6.1 (IQR,
4.0–8.4) years. The mean eGFR was 99.4 (SD, 6.6) mL/min/1.73 m2
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in the UK Biobank and 102.5 (SD, 9.1) mL/min/1.73 m2 in the
Korean Diabetic Cohort. The characteristics of individuals in the UK
Biobank and Korean Diabetic Cohort according to Reti-CKD
quartiles are provided in Supplementary Tables 2 and 3.

Saliency maps
Aggregated saliency maps indicated that the highlighted areas
along the arcade vessels were more prominent in images with
higher deep-learning-derived retina-CKD probability (Fig. 1).

Reti-CKD score performance
Kaplan–Meier curves of the longitudinal validation sets are
presented in Fig. 2. During the mean 10.8-year follow-up period,
321,417 person-years were examined in the UK Biobank. In the
Korean Diabetic Cohort, during the mean 6.1-year follow-up
period, 30,122 person-years were examined. Kaplan–Meier curves
showed distinct CKD risk stratifications based on the Reti-CKD
score quartiles in both cohorts.
The hazard ratios (HRs) of CKD incidence showed a dose-

dependent association across the quartiles. The adjusted HRs per
one SD increment of Reti-CKD score were 1.34 (95% confidence

interval [CI], 1.27–1.41) in the UK Biobank and 1.94 (95% CI,
1.63–2.31) in the Korean Diabetic Cohort (Table 2).
Subgroup analyses according to sex, age group, hypertension,

diabetes, and eGFR levels are shown in Supplementary Fig. 1. In all
subgroups, the Reti-CKD score was found to stratify future CKD
risk with significant HRs.

Reti-CKD score compared to the current standard of care
We compared the CKD prediction performance of Reti-CKD and
eGFR-CKD scores in two longitudinal validation sets. (Table 3). In
the Reti-CKD score model, compared to the eGFR-CKD score,
C-statistic was significantly greater with a delta of 0.020 (95% CI,
0.011–0.029) in the UK Biobank and a delta of 0.024 (95% CI,
0.002–0.046) in the Korean Diabetic Cohort. The net reclassifica-
tion index (NRI) revealed comparable findings (NRI in UK Biobank,
0.109 [95% CI, 0.44–0.156]; NRI in the Korean Diabetic cohort,
0.179 [95% CI, 0.017–0.292]).
The following sensitivity analyses were in accordance with the

main analysis: 1) Repeated analysis using the whole cohort
population including participants with eGFR <90mL/min/1.73 m2

or proteinuria at baseline (Supplementary Table 4) 2) Repeated
analysis after dividing the UK Biobank cohort into groups with

Table 1. Baseline characteristics of study participants.

Health screening data (n= 79,108) UK Biobank (n= 30,477) Korean Diabetic Cohort (n= 5014)

Age, mean (SD), years 49.5 ± 11.8 54.2 ± 8.1 55.1 ± 10.5

Male, No. (%) 44,364 (56.1) 13,617 (44.7) 2814 (56.1)

Diabetes, No. (%) 5349 (6.7) 1293 (4.2) 5014 (100)

Hypertension, No. (%) NA 4050 (13.3) 1400 (27.9)

eGFR, mL/min/1.73 m2 100.3 ± 14.3 99.4 ± 6.6 102.5 ± 9.1

CKD chronic kidney disease, eGFR estimated glomerular filtration rate, NA not available, SD standard deviation.

Fig. 1 Augmented saliency map according to deep-learning-derived retina-CKD probability. Augmented saliency maps according to
quartiles of deep-learning-derived retina-CKD probability in the a UK Biobank and b Korean Diabetic Cohort are shown. Saliency is
represented in color-scale (scaled between 0 and 255). Highlighted areas along the arcade vessels were more prominent in images with
higher deep-learning-derived retina-CKD probability.
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diabetes or hypertension and without (Supplementary Table 5). 3)
Repeated analysis with only participants who were identified as
Caucasian in the UK Biobank (Supplementary Table 6), 4)
Landmark analysis (excluding participants with follow-up <1 year)
(Supplementary Table 7), 5) Repeated analysis with CKD-EPI
creatinine-cystatin equation determined eGFR, an alternative
method for kidney function evaluation using serum creatinine
levels (Supplementary Table 8).

DISCUSSION
In this study, we developed and validated the Reti-CKD score, a
noninvasive chronic kidney disease risk stratification tool for
people with preserved kidney function derived from retinal-based
deep learning and clinical factors. Reti-CKD scores could stratify
future CKD risk with a dose-dependent manner in two long-
itudinal studies, the UK Biobank and Korean Diabetic Cohort. In
addition, when predicting CKD incidence, the C-statistic for the
Reti-CKD score was significantly greater than the eGFR-based
method in both cohorts.
First, we confirmed that the Reti-CKD score was superior to

eGFR, the current standard for CKD screening, among people with
preserved kidney function. Early detection is essential for
preventing the progression to kidney failure requiring

replacement therapy. Studies have shown that preventing
proteinuria, an early sign of kidney disease, effectively lowers
the risk of progressive kidney function decline18. In addition, those
who were treated at an earlier disease phase were reported to
develop advanced kidney disease at a slower rate19–22. However,
among people with preserved kidney function, the efficacy of
current biomarkers for detecting those at increased CKD risk is
limited. The Reti-CKD score has potential as a unique, non-invasive
risk score to help healthcare professionals identify and manage
patients early. This can provide opportunities for active risk factor
management, close monitoring, and timely treatment.
Second, the Reti-CKD score has several clinical benefits. Since

the Reti-CKD score has superior performance in predicting CKD
incidence compared to eGFR in people with normal kidney
function, it can potentially be used as a simple and readily
available screening tool in primary care or community clinics. The
non-invasive nature of the Reti-CKD score makes it more suitable
for population screening than conventional methods, allowing for
accessible large-scale risk monitoring. In addition, Reti-CKD has
also been shown to successfully predict the development of CKD
in the entire population of the UK Biobank and Korean Diabetes
Cohort which includes patients with underlying kidney disease.
This suggests that Reti-CKD can be applied regardless of under-
lying kidney function. Moreover, clinical guidelines recommend
routine retinal imaging to screen for retinopathy in patients with
diabetes and hypertension, the two most common causes of
CKD23,24. Therefore, accessibility will be further enhanced in these
patient groups25–27.
Third, Reti-CKD effectively predicted CKD regardless of under-

lying hypertension or diabetes. Detecting kidney disease through
retinal evaluation would be more feasible in patients who develop
CKD due to systemic diseases. However, given that systemic
conditions such as elevated blood pressure are also major risk
factors for accelerating kidney function decline in patients with
primary glomerulopathy, Reti-CKD may also operate appropriately
in people developing CKD due to localized kidney diseases28–30. In
addition, even in cases of localized kidney diseases, early-stage
nephron loss may induce changes in the systemic milieu which
could lead to retinal vascular pathology. Investigations showing
that macrophage activation is promoted, even in early kidney
disease stages, which induces systemic cholesterol accumulation
through cholesterol efflux alteration support this possibility31.
Fourth, to the best of our knowledge, there are two prior studies

related to the current topic. Sabanayagam et al. developed a
retina-based deep-learning algorithm from a cross-sectional study
that could diagnose CKD, but the prediction of future CKD events
was not evaluated17. Further, Zhang et al. also proposed a deep-
learning algorithm to predict CKD32. However, the total number of
CKD cases was low in their validations, with a maximum of 6 years
of follow-up (80 cases in the internal and 66 cases in the external
test set). Moreover, risk stratification, in that study, was less
apparent. Notably, in our exploratory analysis, the predictive
power of the Reti-CKD score was >99% for both the UK Biobank
and Korean Diabetic Cohort, a significant improvement over
previous investigations32.
Interestingly, in the subgroup analyses, the impact of Reti-CKD

predicting CKD was relatively greater among patients without
diabetes than diabetic patients. Several explanations for this
finding would be possible. First, more patients would be
presenting CKD related retinal photograph findings among
diabetic patients due to diabetic retinopathy, while retinal
changes would be a comparably less common feature in non-
diabetic patients33. This disproportion of retinal abnormality
among groups may have resulted in a greater CKD prediction
power for Reti-CKD in people without diabetes. Abnormal retinal
changes in a group in which most people present normal retinal
features may indicate a higher likelihood of concomitant kidney
disease than those without retinal pathology. Second, in diabetes

Fig. 2 Cumulative incidence of chronic kidney disease events
according to Reti-CKD score quartiles in the UK Biobank and
Korean Diabetic Cohort. Cumulative chronic kidney disease (CKD)
incidences are illustrated according to the Reti-CKD score quartile in
the a UK Biobank and b Korean Diabetic Cohort. There was a clear
association between CKD development and the Reti-CKD scores in
both cohorts.
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patients, other risk factors than retinal abnormalities may serve as
powerful surrogates for kidney function status, such as blood
glucose level or diabetes duration34,35. The presence of these
other factors could have resulted in a relatively lower predictive
capability of the Reti-CKD score. Nonetheless, although the
predictive impact of Reti-CKD may slightly differ regarding the
presence of diabetes, it should be noted that, in both patient
populations, the effectiveness of Reti-CKD as a predictive marker
was significant.
The major strength of this study is the development of a deep-

learning algorithm using separate datasets from a Korean health
screening center and validation of a new CKD risk score using two
different cohorts (internal validation in the UK Biobank and
external validation in the Korean Diabetic Cohort) with a sufficient
number of CKD incidence. However, this study had several
limitations. First, the primary outcome in the UK Biobank was
defined according to claim codes from inpatient and general
practice claim records. Due to human error and subjectivity,
chances of CKD development being misdiagnosed in the claims

data should be considered. Nonetheless, differences in CKD
incidence across the four Reti-CKD score groups were significant
lowering this possibility. This is because misdiagnosed cases
would have been randomly distributed across the four risk groups.
Additionally, sensitivity analyses also supported the association
between the Reti-CKD score and CKD incidence, further reducing
the likelihood that bias played a major role. Second, external
validation had only been performed on the Korean Diabetic
Cohort. There remains a need for further validating Reti-CKD
scores in various disease populations and across different
ethnicities.
In conclusion, we derived and validated a non-invasive CKD risk

stratification tool, Reti-CKD score. For people with preserved
kidney function, Reti-CKD score was more effective in the
prediction of CKD incidence than conventional blood test-based
method. Since access to retinal photography is increasing at
community and primary care levels, Reti-CKD score has the
potential to be adopted as a practical screening tool for primary
CKD prevention.

METHODS
Ethics statement
This study was conducted in accordance with the Declaration of
Helsinki and approved by the institutional review board of
Severance Hospital, Yonsei University Health System (4-2021-
1174). Owing to the retrospective nature and use of de-identified
data, the requirement for informed consent was waived for the
Korean datasets. Written informed consent was obtained from the
UK Biobank participants. UK Biobank resources were used under
the application number 68428.

Study population
In phase 1, a health screening center data were used for the
development of deep-learning algorithm (Fig. 3). A development
set including 158,216 retinal photographs was used to train the
deep-learning algorithm. These retinal photographs were from
79,108 adults who had participated in health screening programs

Table 2. Risk of chronic kidney disease according to Reti-CKD scores.

Reti-CKD score CKD events/N Person-years Incidence ratea Crude model
HR (95% CI)

p value eGFR-adjusted modelb

HR (95% CI)
p value

UK Biobank

1st Quartile 83/7620 81,801 1.0 (0.8–1.3) 1 (reference) 1 (reference)

2nd Quartile 125/7619 81,065 1.5 (1.3–1.8) 1.69 (1.29–2.23) <0.001 1.49 (1.12–1.97) <0.001

3rd Quartile 205/7619 80,042 2.6 (2.2–2.9) 2.60 (2.01–3.36) <0.001 2.45 (1.87–3.20) <0.001

4th Quartile 307/7619 78,508 3.9 (3.5–4.4) 3.68 (2.88–4.71) <0.001 3.68 (2.82–4.81) <0.001

Total 720/30,477 321,417 2.2 (2.1–2.4)

HR per 1 SD increase 1.37 (1.31–1.43) <0.001 1.34 (1.27–1.41) <0.001

Korean Diabetic Cohort

1st Quartile 13/1254 7661 1.7 (1.0–2.9) 1 (reference) 1 (reference)

2nd Quartile 37/1253 7784 4.8 (3.4–6.6) 2.81 (1.49–5.29) 0.001 2.11 (1.10–4.04) 0.02

3rd Quartile 50/1254 7689 6.5 (4.9–8.6) 3.92 (1.27–3.31) <0.001 2.54 (1.33–4.88) 0.005

4th Quartile 106/1253 6989 15.2 (12.5–18.3) 9.36 (5.26–16.67) <0.001 5.56 (2.93–10.54) <0.001

Total 206/5014 30,122 6.8 (6.0–7.8)

HR per 1 SD increase 2.19 (1.89–2.53) <0.001 1.94 (1.63–2.31) <0.001

HR and 95% CI were estimated from Cox proportional hazard models.
CI confidence interval, CKD chronic kidney disease, HR hazard ratio, eGFR estimated glomerular filtration rate, SD standard deviation.
aIncidence rate per 1000 person-years.
bAdjusted model controlling for eGFR.

Table 3. Prediction performance of Reti-CKD and eGFR-CKD scores.

eGFR-CKD scores Reti-CKD scores p value

UK Biobank

C-statistics 0.618 (0.598–0.638) 0.638 (0.618–0.658)

Δ C-statistics Ref 0.020 (0.011–0.029) <0.001

NRI 0.109 (0.044–0.156) <0.001

Diabetes cohort

C-statistics 0.679 (0.642–0.717) 0.703 (0.664–0.742)

Δ C-statistics Ref 0.024 (0.002–0.046) 0.002

NRI 0.179 (0.017–0.292) 0.03

All 95% CIs and p values were determined using 1000 bootstrap samples
with replacement.
eGFR estimated glomerular filtration rate, eGFR-CKD scores a conventional
eGFR-based CKD risk score derived using the Cox proportional hazards
model in the UK Biobank for comparison, NRI net reclassification index.

Y.S. Joo et al.

4

npj Digital Medicine (2023)   114 Published in partnership with Seoul National University Bundang Hospital



at a health screening center affiliated with Severance Hospital,
South Korea.
In phase 2, data from longitudinal cohorts were used to derive

and validate the Reti-CKD score. Reti-CKD score was derived using
the UK Biobank cohort (n= 30,477). The performance of Reti-CKD
score was subsequently validated using the UK Biobank and
Korean Diabetic Cohort (n= 5014). The UK Biobank is a
community-based prospective longitudinal study. The Korean
Diabetic Cohort contains clinical data from a cohort of patients
with type 2 diabetes who were treated at Severance Hospital or
Gangnam Severance Hospital from April 2011 to August 2018.
Participants were eligible for this validation if clinical informa-

tion for calculating eGFR and retinal photographs were available.
Accordingly, participants with prevalent CKD, with eGFR <90mL/
min/1.73 m2, or with albuminuria (defined as urine albumin to
creatinine ratio >30 mg/Cr in the UK Biobank and albumin ≥trace
level on dip-stick urinalysis in the Korean Diabetic Cohort) were
excluded. A detailed flowchart of the study population is shown in
Supplementary Fig. 2.

Retinal photography
In phase 1, retinal photographs were taken using three different
retinal cameras in the development set: the AFP-210 nonmydriatic
auto retinal camera (NIDEK Corporation, Aichi, Japan), TRC-NW8
nonmydriatic retinal camera (Topcon Corporation, Tokyo, Japan),
and Nonmyd A-D (Kowa Co. Ltd., Shizuoka, Japan). In the
development set, retinal photographs of all participants were
taken, and blood tests were performed on the same day.
In phase 2, retinal photographs were taken at baseline using

TRC-NW8 (Topcon Corporation, Tokyo, Japan) and KOWA VX-20
(Kowa, Chofu Factory, Japan) in the Korean Diabetic Cohort and
Topcon 3D OCT-1000 Mark II (Topcon Corporation, Tokyo, Japan)
in the UK Biobank.

Development of deep-learning algorithm using retinal
photographs: phase 1
In phase 1, contemplating that retinal microvascular signature
associated with CKD could determine future risk of CKD, a deep-

learning algorithm was trained (Fig. 3). The model inputs were
retinal photographs. Ground truth was “absence versus presence”
of CKD; CKD was defined as eGFR <60mL/min/1.73 m2 or
albuminuria and coded as a binary variable (no CKD versus CKD).
The utilized deep learning model was based on the ConvNeXT

model. During the model training process, single images of each
eye were separately inputted with a corresponding label. In the
evaluation process, each image of the left and right eye had been
assigned a probability score, and the average of these probability
scores were considered as output of the examination, a process
similar to ensemble learning with multiple models. This process
showed improved performance than evaluating one image at a
time each with a probability score. Our model design was almost
identical to ConvNeXT, except for the dimension of the last fully
connected layer, which was changed to one logit probability
prediction. The logit that resulted from the last fully connected
layer was converted to a probability with a sigmoid function, and
we trained this model to minimize losses from the target and
prediction. Further, we trained our model using the AdamW
optimizer with a 0.0002 learning rate and cosine learning rate
schedule for 50 epochs (Supplementary Fig. 3). For data
augmentation, we used mixup, CutMix, RandAugment, contrast
enhancement module, and random crop. Moreover, we not only
adopted focal loss and exponential moving average but also used
384 × 384 size images. The cross-sectional performances of the
deep learning algorithm’s prediction score in an internal validation
set is provided in Supplementary Table 9. Once the deep-learning
algorithm was trained, the probability of CKD presence could be
calculated. This probability ranged from zero to one, with a high
value indicating a high probability for having CKD. This “deep-
learning-derived retina-CKD probability” was designed to calibrate
the amount of association between the retinal microvascular signs
and the presence of CKD. This deep-learning-derived retina-CKD
probability alone without other clinical factors was tested to be
capable of stratifying future CKD risk using two longitudinal
cohorts of the UK Biobank and Korean Diabetic Cohort
(Supplementary Table 10). Further, the deep-learning-derived
retina-CKD probability was evaluated using Harrell’s c-statistic to

Fig. 3 Study flow chart for derivation and validation of Reti-CKD score. In phase 1, health-screening center data was used for the
development of deep-learning algorithm. In phase 2, data from longitudinal cohorts were utilized for derivation and validation of Reti-CKD
score. Reti-CKD score was derived based on a Cox model using the UK Biobank cohort. The performance of Reti-CKD score was subsequently
validated using the UK Biobank and Korean Diabetic Cohort.
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show an incremental value over the eGFR model for CKD
prediction (Supplementary Table 11).

Development and validation of Reti-CKD score: phase 2
In phase 2, the predictability of the deep-learning-derived retina-
CKD probability was further enhanced by integrating clinical
factors (Fig. 3). The Reti-CKD score was derived using the Cox
proportional hazards model in the UK Biobank. After fitting the
Cox proportional hazards model to the UK biobank cohort, we
obtained the coefficients of the covariates. The baseline survival
probability in the UK biobank at 5 years was 0.9980896. Reti-CKD
score was modeled to be a failure probability at 5 years. The Cox
model included age, sex, hypertension, diabetes, and deep-
learning-derived retina-CKD probability. The clinical factors were
chosen to derive a parsimonious model because they can be
obtained from questionnaires without additional invasive mea-
sures, such as blood tests (Supplementary Table 12).
For Reti-CKD risk score validation, four-tier CKD risk groups were

proposed based on Reti-CKD score quartiles (1st, 2nd, 3rd, and 4th

quartile) in each cohort of the UK Biobank and Korean Diabetic
Cohort. A conventional eGFR-based CKD risk score (i.e., eGFR-CKD
score) was also derived using the Cox proportional hazards model
in the UK Biobank for comparison (Supplementary Table 12). The
performance of Reti-CKD and eGFR-CKD scores in prediction of
CKD events were assessed in the UK Biobank and Korean Diabetic
Cohort, respectively.

CKD incidence definition
In the UK Biobank, CKD incidence was defined according to the
tenth revision of the International Statistical Classification of
Diseases and Related Health Problems (ICD-10) codes and the
Office of Population Censuses and Surveys Classification of
Interventions and Procedures version 4 (OPCS-4) codes in primary
care settings, hospital inpatient data, and death register records
(Supplementary Table 13) The follow-up period began at the date
of the first assessment and ended with death, CKD diagnosis, or
the end of follow-up, whichever occurred first.
In the Korean Diabetic Cohort, CKD incidence was defined as

two consecutive eGFR values of <60mL/min/1.73 m2, the first of
which was used as the index date. The follow-up period for each
patient began when their retinal photographs were taken and
ended on the date of CKD diagnosis or the last creatinine
measurement.

Definition of covariates
The eGFR was calculated from serum creatinine using the Chronic
Kidney Disease Epidemiology Collaboration equation (CKD-EPI)36.
In the UK Biobank, diabetic history was determined by ICD-10
codes in any primary care setting and hospital inpatient data.
Hypertension was defined as the use of antihypertensive
medications in any primary care setting, hospital inpatient data,
and self-reported medical history records. Similarly, in the Korean
Diabetic Cohort, hypertension was established for patients on
antihypertensive medication according to outpatient and inpa-
tient prescription data.

Saliency maps
To explain how the deep learning model works, saliency maps
were generated. We used guided backpropagation, which uses
gradients of class probability for each image pixel, to demonstrate
how pixels can affect the prediction results of the model37.
Further, to obtain a more robust and clear visualization, we used
the SmoothGrad technique, which averages gradients from
images with random noise38.

Statistical analysis
Python 3.7 was used for development of the deep-learning
algorithm, and Stata version 16.1 (Stata Corp, TX, USA) and R
version 5.0.3 (R Foundation, Vienna, Austria) were used for survival
analysis and model performance assessment. Statistical signifi-
cance was set at P < 0.05. Descriptive statistics were provided for
all datasets including health screening data, the UK Biobank, and
the Korean Diabetic Cohort.
In the UK Biobank, each participant was followed up to 11.6

years from the date of the initial visit to the last follow-up date
(February 28, 2021) or the date of CKD diagnosis. In the Korean
Diabetic Cohort, each patient was followed up to 14.0 years from
the date of the initial visit to the last follow-up date (February 28,
2022) or the date of CKD diagnosis. The cumulative incidence of
CKD was evaluated across the quartiles defined by the Reti-CKD
score using the Kaplan–Meier method and Cox proportional
hazards model to estimate HRs. The eGFR-adjusted model
included the baseline eGFR as a covariate.
The prognostic value of the Reti-CKD and eGFR-CKD scores in

predicting CKD incidence was assessed using Harrell’s C-statistic
and NRI39,40. Further, to obtain 95% CIs, we used a non-parametric
bootstrap procedure with 1000 samples.
For sensitivity analyses, we additionally evaluated the perfor-

mance of Reti-CKD in the entire population including prevalent
CKD. Second, we repeated our survival analysis with participants
with and without underlying diabetes or hypertension to evaluate
predictability among different CKD etiologies. Third, analysis was
done with participants identified as Caucasians in the UK Biobank.
Fourth, landmark analysis was conducted using both cohorts after
excluding subjects with a follow-up period of <1 year. Finally,
analysis was done with eGFR converted form the CKD-EPI
creatinine-cystatin equation41.
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