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INTRODUCTION

Microsatellites are small, repeating DNA stretches scattered 
throughout the entire genome.1 Microsatellite instability (MSI) 
is a hypermutable phenotype caused by an aberrant DNA re-

pair system related to a high mutation burden.2 MSI is detected 
in sporadic cancers of the colon, stomach, and endometrium.1 

Colorectal cancer (CRC) is the third most common cancer 
worldwide,3 and MSI is detected in approximately 15%–20% 
of CRC.1 MSI status is important in patients with CRC for pre-
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dicting patient prognosis and selecting the treatment strategy. 
Patients with stage II CRCs were contraindicated to receive ad-
juvant chemotherapy in MSI-high status due to the lack of ther-
apeutic benefits.4 MSI status also has clinical implications in 
conjunction with immunotherapy, since MSI-high CRCs show 
high expression of multiple immune checkpoints, including 
programmed death-1 (PD-1). The U.S. Food and Drug Admin-
istration has approved an anti-PD-1 therapy called pembroli-
zumab for patients with unresectable or metastatic MSI-high or 
mismatch repair (MMR)-deficient solid tumors, including CRC.5

MSI is detected by immunohistochemical (IHC) staining 
and polymerase chain reaction (PCR) testing of surgical speci-
mens. However, analysis of MMR protein expression through 
IHC staining is often affected by fixation conditions, resulting 
in false-negative errors.6,7 Furthermore, PCR-based testing by 
amplifying specific microsatellite repeats is complex and ex-
pensive.2 In this context, a non-invasive method reliably pre-
dicting MSI status before surgery would be clinically beneficial.

18F-fluorodeoxyglucose (FDG) positron emission tomogra-
phy (PET)/computed tomography (CT) is widely used to eval-
uate staging, therapeutic response, recurrence, and prognosis 
in patients with cancer. FDG PET/CT has recently been used to 
predict the pathology or gene expression in solid tumors, in-
cluding CRC.8-11 To our knowledge, only a few studies have in-
vestigated the feasibility of using FDG PET/CT to predict MSI 
status in gastric cancer and CRC.12-14 A recent study by Li, et al.13 
demonstrated the possibility of predicting MSI status in CRC 
using a machine learning model integrating the PET/CT ra-
diomic features. However, the prediction model’s performance 
was not compared with that of conventional PET/CT parame-
ters, such as metabolic tumor volume (MTV) or total glycolysis 
(TLG), nor with clinical variables.

This study sought to develop a machine learning model us-
ing radiomics of FDG PET/CT to predict MSI status in patients 
with CRC and compare its performance with clinical and con-
ventional PET/CT parameters.

MATERIALS AND METHODS

Patient cohorts
In this retrospective study, 233 patients were analyzed. All pa-
tients underwent preoperative PET/CT within 1 month before 
surgery and radical operations for CRC between January 2008 
and April 2014. The inclusion criteria for this study were the 
availability of preoperative PET/CT and tests for MSI. The ex-
clusion criteria were patients who 1) underwent preoperative 
chemoradiotherapy for rectal cancer, 2) underwent emergen-
cy operations, and 3) had a history of hereditary nonpolyposis 
CRC, ulcerative colitis, or Crohn’s disease (Supplementary 
Fig. 1, only online).

The study protocol adhered to the ethical standards of the 
institutional and national research committees and the 1964 

Helsinki Declaration and its later amendments. The Institutional 
Review Board of the Gangnam Severance Hospital, Yonsei 
University College of Medicine, approved this study (IRB No. 
3-2021-0305) and waived the requirement for written informed 
consent owing to the retrospective study design.

PET/CT protocol
All patients fasted for at least 6 hours before PET/CT examina-
tion and were confirmed to have blood glucose levels of <180 
mg/dL. PET/CT scans were performed 60 min after the intra-
venous administration of FDG (5.5 MBq/kg of body weight) 
using a hybrid PET/CT scanner (Biograph 40 TruePoint or Bio-
graph mCT 64, Siemens Healthcare Solutions USA, Inc., Knox-
ville, TN, USA). A low-dose non-contrast-enhanced CT scan 
was first obtained for attenuation correction using automatic 
dose modulation (120 kVp, 40 mAs, and 3-mm slice thickness). 
PET data were then acquired from the skull base to the proxi-
mal thigh for 3 min per bed position in three-dimensional (3D) 
mode. Images were reconstructed onto a 168×168 matrix using 
ordered subset expectation maximization with attenuation us-
ing two iterations and 21 subsets. The reconstructed images 
were converted to standardized uptake value (SUV) images as 
follows: SUV=(decay-corrected activity [kBq] per mL of tissue 
volume)/(injected FDG activity [kBq] per gram of body mass).

Radiologic feature extraction
First, a spherical volume of interest (VOI) was manually drawn 
large enough to include the primary CRC by the two experi-
enced nuclear medicine physicians. Then, manual adjustment 
was performed to exclude adjacent metastatic lymph nodes 
and physiologic organ uptake. Contrast-enhanced CT and mag-
netic resonance imaging, whichever was available, were some-
times used to help delineate the primary CRC. Afterwards, the 
primary tumor within the VOI was automatically delineated 
using the contrast-based threshold method implemented in 
open-source LIFEx software version 7.0.0 (www.lifexsoft.org).15 
The threshold (TCB) is defined by: TCB=0.5×SUVpeak+SUVbgd, 
where SUVpeak is a 1 mL spherical region located on the maxi-
mum value of the ROI. SUVbgd is defined as the mean uptake 
in a 3D shell of one-voxel thickness located 2 cm away from 
the region corresponding to all voxels with a value greater than 
70% of the maximum SUV (SUVmax). The original PET data 
and VOI were saved as medical digital imaging files in the NIf-
TI format for subsequent radiomic feature extraction. For each 
patient, 109 quantitative features were extracted from the VOI 
of the primary tumors on SUV-normalized PET images using 
the open-source package pyradiomics 3.0.1 (https://github.
com/Radiomics/pyradiomics)16: 18 first-order statistics, 16 3D 
shape-based, 24 gray level co-occurrence matrix (GLCM), 16 
gray level run length matrix, 16 gray level size zone matrix, 5 
neighboring gray tone difference matrix, and 14 gray level de-
pendence matrix textural features. The histogram bin size was 
fixed at 0.1 SUV; a fixed bin size was used rather than a fixed 

https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
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number of bins, since tumor SUV ranges differ among patients.17 
A detailed list of parameter adjustments used to extract the tu-
mor area is available at https://pyradiomics.readthedocs.io/
en/latest/features.html.

Determining the MSI status
MSI status was determined from the surgical specimens, as 
previously described.18 Briefly, MSI status was identified using 
five microsatellite markers within the PCR test. MSI-high was 
diagnosed if the aberrant peaks or peak shifts were observed at 
two or more microsatellite markers. A case was categorized as 
MSI low if only one marker showed instability, and as microsat-
ellite stable if no marker had evidence of MSI. MSI-high was 
identified in 25 (10.7%) patients, and MSI low/microsatellite 
stable was found in 198 (89.3%) patients. 

Development of rad_score using least absolute 
shrinkage and selection operator (LASSO) regression 
and its validation
A total of 233 patients were allocated to the training and test 
sets using stratified random sampling at a fixed ratio; 60% (n= 
139) patients were assigned to the training set, and the remain-
ing 40% (n=94) were assigned to the test set. The predictive 
model, called rad_score, was generated using the least absolute 
shrinkage and selection operator (LASSO) regression in the 
training set using PET-derived radiomic features.19 The LASSO 
regression model can remove unimportant variables via regres-
sion coefficients penalizing the number of parameters. The 
LASSO regression shrinks the coefficient estimates toward zero, 
with the degree of shrinkage dependent on an additional pa-
rameter λ. Ten-fold cross-validation was used to determine the 
optimal values for λ using the minimum criteria in our study 
(Supplementary Fig. 2, only online).

Validation of the rad_score was performed using the area 
under the receiver operating characteristic curve (AUROC) in 
the test set. A logistic regression model was used to determine 
whether the rad_score was an independent predictor of MSI 
status in CRC. Univariable analysis was performed for the fol-
lowing clinical parameters: sex, age, body mass index (BMI), 
carcinoembryonic antigen (CEA), tumor location, histologic 
grade, stage, and the three conventional PET/CT parameters 
in addition to the rad_score in the training set. The parameters 
showing statistical significance (p<0.05) in the univariable 
analysis of the training set were subjected to subsequent mul-
tivariable analysis in training set with backward stepwise selec-
tion. The performance of the rad_score, compared to the three 
conventional PET parameters (SUVmax, MTV, and TLG), was 
measured via AUROC analysis.

Statistical analysis
Clinicopathological characteristics were analyzed using a vari-
ance test, where appropriate. The chi-square or Fisher’s exact 
test was used to compare the categorical variables. Continuous 

variables were analyzed using Student’s t-test or the Mann-
Whitney U test. Univariable analysis was performed to calculate 
the odds ratio (OR) of a single variable in the logistic regression 
model. Univariable analysis denoted the association between 
MSI-high and the parameter through 1:1 matching. A two-sid-
ed p-value of less than 0.05 was considered statistically signifi-
cant. All statistical analyses were performed using R version 
3.6.3 (R Foundation for Statistical Computing, Vienna, Austria, 
https://www.r-project.org).

RESULTS

Patient characteristics
The study population comprised 136 male and 97 female. Their 
age was 64±12 years, and their BMI was 23.2±3.2 kg/m2. The 
preoperative CEA level was 10.4±28.8 ng/mL. Cancer of the left 
colon was the most common (44.6%), followed by that of the 
right colon (34.8%) and the rectum (20.6%). There were no sig-
nificant differences in clinical and conventional PET/CT pa-
rameters between the training and test sets (Table 1). MSI-high 
was found in 25 of 233 patients (10.7%); the incidence of MSI-
high was 10.8% (15/139) in the training set and 10.6% (10/94) 
in the test set.

Generation and validation of rad_score
Two radiomic features, original_shape_MinorAxisLength and 
original_glcm_JointEntropy, with coefficients of 0.06027638 
and 0.15312113, respectively, were selected for rad_score. The 
detailed definition of rad_score is described in Supplementa-
ry Fig. 2 (only online). 

The rad_score showed good performance in predicting MSI-
high status in both the training (AUROC=0.815) and test sets 
(AUROC=0.867, p=0.490) (Fig. 1). The rad_score was determined 
as an independent predictor of MSI status in CRC when as-
sessed using the logistic regression model with conventional 
PET/CT and clinical parameters. Univariable analysis of the 
training set demonstrated that histologic grade, stage, MTV, 
TLG, and rad_score were significant predictors of MSI status 
(p=0.003, 0.005, 0.001, 0.008, and <0.001, respectively), and CEA 
was deemed potentially significant (p=0.094) (Table 2). Subse-
quently, these five variables were included in the multivariable 
logistic regression analysis. After backward stepwise selection, 
the final predictive model consisted of histologic grade, stage, 
and rad_score. Multivariable analysis revealed that the rad_
score was significantly associated with MSI status in the train-
ing set [OR, 1.012 (1.004–1.020); p=0.004] (Table 3). The rad_
score outperformed SUVmax, MTV, and TLG, when assessed 
by AUROC (0.590, 0.794, and 0.777, respectively) (Fig. 2).

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html


323

Soyoung Kim, et al.

https://doi.org/10.3349/ymj.2022.0548

DISCUSSION

Our study demonstrated that radiomics feature-derived pre-
operative FDG PET/CT images could predict MSI status with 
a high predictive value of 0.867 AUROC. This predictability out-
performs conventional PET-derived parameters in patients with 
CRC, such as SUVmax, MTV, and TLG. Univariable and multi-
variable analyses revealed that the rad_score was a significant 
predictor of MSI status in CRC.

MSI status is associated with patient prognosis, and its piv-
otal predictive role is to offer adjuvant chemotherapy, especially 

in patients with stage II colon cancer.20,21 Immunotherapy may 
depend on the MSI status; thus, this biomarker is one of the 
most powerful indicators of immunotherapy response in vari-
ous cancers. Currently, MSI status can be assessed using speci-
mens obtained from biopsies or surgeries using IHC or PCR 
tests. IHC is inexpensive but is affected by the fixation of tissue 
samples and neoadjuvant chemoradiation, and PCR is com-
plex and expensive.2,6,7 Therefore, several investigators have sug-
gested deep learning-based MSI prediction algorithms using 
whole-slide images.22-25 Nevertheless, a whole-slide image after 
surgery is usually required in these deep-learning-based MSI 
predictions, such that it can be applied to patients who have 
undergone surgery. Nevertheless, research using CT or PET to 
predict MSI is of increasing interest, as it is non-invasive and 
has the advantage of being applied to patients who cannot un-
dergo surgery.

Radiomics provides valuable information that may be invis-
ible to the naked human eye by extracting multiple features 
from medical images.26 Radiomics may reflect tumor biology 
in human tissues at the cellular and genetic levels.27,28 PET-based 
radiomics studies have recently been developed for preopera-
tive pathology prediction and survival in many cancers.29 In 
CRC, several studies have reported that radiomic analysis of 
features of PET/CT images could predict regional lymph node 
metastasis, perineural invasion, genetic alteration, treatment 
response, and prognosis.30-33 Although MSI status is critical for 
choosing a treatment strategy and predicting prognosis in pa-
tients with CRC, only a few data are available on the ability of 
radiomics to predict MSI status in CRC. While two previous 
studies showed fair/good predictive performance of CT-based 

Table 1. Comparison of Clinical and Conventional PET/CT Parameters 
between Training and Test Sets

Training set
(n=139)

Test set
(n=94)

p

Sex 0.658
Female 60 (43.2) 37 (39.4)
Male 79 (56.8) 57 (60.6)

Age (yr) 0.620
<70 83 (59.7) 60 (63.8)
≥70 56 (40.3) 34 (36.2)

BMI (kg/m2) 0.565
<25 99 (71.2) 71 (75.5)
≥25 40 (28.8) 23 (24.5)

CEA (ng/mL) 0.692
<5 92 (66.2) 59 (62.8)
≥5 47 (33.8) 35 (37.2)

Tumor location 0.688
Right colon 51 (36.7) 30 (31.9)
Left colon 59 (42.4) 45 (47.9)
Rectum 29 (20.9) 19 (20.2)

Histologic grade 0.246
G1 & G2 130 (93.5) 83 (88.3)
G3 & MC & SRC 9 (6.5) 11 (11.7)

Stage >0.999
I & II 66 (47.5) 45 (47.9)
III & IV 73 (52.5) 49 (52.1)

MSI >0.999
MSI-high 15 (10.8) 10 (10.6)

SUVmax 0.986
Continuous variable 13.0±6.5 13.0±6.1

MTV 0.100
Continuous variable 21.6±19.0 26.5±24.1

TLG 0.140
Continuous variable 166.7±194.3 207.4±221.2

Rad_score 0.058
Continuous variable 107.9±80.5 131.6±100.3

BMI, body mass index; CEA, carcinoembryonic antigen; MC, mucinous ade-
nocarcinoma; SRC, signet-ring cell; MSI, microsatellite instability; SUVmax, 
maximum standardized uptake value; MTV, metabolic tumor volume; TLG, to-
tal lesion glycolysis.
Data are presented as mean±standard deviation or n (%).

Fig. 1. Comparison of AUC of LASSO-derived rad_score in the training 
and test sets. AUC, area under the curve; LASSO, least absolute shrink-
age and selection operator; CI, confidence interval.
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radiomic features with AUCs of 0.765–0.792,34,35 PET/CT could 
provide additional functional information. Chung, et al.12 re-
ported that the median SUVmax in patients with MSI-high was 
higher than that of microsatellite-stable patients in 131 patients 
with gastric cancer, showing the possibility of using PET im-
ages to evaluate molecular deterioration in patients with can-
cer. To our knowledge, only one study has investigated the as-
sociation between PET/CT-derived radiomic features and MSI 
status in CRC patients. Li, et al.13 suggested a model using the 
balanced bagging algorithm, showing an AUC of 0.828. Nota-
bly, in the current study, we achieved a higher AUC (0.867) to 
predict MSI status than in the previous study. Furthermore, we 
performed logistic regression analysis and showed that the rad_
score significantly predicted MSI status in CRC. 

Histologic features that predict MSI status are tumor-infil-
trating lymphocytes, Crohn’s-like lymphoid reaction, muci-
nous/signet ring differentiation, and medullary growth pat-
tern.36 Two radiomic features incorporated in the rad_score are 
the joint entropy of the GLCM features and the minor axis length 
of the shape features. GLCM joint entropy is defined as a mea-
surement of the variability of the neighborhood strength value 
and shapes minor axis length as the length of the second-larg-
est axis of the ROI.37 Interestingly, Hotta, et al.38 reported that 
GLCM entropy was the most important prognostic PET feature 
for overall survival and progression-free survival in rectal can-
cer patients. While there is no correlation between GLCM en-
tropy and histologic features of MSI-high CRC, one study re-
ported that GLCM entropy was associated with the density of 
tumor-infiltrating lymphocytes in hepatocellular carcinoma.39 

Table 3. Multivariable Analysis Associated with the MSI in Training Set

OR (95% CI) p
Histologic grade

G1 & G2 Ref
G3 & MC & SRC 14.573 (1.972–107.697) 0.009

Stage
I & II Ref
III & IV 0.085 (0.014–0.503) 0.007

Rad_score
Continuous variable (Per 1 unit) 1.012 (1.004–1.020) 0.004

MSI, microsatellite instability; OR, odds ratio; CI, confidence interval; MC, 
mucinous adenocarcinoma; SRC, signet-ring cell.

Table 2. Univariable Analysis Associated with the MSI Status in Train-
ing Set

OR (95% CI) p
Sex

Female Ref
Male 0.631 (0.209–1.866) 0.402

Age (yr)
<70 Ref
≥70 0.715 (0.212–2.141) 0.562

BMI (kg/m2)
<25 Ref
≥25 0.587 (0.128–1.981) 0.431

CEA (ng/mL)
<5 Ref
≥5 0.270 (0.041–1.035) 0.094

Tumor location
Right colon Ref
Left colon 0.298 (0.077–0.960) 0.053
Rectum 0.146 (0.007–0.829) 0.074

Histologic grade
G1 & G2 Ref
G3 & MC & SRC 8.654 (1.911–37.691) 0.003

Stage
I & II Ref
III & IV 0.114 (0.017–0.438) 0.005

SUVmax
Continuous variable* 1.039 (0.956–1.111) 0.342

MTV
Continuous variable* 1.038 (1.015–1.065) 0.001

TLG
Continuous variable* 1.003 (1.001–1.006) 0.008

Rad_score
Continuous variable* 1.010 (1.005–1.017) <0.001

MSI, microsatellite instability; OR, odds ratio; CI, confidence interval; BMI, 
body mass index; CEA, carcinoembryonic antigen; MC, mucinous adenocarci-
noma; SRC, signet-ring cell; SUVmax, maximum standardized uptake value; 
MTV, metabolic tumor volume; TLG, total lesion glycolysis.
*Per 1 unit.

Fig. 2. Comparison of AUC between rad_score and conventional PET pa-
rameters in the test set. AUC, area under the curve; CI, confidence inter-
val; MTV, metabolic tumor volume; TLG, total lesion glycolysis; SUVmax, 
maximum standardized uptake value; PET, positron emission tomography.
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In this context, we suppose that joint entropy, as one of the 
GLCM entropies, could be associated with tumor-infiltrating 
lymphocytes in MSI-high CRC and was therefore found to be a 
strong predictor in this study. Although the shape features are 
relatively simpler than the other higher-order radiomic fea-
tures, no data is available for MSI-high solid tumors. Hypothet-
ically, the heterogeneous components of mucin accumulation 
in MSI-high tumors may result in a significant difference in the 
shape features of MSI-low or microsatellite stable tumors; how-
ever, further studies are needed to elucidate the association be-
tween the minor axis length of the shape and MSI-high tumors. 

Our study had several limitations. This study was retrospec-
tive and performed at a single institution without external val-
idation, limiting our results’ generalizability. Although internal 
validation was carried out, external validation in a multicenter 
study is required. More importantly, to enroll more MSI-high 
cases, we combined the studies from different PET/CT scan-
ners, which could affect the robustness of the extracted radiomic 
features in this study. While this study demonstrated the fea-
sibility of machine learning using PET/CT radiomics to predict 
the MSI status in CRC, our results need to be interpreted as ex-
plorative and investigated under the various acquisition and 
reconstruction methods. In addition, the absence of a standard-
ized method for tumor segmentation in PET radiomics analy-
sis can be an obstacle to generalizing the study results because 
the radiomic feature selection and model performance can 
vary according to the lesion segmentation methods.40,41

This study used a machine learning algorithm and PET ra-
diomic features to construct a prediction model to determine 
the MSI status in CRC. Our radiomics model could successfully 
predict the MSI status of CRC, and showed better predictive 
performance than conventional PET imaging parameters.
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