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Inborn errors of immunity (IEI) include a variety of heterogeneous genetic

disorders in which defects in the immune system lead to an increased

susceptibility to infections and other complications. Accurate, prompt

diagnosis of IEI is crucial for treatment plan and prognostication. In this study,

clinical utility of clinical exome sequencing (CES) for diagnosis of IEI was

evaluated. For 37 Korean patients with suspected symptoms, signs, or

laboratory abnormalities associated with IEI, CES that covers 4,894 genes

including genes related to IEI was performed. Their clinical diagnosis, clinical

characteristics, family history of infection, and laboratory results, as well as

detected variants, were reviewed. With CES, genetic diagnosis of IEI was made

in 15 out of 37 patients (40.5%). Seventeen pathogenic variants were detected

from IEI-related genes, BTK, UNC13D, STAT3, IL2RG, IL10RA, NRAS, SH2D1A,

GATA2, TET2, PRF1, andUBA1, of which four variants were previously unreported.

Among them, somatic causative variants were identified from GATA2, TET2, and

UBA1. In addition, we identified two patients incidentally diagnosed IEI by CES,

which was performed to diagnose other diseases of patients with unrecognized

IEI. Taken together, these results demonstrate the utility of CES for the diagnosis

of IEI, which contributes to accurate diagnosis and proper treatments.

KEYWORDS

inborn errors of immunity, next generation sequencing, clinical exome sequencing,
genetic diagnosis, somatic variant, incidental finding
Introduction

Inborn errors of immunity (IEI) include a variety of heterogeneous genetic disorders in

which defects in the immune system lead to an increased susceptibility to infections and

other complications. The prevalence of IEI has been known to be rare. However, recent

estimated prevalence is 1/1,100 to 1/1,500 and has been increasing over the years with
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increased recognition of IEI including universal neonatal screening

programs in several countries (1, 2).

Defect or dysregulation of the immune system is usually

suspected in patients with recurrent or persistent infections,

unusual infection, and severe infection. In addition, it is also

suspected when recurrent fever and inflammation present. Often,

laboratory abnormalities such as low immunoglobulin and

abnormal lymphocyte subsets and leukopenia including

neutropenia and/or lymphopenia can lead to presumed diagnosis

of IEI. Above all, the family history of IEI provides very important

clues in suspecting the patient (3).

In the 2022 classification of the International Union of

Immunological Societies (IUIS), 485 diseases that affect various

components of immune systems are presented. These include

immunodeficiencies, antibody deficiencies, complement

deficiencies, immune dysregulations, phagocyte defects, and

autoinflammatory disorders (4). Most IEI are associated with

specific gene defects. When IEI is suspected, it is important to

find underlying genetic etiology. Detection of causative pathogenic

variants from genes related to IEI is crucial for developing an

appropriate treatment strategy and determining the

patient’s prognosis.

Because of the wide application of next-generation sequencing

(NGS) for detecting genetic variants in IEI, genetic causes of IEI are

now more correctly identified and more patients have been

diagnosed (5–8). Here, we present the genetic analysis of patients

with IEI at a tertiary care hospital in Korea. Genetic causes were

identified in 40.5% of the patients (15/37), and four novel

pathogenic variants of genes related to IEI were detected. Also,

somatic variants were identified in three patients including a patient

with VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory,

somatic) syndrome, which emphasize the utility of genetic test using

in-depth NGS, especially clinical exome sequencing (CES) for the

diagnosis of IEI.
Materials and methods

Subjects

This retrospective study was conducted on patients who

received NGS testing for suspected IEI from December 2018 to

October 2021 at Severance Hospital, Seoul, South Korea. Their

clinical data, clinical manifestations, laboratory test results and

genetic analysis results were collected and analyzed.

This study was reviewed and approved by the Institutional

Review Board of Yonsei University Health System (4-2022-1558).
Genetic analysis and variant interpretation

For the genetic diagnosis of IEI, we used a custom-designed

clinical exome panel (Dxome, Seoul, Republic of Korea) including

4,894 genes related to human genetic diseases, including IEI
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(Supplementary Table S1). In our panel, we incorporated the

majority of the key genes associated with IEI as suggested by IUIS

(4); however, 69 genes were not included (see Supplementary Table

S2 for the list of these genes). With our panel, an average depth of

242.6× was achieved (range, 115.7× to 481.5×). Genomic DNA

(gDNA) was extracted from peripheral blood of each patient using

the QIAamp BloodMini Kit (Qiagen, Hilden, Germany) according to

manufacturer’s guidelines. gDNA was quantified using the Qubit BR

dsDNA kit (Invitrogen, Carlsbad, CA, United States). Then, gDNA

was fragmented, end-repaired, and ligated to adapters followed by

hybridization with probes. Enriched, prepared libraries were

sequenced using NextSeq 550Dx instrument (Illumina, San Diego,

CA, United States). Alignment, variant calling, and annotation of

sequenced data were done by our custom pipeline as described

previously (9, 10). Briefly, our study utilized the Burrows-Wheeler

Aligner algorithm to map raw sequence data to the GRCh37 (hg19)

reference genome. We then processed the data, removing duplicate

reads, realigning insertions and deletions, recalibrating base quality,

and calling variants using the Genome Analysis Toolkit. Any variants

of potential clinical significance were confirmed by visual inspection

using Integrated Genomics Viewer (Broad Institute, Cambridge, MA,

USA). Large insertions and deletions were detected using split-read

approaches with Pindel and Manta algorithms, while structural

rearrangements were identified through read-depth analysis using

ExomeDepth and combined custom tool (11). Chromosomal copy

number variations were cross-checked using a custom pipeline,

which included normalizing base-level depth of coverage against

other samples in the same batch.

All detected variants were classified based on the

recommendation of the American College of Medical Genetics

and Genomics (12). For the assessment of pathogenicity, evidence

was collected by using population frequency data from multiple

databases, 1000 Genomes, the Genome Aggregation Database

(gnomAD), the Exome Sequencing Project (ESP), and the Korean

Reference Genome Database (KRGDB). In silico analysis were

conducted by SIFT, MutationTaster, FATHMM, and MetaSVM.

Literature and database search for the collection of evidence were

conducted using ClinVar, Online Mendelian Inheritance in Man

(OMIM), the Human Gene Mutation Database (HGMD), and

relevant scientific publications found through online

academic databases.

If needed, peripheral blood samples of parents were obtained

and tested by Sanger sequencing or CES to determine the de novo

occurrence of the pathogenic variants (autosomal dominant

disorders) or maternal inheritance (X-linked recessive disorders)

or whether the suspected variants occurred in cis or in trans

(autosomal recessive disorders), for the confirmation of

pathogenicity of detected variants.
Statistical analysis

For statistical analysis, SPSS version 26 was used (IBM corp.,

Armonk, NY, USA). Patients with causal variants and without
frontiersin.org
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causal variant were compared by Fisher’s exact test, where p-values

less than 0.05 were considered as significant.

Results

Patient characteristics
The demographics of patients included in this study are

summarized in Table 1. Of the 37 patients who underwent the
Frontiers in Immunology 03
test, 22 were male (59.5%) and 15 were female (40.5%), aged from 1

month to 64 years old (mean 7.1 and median 2.5 years old). The

most common diagnostic category was immune dysregulation

(27.0%, 10/37) and periodic fever syndrome (27.0%, 10/37),

followed by antibody deficiency (13.5%, 5/37) and combined

immunodeficiency (8.1%, 3/37). Twenty-five (67.6%) patients had

a history of recurrent or persistent infection. Genetic diagnosis was

made in 15 patients (40.5%, 15/37).
TABLE 1 Demographics of patients included in this study (n = 37).

Pathogenic variant detected
(n = 15)

Pathogenic variant not detected
(n = 22) p-value

Sex 0.514

Male 10 (66.7) 12 (54.5)

Female 5 (33.3) 10 (45.5)

Age (years)

At symptom onset 0.209

<1 7 (46.7) 7 (31.8)

1–4 4 (26.7) 9 (40.9)

5–19 2 (13.3) 6 (27.3)

>20 2 (13.3) 0 (0.0)

At diagnosis 0.004

<1 7 (46.7) 4 (18.2)

1–4 2 (13.3) 11 (50.0)

5–19 2 (13.3) 7 (31.8)

>20 4 (26.7) 0 (0.0)

Category 0.006

Disease of immune dysregulation 6 (40.0) 4 (18.2)

Periodic fever syndrome 0 (0.0) 10 (45.5)

Predominant antibody deficiency 3 (20.0) 2 (9.1)

Combined immunodeficiency 2 (13.3) 1 (4.5)

Immunodeficiencies affecting cellular and
humoral immunity

2 (13.3) 0 (0.0)

Congenital defects of phagocyte number,
function, or both

0 (0.0) 2 (9.1)

Congenital defects of phagocyte 1 (6.7) 1 (4.5)

Phenocopies of primary immunodeficiency 1 (6.7) 0 (0.0)

Defects in intrinsic and innate immunity 0 (0.0) 1 (4.5)

Auto-inflammatory disorders 0 (0.0) 1 (4.5)

History of recurrent, persistent infections 0.011

Yes 14 (93.3) 11 (50.0)

No 1 (6.7) 11 (50.0)

Family history 0.136

Yes 4 (26.7) 1 (4.5)

No 11 (73.3) 21 (95.5)
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Genetic diagnosis of IEI

Detailed clinical characteristics and laboratory test results of

patients with genetic diagnosis are shown in Table 2. Genetic

diagnosis was made promptly after symptom onset in eight cases

(60.0%, 9/15). Mean turnaround time of CES for IEI was 33.1 days

(range, 13–66 days). In four patients, clinical diagnosis was made

several years ago and later confirmed by genetic test (Cases 3, 4, 6, and

14). In two patients, precise diagnosis could not be made before CES,

which solved the cases by detecting causative pathogenic variants

(Cases 9 and 15). Except for a patient with hypogammaglobulinemia

only (Case 1), patients had a history of recurrent or persistent

infections. Ten patients had hypogammaglobulinemia.

In 10 different genes, a total of 17 clinically significant pathogenic

variants were found, of which 5 were novel variants (Table 3). Themost

common gene found to have clinically significant pathogenic variants

was the BTK gene (3/17, 17.6%) followed by the UNC13D, STAT3,

IL2RG, and IL10RA genes (2/17, 11.8% for each). The rest included

NRAS, SH2D1A, GATA2, TET2, PRF1, and UBA1 (1/17, 5.9% for

each). None of the variants were found in common among the patients.

Of 17 pathogenic variants, missense variants weremost common (6/17,

35.3%), followed by frameshift variants (4/17, 23.5%) and nonsense

variants (2/17, 11.8%). A canonical splice site variant, a translation

initiation codon variant, a synonymous variant, an intronic variant,

and an exon deletion were detected once each.

Genetic diagnosis led to appropriate treatment for IEI diagnosed in

each patient. Immunoglobulin replacement was done in three patients

diagnosed with Bruton disease. Eight patients were treated with

allogenic hematopoietic stem cell transplantation.
Patients with germline pathogenic variants

Pathogenic variants of BTK are causes of X-linked

agammaglobulinemia, also known as Bruton disease. Known

pathogenic variants of BTK (Arg255Ter, Gly594Arg, and Trp281Ter)

were detected from three patients (Cases 1, 6, and 14) with

immunodeficiency. All patients had hypogammaglobulinemia with

significantly reduced B-cell number. Of three patients, two patients

(Cases 6 and 14) were previously diagnosed with X-linked

agammaglobulinemia based on laboratory results and clinical history,

while one patient (Case 1) was newly diagnosed by CES performed to

identify the cause of hypogammaglobulinemia. The patient did not

have clinical symptoms or signs (recurrent infections) suggestive

of immunodeficiency.

Two patients were diagnosed with familial hemophagocytic

lymphohistiocytosis (fHLH) by CES. In both patients, the

laboratory findings, clinical symptoms, and signs suggested HLH.

Two pathogenic variants of UNC13D were detected from a patient

(Case 2) with fHLH. Although HLH was suspected in this patient,

HLH was not confirmed because diagnostic criteria (13) were not

fulfilled before the molecular diagnosis. In the other patient, Case

11, detection of a homozygous pathogenic variant of PRF1

confirmed the diagnosis of fHLH, which was made before CES by

fulfilling other diagnostic criteria.
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A pathogenic STAT3 variant was detected from an adult female

patient (Case 3) with a history of recurrent fever, pneumonia, and

breast abscess who was diagnosed with hyperimmunoglobulin E

syndrome in childhood. The diagnosis was made based on clinical

symptoms and confirmed by the detection of the variant, which was

previously reported from patients with hyperimmunoglobulin E

syndrome (14, 15). Also, the dominant-negative effect of the variant

has been previously observed (14).

A pathogenic STAT3 variant with several previous reports of

autoimmunity and immunodeficiency was detected from a patient

(Case 4) with recurrent infection history, lymph node enlargement,

pancytopenia, and splenomegaly. A previous study has shown that

the variant is a gain-of-function variant (16).

Two novel pathogenic variants of IL2RG were identified by CES

from patients with severe combined immunodeficiency (SCID).

One of the patients (Case 5) had recurrent fever from 2 months old

and also had leukopenia, thrombocytopenia, and persistent CMV

infection (17). Laboratory findings showed significantly decreased

T-cell population and a bone marrow study revealed slightly

increased number of histiocytes. Precise diagnosis of the patient

was made by genetic test, which revealed a frameshift variant of

IL2RG. Another novel pathogenic variant of IL2RG was detected

from a patient with SCID (Case 12). There was a family history of

two male brothers of the mother who died of unknown causes when

they were young.

A novel, pathogenic SH2D1A was detected from a patient (Case

8) with chronic active EBV infection. From 1 year old, the patient

had suffered from recurrent fever and bilateral lymph node

enlargement. Later, EBV infection was confirmed and persisted

despite the treatment.

From an infant (Case 13) with recurrent perianal abscess,

genetic diagnosis was made by the detection of two heterozygous

pathogenic variants of IL10RA. A pathogenic variant (c.537G>A,

p.Thr179Thr) was inherited from the mother and IL10RA exon 1

deletion was confirmed to occur de novo. The silent variant of

IL10RA has been reported in patients with IL10RA-related

inflammatory bowel disease (18, 19). One of these studies has

shown the aberrant splicing caused by the variant (18).

In a patient (Case 7) with recurrent fever and infection, genetic

testing was requested to find the cause of immune deficiency. A

known pathogenic variant of NRAS (c.38G>A, p.Gly13Asp) was

detected, which caused Ras-associated lymphoproliferative disease.
Patients with somatic pathogenic variants

Most of the pathogenic variants were germline variants;

however, three somatic pathogenic variants were also identified

from some patients (3/15, 20.0%).

A somatic GATA2 pathogenic , f rameshif t var iant

(p.Ser340AsnfsTer39, variant allele frequency 11.6%) was detected

from a young female adult patient (Case 9) with a history of

recurrent infection (tuberculosis, pneumonia, EBV, CMV, and

BKV). At initial assessment, the patient had pancytopenia with

lymphopenia and monocytopenia. The patient also had B
frontiersin.org
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TABLE 2 Clinical and laboratory data of patients with genetic diagnosis.

G
g/
l)

IgA
(mg/
dl)

IgM
(mg/
dl)

B
cell
(%)

T
cell
(%)

NK
cell
(%)

CD4+
T cell
%*

(/µl)

CD8+
T cell
%*

(/µl)

↓ <5 ↓ 11 ↓ 0.4 95.8 3.6
69.5

(4,731)
24.4

(1,661)

4 ↓ 64 ↓ 38 ↓ 3.4 93.8 2.5
62.7

(3,501)
31.7

(1,770)

91 94 167 NT NT NT NT NT

7 ↓ <5 ↓ 25 ↓ 4.3 88 7.1
50.6
(618)

33.8
(413)

8 ↓ <5 ↓ <5 ↓ 89.8 3 5 1.5 (9) 2.1 (13)

2↓ <5 ↓ <5 ↓ 0 NT NT NT NT

61 91 188 NT 38.6 NT NT NT

27 290.7 256.4↑ NT NT NT NT NT

2 ↓ 17.3 ↓ 10.8 ↓ 0 100 0
40.9
(117)

55.4
(158)

T NT NT 2.3 91.1 6.8
25.5
(584)

60.7
(1,391)

1↓ 6.6↓ 14.4↓ 6.5 84.6 8.6 0.2 (7) 0.6 (21)

3↓ <5↓ 26.3↓ 99.1 0.7 0.5 NT NT

3↓ NT NT NT NT NT
27.4
(238)

43.3
(376)

2↓ <5↓ <5↓ 0.1 73.7 NT
43.7
(110)

51.0
(128)

69 456.2↑ 24.9↓ 0.4 96.5 3
69.5

(4,731)
24.4

(1,661)
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Case Sex

Age

Clinical diagnosis Clinical characteristics
Ig
(m
d

Symptom
onset At diagnosis

1 Male 6M 6M Hypogammaglobulinemia – 59

2 Female 2M 4M
Hemophagocytic

lymphohistiocytosis
Recurrent fever and infection (sepsis, meningitis), pancytopenia,

splenomegaly
52

3 Female 8Y 33Y
Hyperimmunoglobulin E

syndrome
Recurrent fever and infection (liver abscess, cellulitis, cervical
abscess, chronic otitis media, breast abscess, pneumonia)

1,

4 Female 2Y 7Y
Severe combined

immunodeficiency disorder
Recurrent infection, lymph node enlargement,

cytomegalovirus infection
47

5 Male 1M 3M
Severe cytomegalovirus

hepatitis
Fever, pancytopenia, sepsis, urinary tract infection,

cytomegalovirus infection
<1

6 Male 4Y 37Y Bruton disease
Recurrent infection (meningitis, skin folliculitis), eczema,

bronchiectasis
43

7 Male 1M 6M
Lymphoproliferative

disease
Recurrent fever and infection (Pseudomonas sepsis and

Clostridium perfringens acute gastroenteritis), splenomegaly
1,

8 Male 1Y7M 1Y7M
Lymphoproliferative

disease
Recurrent fever, bilateral lymph node enlargement, chronic

active Epstein–Barr virus infection
9

9 Female 20Y 22Y
Recurrent nontuberculous
mycobacteria pulmonary

infection

Recurrent fever and infection (pneumonia, acute pyelonephritis,
latent tuberculosis, nontuberculous mycobacteria infection),

hepatosplenomegaly
35

10 Female 3Y 3Y
Epstein–Barr virus

infection
Chronic Epstein–Barr virus infection N

11 Male 1M 1M
Hemophagocytic

lymphohistiocytosis
Fever, elevated liver enzymes and bilirubin, hepatosplenomegaly 38

12 Male 5M 5M
Pneumocystis jirovecii

pneumonia
Pneumonia, recurrent otitis media 42

13 Male 1M 1M IL10RA deficiency Recurrent perianal abscess 34

14 Male 1Y6M 17Y Bruton disease Otitis media, sinusitis, Campylobacter infection 24

15 Male 61Y 64Y VEXAS syndrome Recurrent mycobacterial infection, cytopenia 9

*CD4- and CD8-positive T cell % is presented as number of each cell population/total lymphocyte count.
NT, not tested.
4

1
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TABLE 3 Identified pathogenic variants from patients with genetic diagnosis and treatments.

Disease (MIM#) Inheritance Treatment

aglobulinemia, X-linked 1 (300755) XLR IGRT

gocytic lymphohistiocytosis, familial, 3
(608898)

AR HSCT

e disease, multisystem, infantile-onset, 1
(615952)

recurrent infection syndrome (147060)
AD

Antibiotic
prophylaxis

e disease, multisystem, infantile-onset, 1
(615952)

recurrent infection syndrome (147060)
AD

Ruxolitinib
Steroid

ombined immunodeficiency, X-linked
(300400)

XLR HSCT

aglobulinemia, X-linked 1 (300755) XLR IGRT

ciated autoimmune lymphoproliferative
drome type IV, somatic (614470)

–
Conservative

care

liferative syndrome, X-linked, 1 (308240) XLR HSCT

mmunodeficiency 21 (614172) AD HSCT

mmunodeficiency 75 (619126) AR
Ganciclovir
Bortezomib

gocytic lymphohistiocytosis, familial, 2
(603553)

AR HSCT

ombined immunodeficiency, X-linked
(300400)

XLR HSCT

atory bowel disease 28, early onset,
autosomal recessive (613148)

AR HSCT

aglobulinemia, X-linked 1 (300755) XLR IGRT

AS syndrome, somatic (301054) XLR HSCT

m cell transplantation.
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6

Case Gene Accession Nucleotide Amino acid Zygosity
(VAF)

ACMG
classification

Novel
variants?

1 BTK NM_000061.2 c.763C>T p.Arg255Ter Hemi Pathogenic Known Agam

2 UNC13D NM_199242.2

c.1055 + 1G>A – Hetero
Likely

pathogenic
Known

Hemoph

c.118-308C>T – Hetero
Likely

pathogenic
Known

3 STAT3 NM_139276.2 c.1144C>T p.Arg382Trp Hetero Pathogenic Known
Autoimmu

Hyper-IgE

4 STAT3 NM_139276.2 c.2144C>T p.Pro715Leu Hetero
Likely

pathogenic
Known

Autoimmu

Hyper-IgE

5 IL2RG NM_000206.2 c.681del p.Phe227LeufsTer46 Hemi
Likely

pathogenic
Novel

Severe c

6 BTK NM_000061.2 c.1780G>A p.Gly594Arg Hemi Pathogenic Known Agam

7 NRAS NM_002524.4 c.38G>A p.Gly13Asp Hetero
Likely

pathogenic
Known

RAS-asso
syn

8 SH2D1A NM_002351.4 c.1A>G p.Met1? Hemi Pathogenic Novel Lymphopro

9 GATA2 NM_001145661.1 c.1018_1036delinsAATTT p.Ser340Asnfs*39
Somatic
(11.6%)

Likely
pathogenic

Novel

10 TET2 NM_001127208.2 c.2188del p.Thr730HisfsTer21
Somatic
(9.2%)

Likely
pathogenic

Novel

11 PRF1 NM_001083116.1 c.65del p.Pro22ArgfsTer29 Homo Pathogenic Known
Hemoph

12 IL2RG NM_000206.2 c.340G>A p.Gly114Ser Hemi
Likely

pathogenic
Novel

Severe c

13 IL10RA

NM_001558.3 c.537G>A p.Thr179= Hetero Pathogenic Known
Inflam

NM_001558.3 Exon 1 deletion Hetero
Likely

pathogenic
Known

14 BTK NM_000061.2 c.842G>A p.Trp281Ter Hemi
Likely

pathogenic
Known Agam

15 UBA1 NM_153280.2 c.121A>C p.Met41Leu
Somatic*
(84%)

Pathogenic Known VE

*This variant was detected from whole blood sample and was not detected from buccal swab sample.
VAF, variant allele frequency; XLR, X-linked recessive; AR, autosomal recessive; AD, autosomal dominant; IGRT, immunoglobulin replacement therapy; HSCT, hematopoietic ste
m
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m
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and NK ce l l defic iency , which was cons i s t en t wi th

GATA2-associated immunodeficiency.

A somat i c TET2 pa thogen i c va r i an t ( c . 2188de l ,

p.Thr730HisfsTer21, variant allele frequency 9.2%) was detected

from a patient (Case 10) with chronic EBV infection. This patient

was treated for infectious mononucleosis, and EBV infection

persisted despite the treatments. CES, which was requested to

evaluate the etiology of chronic EBV infection, detected the

somatic variant of TET2.

A pathogenic variant of UBA1, which is the cause of VEXAS

syndrome, was identified by CES from a 64-year-old male patient

(Case 15). At initial assessment, the patient suffered from multiple

arthralgia, leukopenia, and anemia. During follow-up, chronic

granulomatous inflammation with necrosis of bone marrow and

tuberculosis lymphadenitis were detected. Various symptoms

persisted, however, since the cause was not clearly identified, and

CES was performed to diagnose the cause of immunodeficiency and

autoinflammatory conditions. A known pathogenic UBA1 variant

(p.Met41Leu, variant allele frequency 84.0%) was detected, which

led to an accurate diagnosis of the patient.
Patients with incidentally identified IEI

There were two patients with incidentally identified pathogenic

variants causing IEI, which were identified by CES during genetic

workup for other diseases (Tables 4, 5).

CES identified a somatic, pathogenic variant of KRAS (c.37G>T,

p.Gly13Cys, variant allele frequency 19.6%) from a patient with

unknown cause of anemia and thrombocytopenia (Incidental case

1), which made the genetic diagnosis of RAS-associated

lymphoproliferative disorder.

To identify a cause of neurodevelopmental disorder, CES was

performed for a patient with epilepsy, delayed development,

dystonia, spasticity, and brain atrophic changes (Incidental case

2). CES revealed uniparental disomy of chromosome 1 and

homozygous ISG15 pathogenic variants. The patient had a history

of CMV infection and recurrent lymphadenitis.
Discussion

Genetic causes of IEI are increasingly being diagnosed. IUIS

have regularly updated the list of IEI, which are caused by single

gene defects, and a growing number of genetic defects have been

reported (4). Although certain IEI can be suspected through the

patient’s history, clinical symptoms, and laboratory tests, it is

difficult to make precise diagnosis since there are various genes

that cause similar disorders. Thus, NGS, which can test various

causative genes at the same time, is very useful for diagnosing IEI.

Diagnostic yield varies among reports, which is due to the

difference in the characteristics of study populations and the

methods used (Supplementary Table S3). Previous studies used

targeted panel sequencing (20, 21), CES (22), whole exome

sequencing (WES) (23, 24), or whole genome sequencing (25),

and each method has its pros and cons. With targeted gene panel
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sequencing, in-depth sequencing of selected genes related to IEI is

possible, which enables detection of low-level mosaic variants,

whereas with methods that can test a large number of genes,

diagnostic yield would be increased. In addition, as well as newly

identified genes related to IEI, previous unknown related genes can

be assessed. In this study, CES was used for genetic diagnosis, which

showed a 40.5% positive rate. Pathogenic variants of a gene not

included in targeted panels used in other studies (20, 21), UBA1,

were detected by CES. In addition, two mosaic variants with low

variant allele frequency were successfully detected. Taken together,

these showed the utility of CES for diagnosis of IEI.

For patients with IEI, early diagnosis is crucial for proper

management and avoiding severe, recurrent infections. In our

cases, genetic diagnosis was made in a few months after symptom

onset in patients younger than 2 years old, which emphasizes the

clinical utility of CES for the diagnosis of IEI. CES is also useful for

the diagnosis of unsolved cases. Two patients with a long history of

undiagnosed recurrent infection and inflammations were diagnosed

by CES after 2 years and 3 years after the onset of symptoms,

respectively, which led to appropriate curative therapy for the

patients. In particular, in the case of patients with GATA2 and

IL10RA variants, prior to genetic diagnosis, the current ongoing

infection treatment was given priority, but after genetic diagnosis,

allogeneic hematopoietic stem cell transplantation, a curative

treatment option, could be attempted with more confidence.

Although disorders of the immune system can be suspected in

patients with various conditions, diagnostic yield seemed to be

different among conditions. Based on the clinical diagnoses and

clinical features of patients without a genetic diagnosis, it appears

that they tend to have a milder disease or exhibit a lower frequency

of infections (Supplementary Table S4). Recurrent fever can be

evidence of immune disorder; however, in our study population,

genetic analysis did not yield any positive result from the patients

with recurrent fever without apparent infections. Several diseases

were associated with periodic fever syndrome, such as cryopyrin-

associated periodic syndromes (caused by NLRP3), familial

Mediterranean fever (caused by MEFV), tumor necrosis factor

receptor-associated periodic syndrome (caused by TNFRSF1A),

and mevalonate kinase deficiency (caused by MVK) (26). Our

patients were diagnosed with PFAPA syndrome, by combining

clinical features and negative genetic test results. Although there

might be unknown genetic causes, genetic testing for patients with

periodic fever without identifiable infection is more likely to yield

negative results.

Previous studies have reported the presence of mosaic variants

in patients with various IEI (27, 28). For example, a somatic,

heterozygous pathogenic variant of FAS is a known cause of

autoimmune lymphoproliferative syndrome (29). There was a

recent report of mosaic TLR8 gain-of-function variants that cause

immunodeficiency (30). In this study, we also revealed three

patients with somatic pathogenic variants of GATA2, TET2, and

UBA1. Pathogenic variants of GATA2 were known to cause

immunodeficiency with variable onset and susceptibility to

mycobacteria and fungal infections (31). The patient with the

GATA2 variant in this study also showed similar features, with a

history of recurrent infection with mycobacterial infection,
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hypogammaglobulinemia, and B and NK cell deficiency. Somatic

pathogenic variants of TET2 have been reported from patients with

various hematologic malignancies (32). Although the association

between TET2 variant and IEI has not been elucidated yet, a recent

study reported that somatic TET2 variants were detected in CD4+ T

lymphocytes of a patient with combined variable immunodeficiency

(33). The UBA1 somatic variant was detected from a patient with a

long history of recurrent infections and systemic inflammation of

unknown etiology, whose diagnosis of VEXAS syndrome was made

by CES. VEXAS syndrome is an adult-onset autoinflammatory

disease defined recently, caused by myeloid lineage restricted

somatic variants of UBA1 (34). Since various studies have

revealed the presence of low-level mosaic variants and variants

detected only in specific population of peripheral mononuclear

cells, simple, routine genetic analysis without cell sorting or in-

depth sequencing can lead to missed detection of some variants

related to IEI.

Among the known indicators that suggest the presence of IEI, a

recurrent and/or persistent history of infection and a family history

of IEI have been previously reported (35–37). The results of this

study are consistent with these earlier findings, demonstrating a

correlation between infection history and IEI (35, 36). However, the

relationship between family history and IEI remains a subject of

debate, with some studies reporting a connection and others finding

no association (35–37). In this research, no statistically significant

correlation was found between family history and molecular

diagnosis of IEI. Nevertheless, a higher proportion of cases with a

family history of IEI were observed among those who had a genetic

diagnosis. This observation suggests that family history may be a

useful factor to consider when deciding whether to perform genetic

testing for IEI and for supporting the diagnostic process, potentially

providing valuable information for a more comprehensive

understanding of the patient’s condition.

In this study, we also described patients with IEI, who were

diagnosed incidentally. Owing to CES, which was used for genetic

diagnosis for various diseases in our institute, IEI could be

diagnosed in previously unrecognized patients. This shows the

benefits of using CES for various disease groups as well as IEI.

In summary, this study showed the clinical utility of CES for the

diagnosis of IEI. In addition to pediatric patients suspected of

primary immunodeficiency, early CES should be considered in

adult patients with suspected symptoms that may be caused by

immunodeficiency or immune dysregulation. Early, accurate

diagnosis made by CES results in the reduction of labor and cost

for other diagnostic methods and can improve patient’s prognosis

and quality of life by reducing time before diagnosis is made.
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